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We discuss the physical meaning of three different version of hyperbolic
anomalous diffusion equations with fractional time derivatives, which were
derived in the paper A. Compte, R. Metzler, J. Phys. A 30, 7277 (1997).
We find that only one of them has clear physical interpretation and can
be used to describe subdiffusion. We obtain the solutions of this equation
and of the parabolic subdiffusion equation for a one-dimensional system
with a thin membrane, where the flux flowing through the membrane is
proportional to the concentration difference between membrane surfaces.
We compare the solutions of hyperbolic and parabolic equations and briefly
discuss their properties.

PACS numbers: 02.90.+p, 05.10.Gg, 02.50.Ey

1. Introduction

The subdiffusion is usually defined as a process where the mean square
displacement of the particle

〈

∆x2
〉

is a power function of time [1]

〈

∆x2
〉

=
2Dαt

α

Γ (1 + α)
, (1)
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where the subdiffusion parameter α is less than one (0 < α < 1) and Dα is
the subdiffusion coefficient. The case of α = 1 corresponds to the normal
diffusion. The subdiffusion in a membrane system was recently studied
experimentally and theoretically [2–4]. To model a transport process in
such a system the parabolic subdiffusion equation (PSE) with fractional
time derivative was usually applied. However, the PSE provides the Green
functions (which is a probability density of finding a particle in the position x
after time t under condition that at the initial moment the particle was
located at x0) have non-zero values for any x and t > 0; similar property has
the Green function for the normal diffusion parabolic equation. This fact can
be interpreted as an infinite speed propagation of some particles. To avoid
this unphysical property Cattaneo proposed the hyperbolic normal diffusion
equation, where the diffusion flux is delayed in time by τ with respect to the
concentration gradient [5]. The Green function of this equation for t→ 0 is
equal to zero for finite arguments, so the propagation velocity of the particles
is finite.

In phenomenological way the subdiffusion hyperbolic equation (HSE) can
be obtained by involving the fractional time derivative into a flux or continu-
ity equation. In [6] there was derived three different hyperbolic anomalous
diffusion equations, which are not equivalent to each other. In this paper
we discuss properties of this equations and we show that only one of them
has clear physical interpretation (this discussion is the extension of the one
presented in our recent paper [7]).

The HSE is more difficult to solve than the PSE and its solutions can
be usually obtained in the limits of short or long times only. Thus, there
arises a question: is it worth the bother to find the solutions of HSE in the
membrane system if the solution of PSE can be obtained in relatively simple
way? The answer is not obvious, since in some systems (such as the elec-
trochemical one) the solutions of HSE and PSE provide to results which are
not equivalent to each other [7, 8]. Moreover, the delaying effect of the flux
with respect to the concentration gradient seems to be stronger in a mem-
brane system than in homogeneous one, since the flux can be involved into
boundary conditions at the membrane. In our paper we find the solutions
of the HSE for the one-dimensional system with a thin membrane, where
the flux flowing through the membrane is proportional to the concentration
difference between membrane surfaces, and we briefly study the differences
between the solutions of hyperbolic and parabolic equations for the system
under consideration.
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2. Hyperbolic normal diffusion equation

To ensure the finite propagation velocity of the particle Cattaneo pro-
posed the hyperbolic normal diffusion equation [5]

∂C(x, t)

∂t
+ τ

∂2C(x, t)

∂t2
= D

∂2C(x, t)

∂x2
. (2)

This equation can be derived phenomenologically by substituting the follow-
ing flux equation

J(x, t) + τ
∂J(x, t)

∂t
= −D∂C(x, t)

∂x
, (3)

into the continuity equation

∂C(x, t)

∂t
= −∂J(x, t)

∂x
. (4)

The left-hand side of Eq. (3) can be treated as an linear approximation of
the following equation in the limit of small τ

J(x, t+ τ) = −D∂C(x, t)

∂x
, (5)

where τ is the delay time of the diffusion flux with respect to the concentra-
tion gradient; τ = 0 provides the parabolic normal diffusion equation.

