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We investigate the nonlocal convective Fisher equation and the condi-
tions for pattern formation. We observe that the width of the influence
function completely determines whether the pattern is present.
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1. Introduction

Many studies on pattern formation have been carried out experimentally
on systems in which convection plays an important role. The convective
cells of Rayleigh–Bernard instabilities [1], moving Wigner glasses [2], and
pattern formation in bacterial colonies under forced convection [3] illustrate
the phenomenon of self-organization in convective motion. In these cases,
a flux of particles is expected to undergo a new regime of organization at
the threshold of external parameters. For the Rayleigh–Bernard effect, this
parameter is the temperature difference T − T0 between two plates which
confine the liquid that exhibits a pattern above a certain critical value of
the parameter. In the case of moving Wigner glasses [2], there is a critical
electron field Ec above which the system exhibits self-organization, with the
electrons moving in separate one-dimensional channels. Finally, in the case
of bacterial colonies [4], the bacteria grow in a medium illuminated by fatal
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UV light. A small mask moving at velocity v shields a small region from
the radiation creating a favorable patch for growth. For velocities bellow
a critical value, the population becomes localized under the mask, whereas
for higher velocities, the population tends to extinction. The motivation
to consider such model systems of bacteria, both experimentally and theo-
retically, is that it may help in the understanding of infection propagation
in living tissue. Generally, the theoretical investigation of such systems is
carried out by modeling the population using a modified form of the Fisher
equation, originally used to describe nonlinear evolution effects due to the
wave propagation of advantageous genes in a population [5], and nowadays
used generally in an ecological context. The Fisher equation growth and
competition terms, namely.

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
+ au(x, t) − bu2(x, t) , (1)

describes the dynamics of a population (of bacteria, for example) with den-
sity u(x, t) subject to diffusive transport with rate D, a growth term with
rate a, and a growth-limiting process controlled by a local competition with
rate b. It should be noted that although exact solutions for the Fisher
equation exist only in special conditions [6], the theoretical investigation
of a nonlinear convective equation of a form similar to that of the Fisher
equation, namely

∂u(x, t)

∂t
+ v

∂u(x, t)

∂x
= a(x)u(x, t) − b(x)u2(x, t) , (2)

has yielded analytic solutions with rich behavior [7]. In that study, a “wind”
term, responsible for convection, has been used to describe the properties of
bacteria flux dynamics where the rate of growth a(x) is spatially dependent.

It has been noted, however, that the inclusion of nonlocality [8,9] in the
Fisher equation can give rise to pattern formation even when we consider
a system with only one species. A generalization of the Fisher equation,
Eq. (1), is obtained by substituting the local competition term by a nonlocal
one

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
+ au(x, t) − bu(x, t)

∫

Ω

fµ(x − y)u(y, t)dy , (3)

such that the interaction between individuals is weighed by an influence
function fµ(x − y) with a range characterized by µ and normalized in the
domain Ω of the system. In this case, a nonlocal interaction term introduced
in the Fisher equation may describe “nonhomogeneous” diffusion of nutrients
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as well as the propagation of toxic substances in bacterial colonies. Indeed
nonlocality gives rise to specific patterns which are intrinsically related to the
influence function fµ; if one considers the local influence function fµ(x−y) =
δ(x − y), then patterns are not formed.

We start with our analysis by defining the nonlocal convective Fisher
equation (NLCFE)

∂u(x, t)

∂t
+ v

∂u(x, t)

∂x
= au(x, t) − bu(x, t)

∫

Ω

fµ(x − y)u(y, t)dy , (4)

obtained by replacing the diffusive term in Fisher equation [6–8,10] by a con-
vective one. Here v is the barycentric velocity of the fluid. Based on the
NLCFE Eq. (4), we are going to analyze analytical and numerically the lim-
its of the width µ of the influence function fµ for the existence of pattern
formation. Starting from a perturbative analysis we obtain analytically the
rate of growth γ(k), and so we show that the NLCFE is able to describe
pattern formation for systems in regime of convective flux. For a fixed sys-
tem of length L, we calculate numerically the critical values of µc in which
NLCFE exhibits self-organization. Finally, we also discuss an interesting re-
lationship between the nonlinearity of the NLCFE and the number of peaks
in the population density u(x, t) via a logistic map based on the different
values of width µ.

