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The first six Kramers–Moyal coefficients were extracted from human
heart rate variability recordings. The method requires the determination
of the Markov time and of the proper conditional probability densities. We
analyzed heart rate data recorded in a group of ten young, healthy subjects.
We obtained non-negligible higher order Kramers–Moyal (K–M) terms in
6 h nighttime parts of the 24 h recordings. This indicates that the data
is a non-Gaussian process and probably a correlated signal. The analysis
yielded important new insights into the character and distribution of the
stochastic processes measured in healthy group. In the night hours, the
dominant oscillation in the heart rate is the so called respiratory sinus ar-
rhythmia (RSA) — a physiological phenomenon in which respiration acts as
a drive for the heart rate. Certain kinds of pathology may disrupt RSA. We
compared nighttime recordings of the healthy group with those recorded in
six patients with hypertrophic cardiomyopathy (HCM). HCM is generally
a pathology of heart cells but abnormalities in autonomic regulation are
also observed. Using the higher order Kramers–Moyal coefficients, we ana-
lyzed the skewness and kurtosis in the nighttime recordings for the normal
subjects.

PACS numbers: 02.50.Fz, 02.50.Ga, 05.10.Gg, 05.45.Tp

1. Introduction

Recently, the extraction of the Kramers–Moyal coefficients was performed
for human heart variability (RR interval time series) [1,2]. The Markov time
was determined from the Chapman–Kolmogorov equation. The analysis of
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just the first two K–M coefficients (the drift and diffusion terms) showed dif-
ferences between healthy and congestive heart failure subjects [1,2]. In pre-
vious research, other groups [2] selected such heart rate variability data for
which only the drift and diffusion terms were non-negligible allowing the use
of the Langevin equation for data reconstruction. However, the description
of heart rate variability using this method is not complete and the stochas-
tic properties have not been fully understood. In this paper, we extend the
analysis by looking at higher order K–M coefficients also. We show that the
method may be used to enhance medical diagnostics by adding new insight
into properties of heart rate variability.

2. The extraction of Kramers–Moyal coefficients

Extraction of the Kramers–Moyal terms requires the calculation of con-
ditional density probabilities [3] directly computed from experimental data:

D(n) (X, t)=
1

n!
lim
τ→0

1

τ

∫

(

X ′ (t+τ)−X (t)
)(n)

P
(

X ′(t+τ)|X(t)
)

dX ′ . (1)

The conditional density probability distribution P (X ′(t + τ)|X(t)) is the
probability of the system to be found in state X ′ at t + τ time, when the
previous X state at time t was given. The parameter τ is determined from
the Chapman–Kolmogorov (CK) equation with the time t2 < t3 < t1 [4]:

P (X2, t + τ |X1, t − τ)=

∫

P (X2, t + τ |X3, t) P (X3, t|X1, t − τ)dX3 . (2)

The parameter τ = t2 − t3 = t3 − t1, which fulfills the condition (2), is the
Markov time. In Eq. (2) the time intervals between all three time series
elements X1, X3, X2 are equal, which means that our process is assumed to
be stationary [4].

3. Medical data

Heart rate variability data was extracted from 24-hour Holter ECG
recordings using the 563 Strata Scan Del Mar Avionics system at the In-
stitute of Cardiology (Warszawa, Poland). The data was in the form of time
series of the time intervals between heartbeats (RR intervals of the ECG
trace). All data were checked by a qualified cardiologist: normal beats were
detected, artifacts were deleted and arrhythmias were recognized. The data
was sampled at 128Hz.

Ten young (age 26− 4+ 3 y) healthy males were analyzed. Six data sets
for hypertrophic cardiomyopathy (HCM — a disease of the heart muscle)
were analyzed (2 men and 4 women 26.5 + 4 − 6 y). From the 24 hour
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recordings for the normal and HCM subjects, we extracted 6 h nighttime
(between 10.30 p.m. and 6 a.m.) fragments.

