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We consider a regular random network where each node has exactly
three neighbours. Ising spins at the network nodes interact antiferromag-
netically along the links. The clustering coefficient C' is tuned from zero
to 1/3 by adding new links. At the same time, the density of geometri-
cally frustrated links increases. We calculate the magnetic specific heat,
the spin susceptibility and the Edwards—Anderson order parameter ¢ by
means of the heat-bath Monte Carlo simulations. The aim is the transition
temperature T, dependence on the clustering coefficient C'. The results are
compared with the predictions of the Bethe approximation. At C' = 0, the
network is bipartite and the low temperature phase is antiferromagnetic.
When C' increases, the critical temperature falls down towards the values
which are close to the theoretical predictions for the spin-glass phase.

PACS numbers: 75.30.Kz, 64.60.Aq, 05.10.Ln

1. Introduction

Statistical mechanics of random networks gained recently many applica-
tions in interdisciplinary sciences. The list of references is already very rich;
in almost each year new monographs appear [1-6|. In theory, the promising
challenge is to investigate collective phenomena in networks [7]. More than
often it is useful to decorate nodes ¢ with additional variables, as Ising spins
S; = £1. Properties of such networks are of interest for theory of computa-
tions, as inference problems, but also for the theory of disordered magnetic
systems. Here we are interested in the spin-glass phase of the small-world
random networks.

* Presented at the XXI Marian Smoluchowski Symposium on Statistical Physics Za-
kopane, Poland, September 13-18, 2008.
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For trees, where closed loops are absent, there is a consistent theory of
Ising magnetism, i.e. the Bethe theory [8-10]. Once the loops appear in the
system, the Bethe theory becomes an approximation. In our system, small
loops are introduced when we enhance the clustering coefficient [11,12]. Still,
the results of the Bethe theory are useful as a point of reference. As it was
demonstrated in [12], the accordance of the numerical results with this theory
was deteriorated when C increases. On the other hand, there is at least one
periodic two-dimensional Ising lattice when all bonds are antiferromagnetic,
the density of frustration is high and the transition temperature is positive;
this is one of the Archimedean lattices [13]. The ground state of this system
is highly frustrated, but at least some of the energy barriers between different
states remain finite. Although at zero field the net magnetization is zero,
there is no disorder in the system; therefore it is hard to speak about the
spin-glass phase. Then, the (3,12%) Archimedean lattice can be compared
to our system in the case where C' is maximal.

Recently we investigated the transition from the paramagnetic to the
spin-glass phase in the random Erdés—Rényi network with enhanced clus-
tering coefficient C' [12]. The enhancement is introduced by adding new
links between neighbours of the same sites [11]|. In this way, C varied from
almost zero to about 0.3. The main result was the transition temperature
Tsa dependence on the clustering coefficient C'. However, in the numerical
plots the transition was partially hidden by the contribution of spins which
could flip with zero energy cost. That is why here we investigate the same
transition in the regular random network, where the degree of each node is
an odd number — here it is equal to three. In such systems no spin can flip
at zero energy cost in zero external magnetic field.

In the next section we show the method and the numerical results. In
Section 3 the transition temperature T, is compared with the predictions of
the Bethe theory. Short discussion closes the text.

2. Method and results

Initial form of the constructed network is prepared as an even number
Ny of unlinked nodes. The system is divided into two equal parts. Three
“dangling” links are assigned to each node. Then, the links of one part of
nodes are randomly joint to links of the second part. In this way, initially the
system is bipartite, with the clustering coefficient C' equal to zero provided
that the number of nodes is large enough. Next step is performed for each
node with the probability p: the node is substituted by a group of three
nodes, mutually linked. After this substitution, three previous neighbours
of the node are linked to the nodes of the group. In this way, the degree
of each node remains exactly three. As the Ising interaction is exclusively
antiferromagnetic, the frustration is purely geometrical. When C' = 0, there
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is no frustration. The density of frustrated bonds increases with C'. If p = 1,
the clustering is maximal and for each node, two out of its three neigbours
are linked to each other; then C' = 1/3. The final number of nodes is
N = Ny(1+2p); for each p the amount Ny is chosen as to get approximately
the same V.

The heat-bath Monte Carlo algorithm is applied to investigate the mag-
netic properties: the susceptibility x, the specific heat C), and the Edwards—
Anderson order parameter q. x can be calculated from the field derivative
of the magnetization m(h) or from the variance of the spectrum of m(0).
Similarly C, can be obtained from the temperature derivative of energy or
from the variance of the energy fluctuations. The parameter ¢ is calculated
from the formula [14]

. 2
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The antiferromagnetic exchange integral J is set to —1. As a rule, the
calculations are performed for N equal at least 9 x 10° spins. The time of
calculation — after a necessary transient — was usually 10° steps, where
one step is equivalent to probing N spins in random order. The results are
limited to temperature 7" > 0.5, where the transient time for relaxation of
energy was smaller than 10° time steps.

