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1. Introduction

The rapidly growing computer Network has been the object of intensive
studies for over a decade. Among the most commonly studied characteristics
are packets count, packets sizes, or arrival times. Because of a different na-
ture and the high complexity of Network Traffic the early attempts to model
traffic variables as in the traditional teletraffic failed. The process of packets
arrivals is no longer Poissonian, the inter-arrival times are not exponentially
distributed and the traditional queuing theory is also not applicable.

The studies of Network traffic are mostly empirically founded. The ma-
jority of the publications is devoted to statistical analysis of observed vari-
ables and their consistency with various ad hoc proposed models. In the
modelling of network traffic the predominant role has been attributed to
self-similar processes, heavy-tailed distributions and fractional noises. Be-
ginning from the pioneering work of Leland et al. [1] (see also [2–7], and many
others), it is claimed that among the most characteristic features of Network
traffic are self-similarity and a bursty nature. Such claim is supported by ob-
servation of the behavior of some traffic variables, like the throughput traffic
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at a given point of a network. The plots of such traffic time series observed
during different periods of time (hours, minutes, seconds) look similar (see
e.g. [5–7]), which suggests that changes of the time scale do not affect the
distributions of the observed process.

The heuristic arguments for self-similarity in Network traffic [1] seem to
be credible but do not explain the basic mechanism leading to the proposed
model. Moreover, mathematically simple forms of self-similarity are not ev-
ident in the observed data. Even if they are, the proposed models provide
a very limited information about probabilistic characteristics of the consid-
ered processes and, consequently, they are not valuable for predictions.

In this paper we show that there is an accurate way to model the under-
lying structure of Network time series. We show that behind the observed
self-similarity and “burstines” there is a simple multiplicative law which plays
also a fundamental role in traffic modeling. We derive here, on a fundamen-
tal level, a simple but rigorous model of packets traffic which can be further
elaborated. Although this model is based on simplifying assumptions con-
cerning the network, it is in perfect agreement with traffic modeling and
observations.

We model rigorously the packet traffic between two arbitrary sites of
a network separated by a number of nodes (routers) and study its properties.
The main object of the study is the inter-arrival time IAT (or inter-delay
time) between packets which changes as the packets emitted at a source
travel to a destination. We have shown that the inter-delay times obey
a simple multiplicative law which under the assumption of independence of
the transverse traffic leads to log-normal distributions. As an application
of the multiplicative law the distribution of the transmission processes has
been derived. This in turns allowed to model the throughput traffic which
has been one of the most frequently measured and discussed traffic variables.
Using our model we have explained and corrected some statements concern-
ing the nature of the apparent self-similarity, long memory and log-normal
distributions of throughput traffic. In particular we have given a qualitative
explanation for the common appearance of long tails. The aforementioned
theoretical model has been also validated by real network traffic measure-
ments and with the use of a network traffic simulator.

2. Multiplicative law

We begin with a theoretical study of inter-arrival times (IAT), which
are understood as the time intervals between two consecutive packets sent
through the network. The IAT change as the emitted packets travel to the
destination. Our goal is to describe the distribution of the final delay at the
destination.
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We assume that the considered traffic between the source and the desti-
nation takes place on the same path and that changes of the time interval
between packets take place on the routers, and are caused by transverse traf-
fic, i.e. additional packets that enter between the considered ones. Although
two packets sent from the same source to the same destination can, in prin-
ciple, travel over different routes this does not happen in practice. Eventual
redirection of packets on particular routers would require changes in the
routing tables. But such actions are not frequent and can be neglected.

Let us, therefore, consider a chain of routers R1, R2, . . . , RN , as depicted
in Fig. 1, through which a sequence of packets is send. Between each two
consecutive packets there is initially some fixed time of delay, called the inter-
arrival time (IAT), which can change on further routers. These changes are
caused by the transverse traffic on the routers. The IAT can both increase
and decrease. The increase is caused by the necessity of additional service.
The decrease of IAT can happen when some packets from the transverse
traffic leave the chain and the observed packets are stored in the buffers
on the next routers. Moreover, we will assume that all considered packets
require the same amount of service-time. This assumption is not very re-
strictive since the size of individual packets does not vary significantly (the
size of packets is usually between 40 and 1500 bytes).

Rn−1
Rn

Rn+1

Fig. 1. A chain of routers.