For better comparison, all recordings were rescaled taking into account
the mean value 〈RR〉 and the standard deviation σ of the 24 hours sig-
nal: Xi = (RRi − 〈RR〉)/σ. In Fig. 1, we depict the rescaled nighttime
RR intervals series for a healthy male. After rescaling, RR intervals are
dimensionless.
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Fig. 1. Example of a 6 hour RR interval time series for a healthy subject (CHM).

4. Higher order expansion coefficients

The Markov time τ was estimated for each 6 h fragment from the CK
equation (2). The time τ , expressed in units of the data index, varied be-
tween 1 and 4. After estimating the Markov time, we calculated the first six
Kramers–Moyal expansion terms Eq. (1). For computational analysis, equa-
tion (1) and (2) were discretized by dividing the range of X into a constant
number of 45 bins.

The errors of the Kramers–Moyal terms for extreme values of the argu-
ment X can be large due to the poor statistics in that range. We found
the recognition of this effect crucial for the proper measurement of the ex-
pansion coefficients. Therefore, we limit the range of X to what we call the
significance range i.e., such range of X in which the number of data points
in a given bin exceeded 102. The extent of the significance range is marked
in the figures by vertical gray lines.

Within a certain range of X, the higher order terms for the nighttime
series (especially of D(3) and D(4)) were comparable in magnitude to D(1)

and D(2) (Fig. 2 and Fig. 3) for 9 cases of the 10 recordings of cardiological
norm. Within the significance range of X, D(3) and D(4) exceed well over
10% of D(1) and D(2), respectively, so that the higher order terms are not
negligible.
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Fig. 2. Odd higher order Kramers–Moyal coefficients for the nighttime signal (single

patient, CHM).
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Fig. 3. Even higher order Kramers–Moyal coefficients for the nighttime signal (sin-

gle patient, CHM).

If a process obeys the Pawula theorem (D(n) (X, t) = 0, for n ≥ 3) [3],
its dynamics can be described by the Langevin equation [5]:

dX

dt
= D(1) (X, t) +

√

2D(2) (X, t)Γ (t) , (3)

where Γ (t) is Gaussian noise with 〈Γ (t)〉 = 0 and 〈Γ (t)Γ (t′)〉 = δ(t − t′).
Because of the occurrence of higher order terms for the nighttime data, the
dynamics of heart rate variability in the nighttime recordings analyzed here
cannot be reconstructed using Eq. (3).
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5. Detrending nighttime signals

To check whether the occurrence of the higher order terms in the Kramers
–Moyal expansion of the nighttime data are not due to non stationarity, we
applied a detrending method to our data [6]. The signal was smoothed
by a one hundred data point sliding window. The extrema of the smoothed
signal were determined, a linear trend was found between successive extrema
and removed from the data. Finally, the resultant signal was rescaled to
regain the original range of the data. An example of the original and of
the detrended nighttime signal is shown in Fig. 4(a) and 4(b). It can be
seen that the linear trends were successfully removed but isolated extremely
short and long RR intervals remain.
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Fig. 4. The original (a) and detrended (b) nighttime series for the healthy subject

CHB.

In Fig. 5(a) and 5(b) we show the effect of trend removal from the signal
on the drift D(1) and diffusion D(2) terms. The gray curves in both figures
mark the same results as shown in Fig. 2 and Fig. 3, respectively, before
the trend was removed. The black curves depict the results obtained for
the detrended data. The gray vertical straight lines marked the significance
range for the detrended data.

The drift D(1) after detrending exhibits an extended linear dependence
within the significance range. Such a linear dependence is characteristic
for an oscillating process [7]. A physiological oscillatory process which is
dominant during the night is respiratory sinus arrhythmia (RSA) [8]. It is
one of the reasons for heart rate variability: the RR interval shortens during
inspiration and it is lengthened during expiration.

