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The Bose–Einstein condensation of noninteracting identical particles is
investigated, both in the case of free gas in a box, and the trapped particles
confined in a harmonic potential. The importance of the low temperature
behavior of the exact single-particle canonical partition function is pointed
out. The elementary proof of the phase-transition in the thermodynamical
limit is presented.
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The developments on Bose–Einstein condensation (BEC) in trapped
atoms [1] allow us to reconsider the general idea of BEC phenomenon, in
order to discuss some distinction with the former theory of free particles in
a box [2, 3], which is reflected by a different meaning of thermodynamical
limit in both cases. The behavior of finite system of particles in a confin-
ing harmonic potential looks qualitatively similar to that of the free gas in
a box, in a sense that the rapid increase of the ground state occupation is
experimentally [4] observed, in agreement with theoretical predictions [5–7],
when the temperature becomes sufficiently low. This is accompanied by
other pre-transition effects, e.g., by an appearance of a maximum in the
specific heat (versus temperature), which may be used to identify the tem-
perature at which BEC occurs for finite system [7]. The standard continuous
version of both theories predicts (under certain conditions) the true phase-
transition [3,5], however the corresponding thermodynamical limits are dif-
ferent (it is not still the average density constant, in the case of trapped
particles [1, 5, 6]).
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In fact the source of any distinction between theories of the same set of
identical noninteracting particles in equilibrium is the single-particle canon-
ical partition function. Within grand canonical ensemble approach (for its
general use and application to the fermions system see Ref. [8] of this issue)
it is visualized by the structure of most important relations [3]

N [log Ξ] =
∞
∑

j=1

(±)j+1zjZ1(βj)
[

×j−1
]

, (1)

where Ξ and Z1 are appropriate partition functions and the fugacity z is de-
termined by the (average) number of particles N (± is for bosons or fermions,
respectively). Because of a separation (with respect to the dimension coordi-
nates) of both canonical partition functions of interest [2,3,6,7] it is sufficient
to consider the one-dimensional case only. The partition functions are

Z1 =
+∞
∑

n=−∞

e−π λ2

L2
n2

≡ ϑ
(

λ2/L2
)

, (2)

— where L is a size of a one dimensional box (length), λ =
√

βh2/2πm
is a thermal wavelength, and where the ϑ, defined by Eq. (2), is the Ja-
cobi theta-function (see, e.g., [2, 9]) of a heat conductance (and also elliptic
functions) theory — and

Z1 =

+∞
∑

n=0

e−βhfn =
1

1 − e−βhf
≡ χ(βhf) , (3)

where f is a frequency related to the harmonic trap [1, 5–7]; respectively.
Both ϑ(x2) and χ(x) considered as functions of variable x diverges (like
x−1) if x → 0, both monotonically decrease with x, rapidly approaching
unity for 1 < x → ∞. Both, what seems important in the present context,
exhibit a typical for the transition phenomena different scaling behavior from
both sides of the “critical” value x = 1. The last is evident for χ and in the
case of Jacobi function is reflected by functional equation [2]

ϑ(ω) = ω−1/2ϑ
(

ω−1
)

. (4)

The physical meaning of the transition (at unity) is evident in the case of
free quantum particle (in d-dimensional box), allowing the analysis of some
details of the standard thermodynamical limit procedure [3]

∑

~p

−→ h−d

∫

ddxddp = h−dV

+∞
∫

−∞

ddp . (5)
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In fact, writing the partition function

Z1(V, T ) = ϑd(λ2/L2) =
(2πmkT )d/2V

hd
ϑd

(

L̄2
)

, (6)

where the volume V = Ld and L̄ = L/λ is a dimensionless length in the
thermal wavelength units, we immediately see that (5) is equivalent to the
assumption that ϑ(L̄2) ≈ 1. Because of the extraordinary fast (Gaussian-
type) convergence of Jacobi series the last condition means practically L̄ ≥ 1,
or length ≥ thermal wavelength, which is the ordinary limitation of continu-
ous theory approximation. The corresponding canonical density distribution

is of course ρ(~x, ~p) = e−β~p2/2m. However, in the opposite case, L̄ ≤ 1, the
density distribution becomes (on the same very fast manner) ρ(~x, ~p) = δd(~p),
representing the condensed (BEC) phase.