The transverse traffic can influence packets delays in the following way.
If an additional packet enters in between two observed packets then it in-
creases the delay about the amount of time needed for its service. We assume
that this amount of time is equal to σ. If an additional packet leaves the line
and there is a queue on the next router then the gap can decrease by σ. The
increase or decrease of the IAT is proportional to the size of the time gap.

The transverse traffic on each router will be expressed by the random
variables ξk, k = 1, 2, . . .. Let us derive first a traffic model under the
assumption of non congested line, i.e. we assume that ξk are non negative
integers. In such case ξk can be interpreted as the number of packets entering
the unit gap on the k-th router.



1510 F. Melakessou, U. Sorger, Z. Suchanecki

Suppose that we observe two packets traveling from a source to a des-
tination. By τ1, τ2, . . . we will denote the IAT between these packets after
they pass through the routers R1, R2, . . ., correspondingly. Let us assume,
for simplicity, that τ0 = 1 = σ and denote

∆τk = τk − τk−1 , k = 1, 2, . . . . (1)

Thus ∆τk is the increase of the delay between two observed packets after
they passed k-th router.

When the second packet leaves the first router the initial delay τ0 = 1
is augmented by the time needed for the service of the additionally arrived
packets, i.e.

∆τ1 = ξ1 = ξ1τ0 .

On the second router the increment of the delay is ∆τ2 = ξ2τ1 and, generally,
we have

∆τk = ξkτk−1 , k = 1, 2, . . . (2)

Using (1) and (2) we have

τk = (1 + ξk)τk−1 , (3)

which gives

τk =

k
∏

i=1

(1 + ξi) . (4)

The above derived dependence (3), or equivalently (4), between the IAT
variables τk and the transverse traffic represented by ξk will be called the
multiplicative law.

In general, it can be assumed that ξk appearing in (3) are real valued
random variables, bounded from below by −1. ξk > 0 means an increase
of IAT caused by the transverse traffic, on the k-th router. ξk < 0 means
a decrease of the IAT caused by packets leaving a unit gap due to the
aforementioned cogestion and buffering.

Assuming that ξk are independent and representing ln τk as the sum

ln τk =
k

∑

i=1

ln(1 + ξi)

we can apply a central limit theorem to the random variables ln(1+ ξi). For
example, if ξi are identically distributed then we have the following theorem:
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Theorem 1 Suppose that the random variables ξi, i = 1, 2, . . . are indepen-
dent, identically distributed, and satisfy

ξi > −1 , for each i .

Moreover, let
E ln2(1 + ξi) < ∞ .

Then the distribution of the IAT τk are asymptotically log-normal Λ(kµξ, kσ2
ξ ),

with µξ = E ln(1 + ξi) and σ2
ξ = ln(1 + ξi).

Recall that a random variable X has the log-normal distribution Λ(µ, σ2)
if X > 0 a.e. and the random variable ln X is normally distributed with
mean µ and variance σ2. Then the density of X is of the form

1

xσ
√

2π
exp

[

− 1

2σ2
(ln x − µ)2

]

, for x > 0 .

The assumption of identical distributions of ξk can be relaxed due to
various forms of central limit theorems (see, e.g. [8]). For non-identically
distributed random variables ξk the asymptotic expression kµξ for E ln τk

can be obtained by applying the law of large numbers to

ln k
√

τk =
1

k

k
∑

i=1

ln(1 + ξi) .

Note that we can also estimate the ratio ∆τk/ξk of the increase of the
delay on k-th router to the the delay caused by the transverse traffic. Indeed,
putting (4) to (2) we obtain

∆τk = ξk

k−1
∏

i=1

(1 + ξi) ,

from which we get

∆τk

ξk

=

k−1
∏

i=1

(1 + ξi) . (5)

Therefore,

τk =
∆τk+1

ξk+1

and the conclusion is that τk and ∆τk/ξk have the same asymptotic distri-
bution.
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Theorem 1 implies that the distributions of IAT have heavy tails in the
sense that their tails decay slower that any exponential distribution (see
Sec. 3). This feature has been already confirmed empirically and called the
“burstines” of packets traffic.

An elaboration of the traffic model in which we do not assume indepen-
dence of the transverse traffic can be found in Appendix A.