In Fig. 1 we show the magnetic susceptibilities x(7") for different val-
ues of the clustering coefficient C'. The temperature is expressed in energy
units —J. The finite size effect is checked for C' = 0 and C' = 0.33; the
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Fig.1. The magnetic susceptibility y calculated from the variance of the mag-
netization against temperature T, for different values of the clustering coefficient
C =0.0,0.08,0.14,0.18,0.25,0.29 and 0.33. With increasing C, the maximum of y
shifts to low temperatures till C' = 0.18, then remains approximately constant.
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Fig. 2. The magnetic specific heat C, against temperature T for different values of
the clustering coefficient C' = 0.0 (squares), 0.08 (stars) and 0.14 (circles). With
increasing C, the maximum of C, shifts monotonously to low temperatures.

differences between N =9 x 10% and N = 9 x 10° are invisible. As a rule,
the plots obtained from the field derivative of the magnetization coincide
with those from the variance of the magnetization at zero field above the
transition temperature. Below T, the curves split for intermediate values
of C' (between 0.1 and 0.29). The plots for the magnetic specific heat ob-
tained from the variance of energy (Figs. 2 and 3) and from its thermal
derivative coincide in most cases, even below T}, and for intermediate values
of C'. However, the data from the maxima of the specific heat are known
to provide an evaluation of the upper limit of the transition temperature
T, rather than T, itself. The results on T, obtained by different methods
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Fig. 3. The magnetic specific heat C, against temperature T for different values
of the clustering coefficient C' = 0.18,0.25,0.29 and 0.33. With increasing C, the
height of the maximum of C,, decreases.
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Fig. 4. The Edwards—Anderson order parameter ¢ against temperature T' for dif-
ferent values of the clustering coefficient C' = 0.0,0.08,0.14,0.18,0.25. With in-
creasing C, the temperature T, where ¢ vanishes shifts monotonously to low tem-
peratures.

are compared in Fig. 5. As we see, there is a systematic split between T,
obtained from x and T, obtained from C,, but the character of the curve
T.(C) is preserved. In Fig. 4 we show the data on T, obtained from the
thermal dependence of the Edwards—Anderson order parameter gq. These
data also show a decrease of T, with C. However, this decrease persists till
T = 0.5, where our numerical results are less reliable.
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Fig.5. The critical temperature 7, against the clustering coefficient C, calcu-
lated numerically from the inflection point of the magnetic susceptibility y (stars),
the maximum of the specific heat C, (squares) and the Edwards—Anderson or-
der parameter ¢ (circles). Two lines mark theoretical values of T, for the para-
antiferromagnetic phase transition (Eq. (3), upper line) and the paramagnetic —
spin glass transition (Eq. (4), lower line).
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3. Discussion

For C = 0 the network is bipartite. Although the interaction is anti-
ferromagnetic, the system is equivalent to a ferromagnet. To see this, we
have to flip spins at half of nodes and to invert simultaneously the sign of all
exchange integrals J from —1 to 4+1. The formula for the Curie temperature
(J = +1) for the regular Bethe lattice with the coordination number k is [9]

2 2)

In this case this formula can be applied equally well to the Néel temperature
(J = —1). In both cases the number of loops in the system is exactly zero.

For C' > 0 the system contains loops and it is no more equivalent to
a ferromagnet. On the other hand, the network is no more a regular Bethe
lattice. The number of second neighbours decreases gradually with p from 6
when p = 0 to 4 when p = 1. The latter case is, however, in some sense more
regular than the one with smaller p, because all nodes have again the same
number of the second neighbours. Then the Néel temperature (J = —1)
between the paramagnetic and the antiferromagnetic phase is to be found
from

—2J
Bil (3)
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and the transition temperature between the paramagnetic and the spin-glass
phase from

—-2J
Te= 75 (4)
VB-1
where B is the average branching parameter, i.e. B = z5/z1, where z1 (22)
is the average number of first (second) neighbours [7].

Although the data from the specific heat fit better to the Bethe theory, it
is known that the position of the maximum of C, is rather the upper bound
of the transition temperature than this temperature itself.

The numerical results indicate, that for C' = 0 the low-temperature phase
is antiferromagnetic. They also suggest that for C > 0.1 and T' < T} the
system becomes a spin glass. However, the identity of this phase remains not
clear. For C' = 1/3 the system can be compared to the (3,12?) Archimedean
lattice [13] with random rewiring. We can expect that the ground state is
degenerated in the same way as in this Archimedean lattice. However, the
condition is that the rewiring does not destroy the small triangles introduced
when C' is enhanced. In this way the frustration is not altered by rewiring:
the frustration remains local. Then, there is frustration and disorder, but
the disorder does not influence the frustration. On the other hand, the
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energy barriers between the local energy minima remain finite, because the
system can move from one minimum to another by flipping a finite amount
of spins. Although the system behaves as a spin glass, some ingredients of
this mysterious phase are missing.

To summarize, our intention was to compare the numerical results on the
transition temperature 7, with the results of the Bethe approximation. In
Ref. [12], distinct departures have been found between the Bethe theory and
the numerical experiment. Here the departure is smaller and quantitative
rather than qualitative. As a rule, the transition temperature is overesti-
mated by the Bethe approximation. Most important difference between the
system considered in this text and the system discussed in Ref. [12] is the de-
gree distribution. This suggests, that the qualitative departure of the results
of Ref. [12] from those of the Bethe approximation is due to the variance of
the degree distribution.

The calculations were performed in the ACK Cyfronet, Krakéw, grants

Nos. MNiSW /SGI3700/AGH /030,/2007, MNiSW /SGI3700/AGH /031/2007.
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