2. Analytical study of the NLCFE

2.1. First order perturbation

To understand how pattern formation occurs in the NLCFE and what
parameters govern this regime, we start with the test function

u(x, t) = u0 + ε exp(ikx) exp(φt) , (5)

where u0 is the homogeneous steady state solution a/b, constant in space
and time. The term ε exp(ikx) exp(φt) is a perturbation to the steady state
that will grow or die out, depending on the values of the wave numbers k.
Considering a static velocity field v(x) → v, substituting Eq. (5) into Eq. (4)
and retaining only first order perturbative terms, we find a dispersion re-
lation between the pattern growth rate φ and the wave number k, given
by

φ(k) = −ivk − aFc{fµ(z)} , (6)

where Fc{fµ(z)} is the Fourier cosine transform of the influence function
fµ(z) (assumed to be even), defined as

Fc{fµ(z)} =

∫

Ω

fµ(z) cos(kz) dz . (7)
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Only the real part of the complex growth rate

γ(k) = Re {φ(k)} = −a

∫

Ω

fµ(z) cos(kz)dz , (8)

will be important to determine whether the perturbation with wave number k
will die out or will generate a pattern, depending on it being positive or
negative, what can be seen by rewriting u(x, t) as

u(x, t) = u0 + ε{cos[k(x − vt)] + i sin[k(x − vt)]} eγt , (9)

where we used the dispersion relation, Eq. (6). Let us now consider the sim-
ple case of the square influence function which we have used in our analytical
and numerical investigations

fµ(z) =







1

2µ
|z| ≤ µ ,

0 otherwise .

Here µ is the cut-off range (0 < µ < L, where L is the size of the system).
Equation (7) involves an integral from 0 to µ, so we find

γ(k) = −a
sin(kµ)

kµ
. (10)

2.2. Supretion of lower modes analise

We verify that γ(k) will be positive only in the intervals (2n + 1)π/µ <
k < 2(n + 1)π/µ for n = 0, 1, 2 . . . , which indicates that in the convec-
tive dynamic regime the colony of bacteria tend to self-organization. The
most important behavior that gives rise to pattern formation is the suppres-
sion of the modes 0 < k < kmin = π/µ, i.e. the suppression of traveling
waves Eq. (9) with frequency 0 < ω < ωmin = vkmin/µ. Very similar phe-
nomenon has been demonstrated for diffusion using a generalized Langevin
equation [11–14] there it was proven that when we eliminated the lower
modes 0 < ω < ωmin in the noise spectrum the system violates ergodicity
and the detailed balance equations. In this case, the elimination of the lower
modes induces ergodicity violation, i.e., pattern formation with preferential
position in the space.

3. Numerical approach for NLCFE

To solve Eq. (4) numerically, we applied the operator splitting method
(OSM) [15]. By this method, the operator of the differential equation is split
into several parts, which act additively on u(x, t). If we write Eq. (4) as:
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∂u(x, t)

∂t
= T̂ u(x, t) , (11)

where T̂ is the total operator, then

T̂ u(x, t) = T̂conu(x, t) + T̂growu(x, t) + T̂intu(x, t) , (12)

with

T̂conu(x, t) = −v(x)
∂u(x, t)

∂x
,

T̂growu(x, t) = au(x, t) ,

T̂intu(x, t) = −bu(x, t)

∫

Ω

fµ(x − y)u(y, t) dy . (13)

In the latter equations T̂con, T̂grow and T̂int are convection, growth and non-
local interaction operators, respectively. In our numerical calculations, we
have used periodic boundary conditions u(x = 0, t) = u(x = L, t) with spa-
tial period L. For each part of the operator, we apply a known difference
scheme for updating the function u(x, t) from step j to step j + 1.