3. Transmission time

Using the above derived model we can now study the probabilistic prop-
erties of transmission processes, natures of congestions, or the throughput
traffic. We begin with the derivation of the distribution of transmission time,
which is defined as the time needed for sending a number of packets from
a source to a destination. This time consist of two components — the sum
of time distances between consecutive packets and the sum of delays during
the transmission. We neglect here the service-time of our packets.

Let us assume that the number of packets is equal to n + 1 and that the
initial time distance between packets is δ. Denote by τ (1), . . . , τ (n) the delays
of consecutive packets when they reach the destination and by T = Tn =
τ (1) + . . . + τ (n) the total delay. Then the transmission time is

nδ + T . (6)

The first component of (6) is deterministic thus our main concern is
the distribution of the random variable T . Retaining the assumptions from
Sec. 2 we obtain that IAT are log-normally distributed. However, if n > 1
then the distribution of the sum of the total delay

τ (1) + . . . + τ (n) . (7)

is no longer log-normal. Log-normality is not preserved when taking the
sums of independent random log-normally distributed random variables. In
principle the distribution of the sum τ (1) + . . . + τ (n) is asymptotically nor-
mal, because τ (i) are assumed to be independent and identically distributed
random variables with finite second moment. It should be noticed, however,
that the accuracy of the approximation of the distribution of T by a nor-
mal distribution depends heavily on how large is n and on the variances
(“broadness”) of τ (i).

For τ (i) with large variances the distribution of their sum is very flat
and akin to a uniform distribution on a large interval. In consequence the
dominating role in the distribution of sums of τ (i) is played by the largest
value of τ (1), . . . , τ (n). In fact, we have the following result
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Theorem 2 Assume that the of τ (i) are independent and have identical log-
normal distributions Λ(µ, σ2). Then the total delay Tn = τ (1) + . . . + τ (n)

has asymptotically the Gumbel distribution

P (Tn < t) = G(cnt + dn) ,

where G(t) = e−e−t

, cn = σdn/
√

2 ln n

and dn = exp

{

µ + σ

(√
2 ln n − ln(4π) + ln ln n

2
√

2 ln n

)}

.

The proof of this theorem is based on properties of subexponential dis-
tributions (see [9]). Recall that a random variable with the distribution
function F (t) is called subexponentially distributed if it has the following
property:

lim
t→∞

(1 − F (t))eαt = ∞ , for each α > 0 .

Because the IAT τ (n) are log-normally distributed they are subexponen-
tial (see [9]). Moreover, since they are also independent the distribution
of the sum τ (1) + . . . + τ (n) is asymptotically equal to the distribution of
max{τ (1), . . . , τ (n)}. Since log-normal distributions belong to the domain
of attraction of the Gumbel distribution, there exist constants cn > 0 and
dn such that the limit distribution of c−1

n (max{τ (1), . . . , τ (n)}− dn) is e−e−x

(see [9] for the above explicit form of cn and dn).

4. Throughput traffic

We would like to present now the model of throughput traffic, which has
been one of the most frequently measured and discussed traffic variables.
In fact the easiest way to study experimentally network traffic is to register
at some point of the network the number of packets, or bytes, per a time
unit. This kind of measurements is a special case of throughput traffic. In
various publications the meaning of the throughput traffic differs slightly.
Nevertheless, the basic idea behind this concept is to measure the volume
of traffic in regular time intervals. It has been observed that for different
length of time intervals ∆t the distribution of traffic volume can vary signif-
icantly. It is usually undetermined for short time intervals, then gradually,
the distribution assumes more defined shape when ∆t increases. Different
hypotheses concerning the observed distributions, which can vary with ∆t,
have been proposed. Using the obtained results we will derive now rigorously
the throughput traffic distributions.

Suppose we are interested in the throughput traffic between two nodes
of a network and that we cannot observe any of the intermediate nodes.
In such case the throughput traffic can be measured sending a number of
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test packets is at the source in regular time intervals δ. If the transmitted
packets arrive with the same frequency δ, then the eventual transverse traffic
can be neglected and we can simply say that, in average, there is no other
traffic on the line. Otherwise, additional transverse traffic will cause delays
proportional to its intensity. Therefore, measuring the delays of inter-arrival
times we can infer about the traffic on the line. Such average traffic on the
line connecting the source with the destination is, what we call here, the
throughput traffic. In this approach we do not need to register all traveling
packets.

In rigorous terms, the (average) throughput traffic on the line during the
time interval ∆t is represented by

nδ(Rt+∆t − Rt) ,

where Rt is the total number of test packets received up to time t. The
stochastic process {Rt} will be called the transmission process.