3. Parabolic subdiffusion equation

The parabolic subdiffusion equation reads

∂C(x, t)

∂t
= Dα

∂1−α

∂t1−α

∂2C(x, t)

∂x2
, (6)

where the Riemann–Liouville fractional time derivative is defined for α > 0
as

∂αf(t)

∂tα
=

1

Γ (n− α)

∂n

∂tn

t
∫

0

dt′
f(t′)

(t− t′)1+α−n
, (7)

the integer number n fulfills the relation n − 1 < α ≤ n. Equation (6) can
be derived by means of the Continuous Time Random Walk formalism [1]
or on the phenomenological way. In the latter approach, to get Eq. (6), one
puts the fractional flux

J(x, t) = −Dα
∂1−α

∂t1−α

∂C(x, t)

∂x
, (8)

to the continuity equation (4).
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4. Hyperbolic subdiffusion equation

As shown in [6], the phenomenological derivation of the hyperbolic anoma-
lous diffusion equation can be performed in three different ways. Each of
them consists in involving the fractional time derivative into a flux or the
continuity equation. The obtained hyperbolic equations are not equivalent
to each other. Below we discuss their physical meaning.

4.1. First equation

The natural way to generalize the parabolic subdiffusion equation to the
hyperbolic one seems to be delaying the flux with respect to the concentra-
tion gradient in time by τ , analogically as for the normal diffusion case. In
such a way one assumes the following flux equation

J(x, t) + τ
∂J(x, t)

∂t
= −D ∂α

∂tα
∂C(x, t)

∂x
. (9)

Combining Eq. (9) with the continuity equation (4) one obtains

τ
∂2C(x, t)

∂t2
+
∂C(x, t)

∂t
= Dα

∂1−α

∂t1−α

∂2C(x, t)

∂x2
. (10)

Putting τ = 0 in Eqs. (9) and (10) we get the subdiffusive flux and parabolic
subdiffusion equation, respectively. In this case the hyperbolic subdiffusion
equation has the similar interpretation as the hyperbolic normal diffusion
equation as the process where the flux is delayed with respect to the concen-
tration gradient. The Green function of Eq. (10) provides the relation (1)
for t≫ τ [6].

4.2. Second equation

The flux equation can be modified by replacing τ ∂
∂t → τα ∂α

∂tα in the
left-hand side of Eq. (9), what gives

J(x, t) + τα∂
αJ(x, t)

∂tα
= −D ∂1−α

∂t1−α

∂C(x, t)

∂x
. (11)

Combining Eq. (11) with the continuity equation (4) one gets

τ
∂1+αC(x, t)

∂t1+α
+
∂C(x, t)

∂t
= Dα

∂1−α

∂t1−α

∂2C(x, t)

∂x2
. (12)

This equation can be derived within the Continuous Time Random Walk
scheme, where the flux is given in terms of Laplace and Fourier transforms
as [6]
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Ĵ(k, s) = −2iℓ
s

1 − ϕ(s)
Ĉ(k, s)

∞
∫

0

dxψ̂(x, s) sin(kx) , (13)

where ψ(x, t) is the distribution of step lengths and waiting times between
steps, ϕ(t) is the distribution of time that the particle waits to make a step
and ℓ is a microscopic length scale necessary to obtain the correct dimension
for the flux. In our paper we denote the Fourier transform by F{f(x)} ≡
∫

∞

−∞
eikxf(x)dx ≡ f̂(k) and the Laplace one by L{g(t)} ≡

∫

∞

0 e−sxg(t)dt ≡
ĝ(s). Assuming that

ψ(x, t) =
1√

4σ2π
exp

(

− x2

4σ2

)

ϕ(t) , (14)

where ϕ(t) is defined by its Laplace transform

ϕ̂(s) = e−θαsα

, (15)

(its inverse Laplace transform in the long time limit reads ϕ(t) =
θα/[t1+αΓ (−α)], see Eq. (26) below). From Eq. (13)–(15) the following
formula

es
αθα − 1

sαθα
Ĵ(k, s) = −ikDαs

1−αĈ(k, s) , (16)

was derived in the limit of small k and s [6], where the subdiffusion coefficient
is defined as