We start our numerical study by using the following initial distribution
of bacterial colony

u(x, 0) =
1

Γ
exp

[

−(x − x0)
2

2σ2

]

, (14)

where

Γ =

√

π

2
σ

[

erf

(

x0√
2σ

)

+ erf

(

L − x0√
2σ

)]

. (15)

Here, σ = 0.04 is the width of the Gaussian and L is length of the system. In
order to see how this distribution evolves in time, we shall employ two types
of influence function: square influence function, which has been used in the
last section; and the gaussian influence function which we shall present in
this section.

3.1. Behavior of µ in a velocity flux

In Fig. 1 we present the time evolution of u(x, t). Here v = 0.020 and
the square influence function has width µ = 0.10. In this illustration, we
began our temporal evolution with an initial gaussian distribution of bacteria
centered at x0 = 0.5. We verified that the temporal evolution of u(x, t) for
the initial condition u(x, 0) when submitted to a flux convection tends to
a self-organization regime.
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Fig. 1. The density u(x, t) as a function of x and t for v = 0.010, L = 1.0 a = 1.0,

b = 1.0 for the case of the square influence function with width µ = 0.10. The

waves move from x = 0 to x = L with velocity v > 0.

In Fig. 2, we show snapshots of the stationary state u(x) for several values
of µ in the case of the square influence function. In this illustration we can
observe the beginning of pattern formation, which occurs for µ = 0.484,
the value at which a new density peak appears. For the value µ = 0.028
(snapshot F) we observe that pattern become negligible which caracterize
a critical limit. For the limits µ → 0 and µ → L/2, our simulations do not
present pattern formation, indicating an agreement with the limits of the
influence function reported in [16].

We also show in Fig. 3 our study of pattern formation using a Gaussian
influence function, given by

fµ(z) =
1

Λ
exp

[

− z2

2µ2

]

, (16)

where µ is the width of the Gaussian function and

Λ =

√

π

2
µ erf

(

L√
2µ

)

, (17)

is the normalization factor. For a Gaussian influence function we noticed
that there exists a critical value of µ, µc = 0.46, below which the system
tends to self-organize. Again for this type of influence function, we verified
that for small values of the width µ → 0, as well as for values of µ that
tend to the size of the system divided by two µ → L/2, we will not have
self-organization. We yet do not have a complete and conclusive physical
explanation for this phenomenon once the critical value µc was obtained
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Fig. 2. Snapshots of the steady state u(x) for several values of µ for the square in-

fluence function. For large times, the form and number of peaks no longer changes;

the unchanging peaks move in the direction indicated in the figure. In these graphs

v = 0.020, a = 1.0 and b = 1.0. The value µ = 0.484 (snapshot B) indicates the

first value where a new density peak appears, what illustrates the appearance of

pattern formation. The pattern become negligible for µ = 0.023 (snapshot F).

from numerical simulations. Nevertheless, we believe that below 0.5 the
interaction between the elements are nonhomogeneous, the distribution of
toxins (interactions) is different in each point generating a nonlocal effective
behavior by its surrounding. On the other hand, above 0.5 the interaction
becomes homogeneous, i.e., all individuals “feel” the same interaction and so
there is no pattern. This result is similar to those obtained using a diffusive
term [5,7, 8].
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Fig. 3. Snapshots of the steady state u(x) for several values of µ for the Gaus-

sian influence function. For large times, the form and number of peaks no longer

changes; the unchanging peaks move in the direction indicated in the figure. In

these graphs v = 0.020, a = 1.0 and b = 1.0. The value µ = 0.470 (snapshot B)

indicates the first value where a new density peak appears, what illustrates the

appearance of pattern formation. The pattern become negligible for µ = 0.028

(snapshot F).