We derive first the distribution of Rt. Let τ (1), τ (2), . . . denote the time
intervals between consecutive test packets. We assume that τ (k) are inde-
pendent and have the same distribution function F (t). Then we have

Rt = 0 ⇔ t < τ (1) ,

Rt = 1 ⇔ τ (1) ≤ t < τ (1) + τ (2) ,
...

Rt = k ⇔ τ (1) + . . . + τ (k) ≤ t < τ (1) + . . . + τ (k+1) .
...

Therefore
P (Rt ≤ x) = P (τ (1) + . . . + τ [x] > t) , (8)

where the symbol [ · ] stands for the entire value of a real number. Since
the random variables τ (k) are independent

P (Rt ≤ x) = 1 − P (τ (1) + . . . + τ [x] ≤ t) = 1 − F ∗[x](t) .

Let us assume that the process {Rt} is also homogenous and denote

∆R
df
= Rt+∆t − Rt ,

where ∆t is fixed. It follows from the above considerations that

∆R = τ (i) + . . . + τ (i+k) , (9)

for some i, k. The number of components k of (9) depends on the length of
the interval ∆t.
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If the number of components of (9) is about 1 then the distribution of
∆R coincides with the log-normal distribution. This means that there ex-
ists such time interval (threshold) ∆0 for which the throughput traffic is
log-normal. Increasing time interval we see the gradual departure from the
log-normal distribution. We obtain instead the distribution of aggregations
of log-normal distribution which, in turn, belongs to the family of subexpo-
nential distributions.

The log-normality in throughput traffic have been already observed ex-
perimentally (see [10–12], for example). Particularly interesting is Ref. [10]
devoted to the statistical analysis of the throughput of large packets trans-
fers. Several different distributions have been proposed, as possible models
of the observed throughput, and tested. It was the log-normal distribution
which fitted the best the observed data.

Using our model we can now correct some statements concerning the na-
ture of the distribution of throughput traffic. It has been claimed in [12] that
beginning from some threshold value of the aggregation level the distribution
of packet log-normal. This claim is partially consistent with our theoretical
model. Namely, for the aggregation level in the vicinity of the average IAT.
It cannot be true, however, for significantly larger aggregations. The reason
is very simple, an aggregation on a large time interval is also an aggregation
of the time series already aggregated with the threshold value. The process
of aggregation means forming sums of independent random variables with
log-normal distributions. These sums are, however, no longer log-normally
distributed. The distribution of the sum of independent log-normal random
variables heavily depends on the variance of their components.

5. Self-similarity of Network traffic

Finally we would like to comment on the problem of self-similarity which
is postulated in a majority of the publications on Network traffic. First,
however, let us clarify the meaning of a self-similar process. Intuitively,
self-similarity of a stochastic process means independence of the time scale.
A mathematically rigorous definition, which is in agreement with the intu-
itive meaning, is that a stochastic process Y (t) is called H-self-similar if, for
each a > 0, its finite dimensional distributions coincide with the distribu-
tions of the scaled process a−HY (at). The number H, 0 < H ≤ 1 is also
called the Hurst exponent. Brownian motion is an example of a self-similar
process with H = 1/2. However, the above definition of self-similarity is
not used in practice. It is assumed instead that the values of the observed
time series xk, k = 1, 2, . . . are the stationary increments of some self-similar
process. The self-similarity of a time series xk, called also the exact self-
similarity, means that xk is a fixed point of renormalization group, i.e. the
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aggregated series

x
(m)
k =

1

m

km
∑

i=(k−1)m+1

xi . (10)

has the same distribution as the series 1/(m1−H )xk, for different levels of
aggregations m (see [3]). In practice, this is usually limited to checking

whether log E |x(m)
k |r is a linear function of log m, for each r.

Applying the latter definition we can explain the observed self-similar-
like behaviour of average throughput traffic. Indeed, since the increments
∆R are of the form (9), i.e. the sums of subexponential random variables,
∆R are also subexponential. We see, however, that the distributions may
be distinct for different levels of aggregations although their tails are of
similar type and consequently also their moments. Since in practice not the
distributions are compared but only a first few moments, it is claimed that
the observed traffic time series is a self-similar process. We can also explain
a commonly encountered phenomenon that the estimated Hurst exponent
is not invariant with respect to the level of aggregation. Such behaviour
is in agreement with (9) because the level of aggregation is in one-to-one
correspondence with the length of the observations ∆t. When ∆t increases
the distributions of the throughput traffic evolve from the log normal to
the Gumbel distribution. The speed of the deviation of the distributions of
throughput traffic from the basic log normal depends on how heavy are the
tails or, equivalently, the intensity of the transverse traffic. In Appendix B
it is also shown the dependence between Hurst exponents and connections
length.