Because ϑ(x2) and χ(x) do not look differ much, maybe except for some
vicinity of unity, where the relative difference does not exceed 50% [the
maximum is for x ≈ 0.95, where [χ(x) − ϑ(x2)]/ϑ(x2) ≈ 0.46], one could
expect that for the appropriate choice of parameters both theories lead to
comparable results. However, equating the proper quantities in (2) and (3),

λ/L = βhf , we obtain L = f−1
√

kT/2πm, so the physical size of a box (of
the old theory) becomes dependent on temperature. Thus thermodynamical
limit is no longer possible, unless f = f(T ) ∝ T 1/2. And the latter was not
a case of both experimental [4] and theoretical study (the frequency of a trap
was constant). On the other hand by forcing the temperature independent
relation L2 = ~/(mf) or, equivalently, L̄2 = (βhf)−1 we get canonical
partition function (2) ϑ(βhf) = (βhf)−1/2ϑ(L̄2) ∝ (βhf)−1/2 having the
different asymptotic than χ(βhf) ∝ (βhf)−1. Thus the similar predictions
of both theories cannot be any way expected. The reasoning above gives
therefore simple explanation why the thermodynamical limit properties of
one theory cannot be deduced from the corresponding properties of other
theory.

Let us finally present an elementary proof of BEC for free noninteracting
N particles in d-dimensional box of a length L. Using Eq. (1) and denoting
z = e−ν the equation for particles balance is

1 =
1

N

∞
∑

j=1

e−νjϑd
(

j/L̄2
)

. (7)

The point is that, irrespectively on how high the temperature is, formally
almost all terms in (7) represent the contribution from condensed phase (the
argument of each ϑ with j > L̄2 exceeds the unity). In order to perform
the thermodynamical limit rigorously we must divide the sum (7) into two
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parts, say, from j = 1 to M − 1, and for j ≥ M , where M = M(L̄), and
M → ∞ slower than L̄2. It appears further that it is convenient to choose
the asymptotic of the form

M
(

L̄
)

∼ L̄2/ǫ(L̄) , (8)

where ǫ(L) is a very slowly divergent in infinity, e.g., like

ǫ(L̄) ∼ log
(

log . . . log(L̄) . . .
)

.

Then, we can apply the thermodynamical limit [3]

N/L̄d
≡ λdN/V = ρλd

≡ ξ , L → ∞ (9)

to the first sum and write the Eq. (7) as

ξ =

∞
∑

j=1

e−νj

jd/2
+ lim

L̄→∞

e−ν(L̄)M

L̄d

∞
∑

j=0

e−ν(L̄)jϑd
(

[M + j]/L̄2
)

. (10)

It is clear that if ν = limL̄→∞
ν(L̄) > 0, then the limit in Eq. (10) is

zero, especially because of the exponential damping (e−νM(L̄)), and thus the
standard equation for the fugacity — ρλd = gd/2(z) — is obtained. For
dimensions d ≤ 2 the gd/2(z) diverges when z → 1, so the BEC may occur
only for d > 2. Moreover, the following analysis will show that for d ≤ 2
it is not possible to get a finite positive contribution from the second part
if (anyway) ν(L̄) → 0. To complete our consideration we should prove that
there exists a limit — independent on M(L̄) — leading to nonvanishing
contribution from the second part of (10), in the case of ν(L̄) → 0 and
d > 2. The asymptotic behavior of the form ν(L̄) ∼ cL̄−γ , where γ ≥ 2,
is a priori necessary to prevents the exponential decay of the quantity of
interest. Then e−ν(L̄)M(L̄) → 1, so we consider the expression

lim
L̄→∞

1

L̄d

∞
∑

j=0

e−cL̄−γjϑd
(

[M(L̄) + j]/L̄2
)

. (11)

We divide again the sum into two parts, for j ∈ [0, L̄2ǭ(L̄)), and for j ≥

L̄2ǭ(L̄), where ǭ is similar to ǫ. Then in the second part we may replace all
ϑ by ϑ(+∞) = 1, obtaining

lim
L̄→∞

1

L̄d

e−cL̄2−γ ǭ(L̄)

1 − e−cL̄−γ
=

1

c
if and only if 2 < γ = d . (12)
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The first sum contains L̄2ǭ(L̄) summands, each of them is less than the first
one ϑd(M(L̄)/L̄2) ∼ ǫd/2(L̄) (see Eqs. (4) and (8)), so the whole expression
is evaluated by

L̄2−dǫd/2(L̄)ǭ(L̄) → 0 if d > 2 . (13)

This finishes the proof.
Identical consideration with L̄ = (βhf)−1, ξ = N(βhf)−d, M(L̄) =

L̄/ǫ(L̄), and with ϑ replaced by χ leads to

ξ = gd(z) + lim
L̄→∞

e−ν(L̄)M(L̄)

L̄d(1 − e−ν(L̄))
, (14)

requiring ν(L̄) → cL̄−d and d > 1 for the occurrence of true phase transition
in a trapped gas model. Under such condition the limit in (14) returns 1/c,
as in the previous case. The dimension d = 2 or d = 1 is critical for
BEC phenomenon in infinite system of free or trapped particles, respectively.
However the pre-transition effects in finite systems will also be observed in
such a case.
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