Dα =
σ2

θα
. (17)

Putting

es
αθα ≈ 1 + sαθα +

s2αθ2α

2
, (18)

to Eq. (16) and using the formula L−1(sαĝ(s)) = ∂αg(t)/∂tα (0 < α < 1),
one gets Eq. (12), where

τ =
θ

21/α
. (19)

From Eqs. (17) and (19) we see that the subdiffusion coefficient Dα is
controlled by the parameter τ and reads

Dα =
σ2

2τα
. (20)

We find the difficulties in the interpretation of Eq. (12). The parabolic
subdiffusion equation can be obtained from the hyperbolic one by putting
τ = 0 in Eq. (12). On the other hand vanishing of τ provides the infinite
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speed of propagation as it should be. However, due to Eq. (20), for τ = 0
one gets the infinite value of the subdiffusion coefficient. We note that the
only way to obtain the parabolic subdiffusion equation within this model
is to neglect the last term in right-hand side of Eq. (18). Then, we obtain
the parabolic subdiffusion equation (with the infinite speed of propagation)
under condition that τ is finite.

4.3. Third equation

Another fractional hyperbolic equation presented in [6] is the equation
obtained by combining the continuity equation (4) and the following flux
equation

J(x, t) + τα ∂
αJ(x, t)

∂tα
= −Dα

∂α−1

∂tα−1

∂C(x, t)

∂x
, (21)

what gives

τ
∂2−αC(x, t)

∂t2−α
+
∂αC(x, t)

∂tα
= Dα

∂2C(x, t)

∂x2
. (22)

However, the Green function of Eq. (22) provides the relation
〈

∆x2
〉

=

2Dαt
2−α/Γ (3− α) for t≫ τ , which characterize superdiffusion, not subdif-

fusion. Thus, we do not treat Eq. (22) as the subdiffusion equation.
Summarize the considerations presented in this section we conclude, that

only Eq. (10) has clear physical interpretation and can be used as hyperbolic
subdiffusion equation. Thus, in the following we apply Eq. (10) in our study.

5. Green function

To find the solution of Eq. (10) we needs two initial conditions. For the
Green function we choose the initial conditions as

G(x, t; 0) = δ(x) , (23)

where δ is the Dirac-delta function, and

∂G(x, t; 0)

∂t

∣

∣

∣

∣

t=0

= 0 . (24)

The boundary conditions read G(−∞, t; 0) = G(∞, t; 0) = 0. The Laplace
transform of the Green function is

Ĝ(x, t; 0) =

√
1 + τs

2
√
Dαs1−α/2

exp

(

−s
α/2|x|

√
1 + τs√

Dα

)

. (25)



Hyperbolic Subdiffusion in a Membrane System 1497

The limit of long time corresponds to the limit of small parameter s.
Expanding the right-hand side of Eq. (25) into the power series, assuming
that τs ≪ 1 (what corresponds to t ≫ τ), keeping the leading terms and
using the following formula [9]

L−1
(

sνe−asρ) ≡ fν,ρ(t; a) =
1

t1+ν

∞
∑

n=0

1

n!Γ (−nρ− ν)

(

− a

tρ

)n
, (26)

(a > 0), we get

G(x, t; 0) =
1

2
√
Dα

[

fα/2−1,α/2

(

t;
|x|√
Dα

)

+
τ

2
fα/2,α/2

(

t;
|x|√
Dα

)

− |x|τ
2
√
Dα

fα,α/2

(

t;
|x|√
Dα

)]

. (27)

The plots of Eq. (27) for different τ are presented in Fig. 1. We see that the
effect of delaying is hardly observed in the considered cases.
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Fig. 1. The plots of the Green’s functions (27) for different values of τ given in the
legend; here t = 500, Dα = 10−3 and α = 0.8 (all quantities are given in arbitrary
units).