6. Measurements and simulations of network traffic

In this section we demonstrate briefly the consistency of the derived
multiplicative law of network traffic with measurements and simulations (see
our earlier publications [13–16] for details and further results).

Measurements

There exist several tools as Ping and Traceroute that permit to analyze the
network configuration between two computers. We remind that the Ping
command provides the Round Trip Time (RTT) needed by a probe packet
to firstly travel from the emission node Ne toward the reception node Nr,
and then from Nr toward Ne. We can estimate the transverse traffic of the
connection path by analyzing the RTT modifications of successive probe
packets. As for the Traceroute command, it helps to assess the connec-
tion path length in hops between two network entities. We have imple-
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mented an automatic script: first, we randomly select a destination Internet
Protocol (IP) address IPr. Then we obtain the path between IPr and our
network router IPe in respect with the Traceroute command. Finally we
extract the IAT distribution of Ping packets generating between IPe and
IPr. The Ping command periodically sends Internet Control Message Pro-
tocol (ICMP) packets towards the desired IP address. Therefore the original
IAT of the sending process presents a Dirac delta distribution. The peak
is given by the time period between the emission of two successive packets.
During the round trip, the transverse traffic of the connection path strongly
affects the IAT distribution.
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Fig. 2. Ping IAT process between a router located at the University of Luxembourg

and the IP address 198.32.8.77 (iplsng-chinng.abilene.ucaid.edu) correspond-

ing to a router based at the University of New York.

For instance in Fig. 2, we show the final IAT after a round trip between
a probe router of the University of Luxembourg and a router located in
the University of New York (United States). 1000 ICMP packets have been
periodically sent every 0.1 second. We observe that the IAT process presents
a high variability. Values are included in the range [115ms–168ms]. The
distribution tail becomes long. Similar measurements have been done for
other routers distributed all around the world. A typical distribution of IAT
is log-normal with large σ, see eg. Fig. 3.
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Fig. 3. Connection packet IAT distribution for the two last routers.

Simulations

We perceive the real impact of the connection path length in the final dis-
tribution shape. In order to evaluate the impact of the path length on the
final IAT distribution, we have implemented a traffic simulator. In this way
we achieve a better control of the interaction between the path length and
the transverse traffic. We can examine the spread of the distributions δj as
a function of j and observe the evolution of the IAT distributions recorded
over several distinct connections in a well defined network as a function of
the path length.

The inter-arrival time (IAT) modifications are connected to the network
load. In practice the TCP protocol manages the source packets emission
according to the network configuration. If the network load is heavy, the
source is notified to reduce its sending rate. Therefore, TCP modulates
the traffic source as the emission node adapts its flow in order to avoid
congestions. Let n be the total number of packets sent from the emission
node Ne towards the reception node Nr and the path length L be defined
as the total quantity of nodes belonging to the path between Ne and Nr.

The data transmission reveals that the distributions δL for the reception
node Nr changes radically from their original shape δ1. The δj distributions
extend themselves after crossing each connection path node. The variances
increase with j and the distribution tails become longer. In fact each node
Nj has its own absolute transverse traffic which is coming from its neighbors.
We observe that the transverse traffic of the node Nj modifies δj according
to a multiplicative law (see Fig. 4). Therefore, the distributions δL in Nr

depend on the network load, especially on the transversal traffic, and on the
connection length L.
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Connection Path j traffic variable

N1

NL

δ j

N j

δ j

Fig. 4. Evolution of traffic variable distributions along the connection path N1 7→
NL: the distribution tail becomes longer with the increasing path length.

7. Concluding remarks

In summary, in this work we have derived for a simple network a mul-
tiplicative law for packet delay which lead to log-normal distributions and
explains self-similar-like behaviour of some traffic variables. In particular
we have given a qualitative explanation for the common appearance of long
tails. We believe that the above derived multiplicative low is a universal
Network invariant and that our work will help to understand and predict
Internet behaviour.