3.2. Independence of initial condictions

In Fig. 4 we address the problem of independence of the initial conditions.
In panel (A) and (C) we start with three different distributions. (B) is the
final pattern for (A) while (D) is the final pattern for (C). In all cases, the
three initial distributions converge to a unique solution which is independent
of the initial conditions. It depends only on the parameter µ. In reality, there
are small differences among the curves due to numerical errors.
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Fig. 4. Independence of the initial conditions for pattern formation using a square

influence function. Figs. (A) and (B) are for µ = 0.10 while figures (C) and (D)

are for µ = 0.15. σ denotes the width of initial distribution. In figures (A) and (C)

we have initial conditions u(x, 0); the figures (B) and (D) show the steady state of

pattern formation u(x) for large times, in which the peaks remain unchanged, but

more to right.

3.3. Pattern formation and finite size

In our analysis, patterns occur only for finite systems due to the need
of shelter, i.e., as L → ∞ the patterns disappear. As we have discussed,
the NLCFE presents patterns only in the presence of a nonlocal interaction
term. Then rescaling the gaussian distribution Eq. (16) for z = Lx, we get

fµ(x) =
1

Λx
exp

[

− x2

2µ2
x

]

,

with µ2
x = µ2

z/L
2 and Λx = L

√

(π/2) µx erf(1/
√

2µx). Consequently, as
L → ∞ the influence function becomes a delta one and we return to the
local Fisher Equation; in this case there is no pattern. Note that this result
is unchanged even when the other parameters are rescaled in the Fisher
Equation. This implies that the mean square value µ2

z =
∫

f(z)z2dz must
be finite. Furthermore, for the existence of patterns we must have µmim <
µz < µmax. Note that for a Gaussian we get µz = µ, while for a step
function µz = µ/

√
3. Moreover, for large µz, µz > µmax, the system becomes

homogeneous, and we see no pattern. For µz < µmim, the influence function



1482 J.A.R. da Cunha et al.

behaves as a delta one and again we have no pattern. Unfortunately for
such nonlinear system we have not yet found a way to determine the limits
analytically.

3.4. Parameter µ and nonlinearity

For the influence functions and initial conditions used, we see a general
tendency: for large µ we do not have a distribution with pattern. As µ
decreases we reach a value µ2, where the original crest bifurcates. The
process continues in such way that we can associate a µn to the value of µ
for which we have n crests. For very small µ, n can be very large, implying
negligible differences between crests and troughs, in such way that it may
be considered uniform as in Fig. 2 (D) or Fig. 3 (D). This is similar to
a logistic map zn+1 = g(β, zn) where the variation of the parameter β yields
bifurcation [17]. Nonlinearity in general cause extreme dependence on the
initial conditions. However, in our patterns, what bifurcates is the crest of
the density u(x, t), and so the bifurcations do not induce different solutions,
but an unique solution with several crests. This, roughly speaking, reminds
us of the synchronization phenomena where systems with [18] or without
memory [19, 20] are driven from distinct initial conditions to a unique final
state.

4. Conclusions

Using a perturbation analysis in Eq. (4), we verified that the real part of
the growth rate γ(k) is positive for some values of the wave number k, in this
way, we can have pattern formation for certain values of the parameters that
determine the behavior of γ(k). Therefore, using the numerical approach
OSM, we show that the NLCFE is able to describe the pattern formation
in regime of convective motion in bacterial systems in which the diffusion
dynamics is negligible. Our numerical calculation about the NLCFE shows
that the system exhibits self-organization in regime of low velocity. In fact
it indicates that nonlocal interaction stated in nonlinear terms of Fisher
equation is a very important element to describe patterns, where the linear
dynamic of the system becomes as a secondary element. We also show that
pattern formation occurs for a specific value of critical width µc for a given
system with fixed length L. This is a relevant information in the study
of self-organization of dynamic systems in general. In this model, we also
observe an analogy with the logistic map zn+1 = g(β, zn) which associates
the number of crests in the population density u(x, t) with a bifurcation
parameter β. However, this model does not exhibit chaos due to nonlocal
effects on nonlinear term imposed in NLCFE. Indeed, the bifurcations do not
allow different solutions, but an unique solution with several crests which
can be associated to a synchronization phenomenon.
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