6. System with a thin membrane

We consider a system where a thin membrane is localized at x = 0. The
concentrations and the fluxes in the region x < 0 we denote as C1(x, t) and
J1(x, t) and for x > 0 as C2(x, t) and J2(x, t), respectively. Since the equa-
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tion is of the second order with respect to the space variable, we need two
boundary conditions in each of the region. Two of them demand finiteness
of the solutions at x→ −∞ and x→ ∞,

C1(−∞, t) = C0, C2(∞, t) = 0 , (28)

and two other boundary conditions are fixed at the membrane. The first of
them assumes the continuity of the flux at the membrane

J1(0
−, t) = J2(0

+, t) ≡ J(0, t) , (29)

the second one reads

J(0, t) = λ[C2(0
−, t) − C1(0

+, t)] , (30)

where λ is the membrane permeability coefficient. The initial condition is
chosen as

C(x, 0) =

{

C0, x < 0 ,
0, x > 0 .

(31)

The Laplace transforms of the solutions of Eq. (10) for the boundary and
initial conditions (28)–(31) are

Ĉ1(x, s) =
C0

s



1− λ

2λ−
√
Dαs1−α/2/

√
1+τs

exp



x

√

(1+τs)sα

Dα







 , (32)

Ĉ2(x, s) =
C0

s

λ

2λ−
√
Dαs1−α/2/

√
1 + τs

exp



−x
√

(1 + τs)sα

Dα



 . (33)

Assuming that τs≪ 1 and using Eq. (26) we get

C1(x, t) = C0 −
C0

2

∞
∑

k=0

(

−
√
Dα

2λ

)k [

fk(1−α/2)−1,α/2

(

t;
−x√
Dα

)

−kτ
2
fk(1−α/2),α/2

(

t;
−x√
Dα

)

+
xτ

2
√
Dα

fk(1−α/2)+α/2,α/2

(

t;
−x√
Dα

)]

, (34)

C2(x, t) =
C0

2

∞
∑

k=0

(

−
√
Dα

2λ

)k [

fk(1−α/2)−1,α/2

(

t;
x√
Dα

)

+
kτ

2
fk(1−α/2),α/2

(

t;
x√
Dα

)

− xτ

2
√
Dα

fk(1−α/2)+α/2,α/2

(

t;
x√
Dα

)]

. (35)
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The plots of functions (34) and (35) are presented in Fig. 2. As we can see,
the differences between the solutions obtained for the parabolic subdiffusion
equation are very close to the solution of hyperbolic equation (even for the
largest time τ = 100).
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Fig. 2. The solutions calculated for λ = 10−3, α = 0.9, Dα = 5 × 10−4 and for
t = 500, 1000, 1500, 2000. Vertical line represents the membrane, dashed lines
correspond to τ = 100, continuous ones correspond to τ = 0 (all quantities are
given in arbitrary units).

7. Final remarks

The parabolic subdiffusion equation (6) has the ‘unphysical’ property
manifested in the infinite speed of propagation. Introducing the hyper-
bolic subdiffusion equation (10) excludes this ‘unphysical’ property, but solv-
ing of this equation is significantly more complicated in comparison to the
parabolic one. The plots presented in Figs. 1 and 2 suggest that the differ-
ences between the solution for the case τ 6= 0 and τ = 0 are too small in
order to insist on using the hyperbolic subdiffusion equation in all situation.
But there are systems (e.g. the electrochemical one) where using HSE is
necessary [7].

Here the question arises: why the subdiffusion hyperbolic equation has
not been applied to describe the experimental results in the subdiffusive
membrane system, despite of proper ‘physical quality’ of the equation? An-
alyzing the plot (see Fig. 2) we conclude that in considered case there is no
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reason to apply the hyperbolic subdiffusion equation instead of the parabolic
one. The difference between the solutions is so small that both of them
would certainly be laid within the error bars of the experimental concentra-
tion profiles. The order of values of the subdiffusion coefficient Dα taken
into calculations agrees with the ones obtained experimentally for sugars
in agarose gels [2] if as unit of time 1 sec is chosen and 1 mm is the unit
of space variable. In these units the value τ = 100 is certainly too large,
nevertheless these differences are rather hard to observe, for smaller values
of τ these differences are smaller.
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