Appendix A

Martingale model of inter-arrival times

We begin with the following observation. Under the assumptions of
Section 2, let us consider again the sequence τ1, τ2, . . . of IAT and their
increments ∆τn := τn − τn−1, for n = 1, 2, . . . and note that equation (2) is
equivalent to

ξn =
∆τn

τn−1
, (A.1)

which means the relative change of the IAT after passing the n-th router.
Denote by An the σ-algebra generated by independent random variables
ξ1, . . . , ξn which represents the available knowledge of transverse traffic.
Thus An is identified with the accessible information after the packet passes
n-th router.
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Since τn =
∏n

i=1(1+ξi) (see (4)) the random variables τn are An-measurable.
Moreover, if we assume, like in Section 2, that the random variables ξn,
n = 1, 2, . . ., are independent then, because of the independence of ξn and
An−1, we also have

E (τn|An−1) = τn−1E (1 + ξn) .

Putting an := E ξn we have

E (τn|An−1) = (1 + an)τn−1 . (A.2)

Let us now consider the sequence

An := (1 + a1)(1 + a2) . . . (1 + an)A0 ,

where A0 is a constant. By (A.2)

E

(

τn

An

∣

∣

∣

∣

An−1

)

=
τn−1

An−1
, (A.3)

which means that the sequence
{

τn

An

}

is a martingale (see [17, 18]) with

respect to the filtration {An}. If in particular all an are equal to a, e.g. the
case of identically distributed ξn, then An = (1 + a)nA0.

The martingale property of the sequence of IAT times suggest the way
in which our model can be generalized. Namely, generalizing the model for
IAT we retain the basic structure of τn as described above but we relax the
assumptions concerning the transverse traffic. We do not assume anything
about the specific form form of the distribution of the transverse traffic but
only that relation (A.3) holds, i.e. {τn/An} is a martingale with respect to
{An} (An as above).

An immediate consequence of the above assumption is that the prediction
of τn+1 based on the knowledge of the traffic on the previous n routers
amounts to the knowledge of τn and the average value of the transverse
traffic at n + 1. Indeed, the martingale property reduces now to relation
(A.2).

For longer chains of routers limit theorems for martingales can be also
applied. Namely, assuming that the random variables ξn have finite first
moment and ξn > −1, n = 1, 2, . . ., we obtain that {τn/An} is a positive
martingale thus convergent a.e. to some limit M∞. Moreover, we can also
apply Kakutani’s theorem (see [19]) to characterize this limit. Namely we
have the following

Proposition 1 Let αn = E
√

1 + ξn/
√

1 + an. Then EM∞ = 1 if and only
if

∏

n αn > 0 (equivalently
∑

n(1 − αn) < ∞). If
∏

n αn = 0 (equivalently,
if

∑

n(1 − αn) = ∞) then M∞ = 0 a.e.
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The first part, EM∞ = 1, of the above proposition is the non-trivial one
from the point of view of application. It allows to estimate the mean value
of τn for long chains. Namely assuming, for simplicity, that the constant A0

equals 1 we have

lim
n

E τn = lim
n

An =
∏

n

(1 + an) .

Particulary interesting is the case of the transverse traffic with the same
distribution. Here we have E ξn = a, for each n, an also αn = α (constant).
It follows from the assumption on ξn that α ≤ 1. Thus we the following
dichotomy. If α = 1 then we have the nontrivial case of the convergent
martingale or, if α 6= 1, the limit M∞ is 0, which means that the traffic
eventually dies out. The latter case is irrelevant from the point of view of
applications.

Appendix B

Traffic simulator and simulation results

We have implemented simulations on the top of the famous and com-
monly used ns-2. Our goal is to approximate scenarios closed to the Internet
characteristics in order to extend our conclusions to real traffics. Here are
some values commonly used to simulate the Internet [20]. The majority of
the traffic on the Internet is associated to file transfers. The average trans-
ferred file borders 10 Kbytes. This means that an “average” file has no more
than 10 TCP packets if we take the typical TCP packet size to be 1 Kbyte.
So the majority of file transfers ends in the slow-start phase. These files are
frequently called “mice”. However, the most of the traffic in the Internet is
transmitted by very long files called “elephants. A typical Pareto distribu-
tion describes the files size, with a shape parameter value between 1 and 2
(with an average of 10 Kbytes). The files size median is around 2.5 Kbytes.
A Pareto distribution with a mean size of 10 Kbytes and a median size of
2.5 Kbytes corresponds to a shape parameter β = 1.16 and a minimum size
of 1.37 Kbytes. The IAT distribution of new connections is frequently taken
to be exponential. Let consider a network defined by the reduced topology
defined in the Fig. 5.