An asymmetry of the diffusion term (Fig. 5(b)) calculated for the de-
trended signal within the significance range of X was obtained. The D(2)(X)
dependence has a characteristic parabolic shape with usually a single mini-
mum. Within the significance range, the curve to the left of the minimum
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Fig. 5. Drift (a) and diffusion term (b) for the original CHB (gray curve) and

detrended CHB (black curve) nighttime signal.

increases faster than to the right. D(2) was an asymmetrical function for
9 of the 10 detrended recordings for the normals. We can interpret the
asymmetry as a result of RSA which leads to a preference for short RR in-
tervals. The asymmetry described may be related to the well known different
time scales of the acceleration and the deceleration of heart rate [9]. D(2)

as a function of X obtained for 3 of the 6 nighttime detrended recordings of
HCM analyzed in this work is depicted in Fig. 6(a) (only for the significance
range). Fig. 6(b) depicts 3 examples of the functional dependence of D(2) for
the healthy subjects. It can be seen that asymmetry in diffusion coefficient
in the case of HCM is disrupted or not present. Note that the minima of
D(2) do not coincide because the 24 h average and standard deviation of the
heart rate is different for each case.
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Fig. 6. Diffusion terms of the nighttime data for 3 HCM patients (part a) and 3

healthy subjects (part b) calculated within the significance range. The signals were

detrended and rescaled.
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6. The analysis of higher order terms

Using the higher order terms, we analyzed the skewness:

γ1 =
D(3)

(

D(2)
)3/2

, (4)

and kurtosis:

γ2 =
D(4)

(

D(2)
)2 − 3 , (5)

of the conditional probability distributions for the nighttime data for each
nighttime signal as functions of the argument X. In Fig. 7 and Fig. 8
we depict the curves only within the significance range of X. Because the
functional dependences overlap, for clarity, we show skewness and kurtosis
only for 6 subjects of the 10 subjects we analyzed and in two separate panels
(the acronyms in the legend denote the individual recordings). It can be seen
that, for each case, we obtained a skewness coefficient decreasing with X and
not symmetric with respect to zero.

The dominance of the positive sign of the skewness (Fig. 7) is in ac-
cordance with the asymmetry of the functional dependence of the diffusion
term described above.

In Fig. 8 we present the functional dependence of the kurtosis on X
calculated for each of the six cases analyzed here. For the most part, the
kurtosis obtained at different X is negative. However, in all cases there was
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Fig. 7. Skewness of the nighttime recordings for the conditional distributions

(6 subjects).
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Fig. 8. Kurtosis of the nighttime recordings for the conditional distributions

(6 subjects).

a range of X for which the kurtosis was positive. For one case all values
of the kurtosis were positive. A large positive kurtosis suggests a strong
concentration around the expectation value of the conditional distribution
and is characteristic for heavy tailed distributions [10]. When kurtosis is
negative and small a Gaussian-like distribution of the conditional probability
density is indicated. Note that the time series analyzed here may be too short
to accurately analyse the rare events which form the tails of the conditional
distributions.

7. Conclusions

The Kramers–Moyal expansion was applied to nighttime recordings of
the heart rate variability of ten healthy males. Because of the occurrence of
higher order coefficients in Kramers–Moyal expansion it was impossible to
reconstruct the nighttime data using the Langevin equation. The properties
of the skewness and kurtosis of conditional probabilities calculated using the
third and the fourth order expansion terms suggests that nighttime heart
rate variability is a non-Gaussian process.

The linear dependence of the drift term D(1) on the rescaled heart rate
X may be due to an oscillation in the heart rate. In the night hours, the
dominant oscillation is RSA. We observed an asymmetry in the diffusion
term D(2) for the detrended night signals for the normals and interpret it as
caused by RSA. We did not obtain this effect in the heart rate variability of
hypertrophic cardiomyopathy patients for which the asymmetry in diffusion
coefficient is disrupted or not present. This result may be useful for medical
diagnosis.
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