We study a connection between two nodes Ne and Nr linked together
by n routers {R1 R2 . . . Rn}. In respect with [21], we fixed the maximal
path length n to 22 hops for our simulations. Indeed the probability that
a connection path met on the Internet would be composed by more than 22
nodes remains insignificant. According to our approach each virtual source
emits data on the network in respect with the degree of its neighbor node
belonging to the connection.
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Fig. 5. Topology model: a data transaction between Ne and Nr is modulated by

the transverse traffic crossing each connection node.

Here is a brief description of our simulator. Each router is connected
to its own virtual source node and its own virtual reception node. We
randomly select each link delay into the uniform set [1 7→ 5ms]. Physically
the delay ∆k

I (respectively ∆k
O) represents the average delay of all links

towards (respectively from) Rk which send (respectively receive) packets to
(respectively from) it. Finally all input flows of Rk are aggregated into one
flow over a single link with the delay ∆k

I . The same assumption is performed
for the output flows. Each link is associated to a maximum rate of 10Mbps.
Even if that does not reflect the reality, we expect again that this assumption
does not change radically the final traffic structure. Each virtual source
node can create a connection towards any virtual reception node. Therefore,
n + 1 traffic sources (n virtual sources and Ne) share the connection path
Ne 7→ Nr. Each virtual source node can start up to 500 TCP sessions while
the 20 s connection duration between Ne and Nr. A new FTP application is
defined for each TCP agent. The new TCP connections arrive according to a
Poisson process. Therefore, we generate their beginning using exponentially
distributed random variables into the range [0 7→ 7s]. We use the New Reno
version with a maximum window size of 2000. The average time between the
TCP sessions arrivals at each node rates 45ms. Each node buffer is fixed to
100 packets. The sessions are generated with a random size according to a
Pareto distribution with a 1.5 shape parameter and a 10Kbytes mean. The
network effect is measured on a connection between an emission node Ne

and a destination node Nr. We are interested in the packet arrival process
at the destination node Nr.
Results

We have simulated 20 000 random scenarios composed by 1 000 simula-
tions for each connection path length varying from 3 to 22 hops (1 to 20
intermediate routers between Ne and Nr). We have recorded for each simu-
lation the arrival time of all connection packets (Ne 7→ Nr) at the destination
node Nr. In fact, as mentioned above, one user is only interested by his data
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request. A simulation generates a IAT sequence for the connection packets.
For instance we present in Fig. 6 the result for a connection composed by
12 routers.

500

0.05

1000 1500 2000 2500 3000 3500 4000

0.10

0.15

0.20

0.25

i

δi 12
(s

)

Fig. 6. Final IAT process of a 12 hops-length path TCP connection modulated by

random transverse traffics.

For each simulation, we have calculated the Hurst exponent (H) and the
geometric standard deviation of δNr

which correspond to dispersion measures
of the IAT distribution. The Absolute Value Method (AVM) often called
the Variance/Time Plot offers the easiest computational way to perform H.
This method is based on the following assumption: the variance of a n-length
sequence X presents an order of n2H−2. For each integer m ∈

[

2 7→ n
2

]

, X
is divided into non-overlapping blocks of length m. We compute the sample
average Xm

k of each kth block and its sample variance s2
m. We perform

a linear regression of the function log
(

s2
m

)

versus log (m) which leads to
a straight line with the slope β. For sufficiently large values of m, β estimates
2H − 2. A parameter β in the range [−1 7→ 0] indicates the self-similarity
property. The geometric standard deviation σ is directly extracted from the
IAT time series. The geometric standard deviation and the Hurst parameter
of a connection increase exponentially with the connection path length n.
In Fig. 7 the Hurst parameter always grows when the connection length
increases even if we observe an anomaly for the {7, 8, 9} length connections
(respectively j ∈ {5, 6, 7}).

For a fixed connection length, we have calculated the median H for 1000
random simulations. In Fig. 8 we plot the value of σ for each simulation.

We show its median value for each j. We conclude that the function
which links the geometric standard deviation to the connection path is
strictly increasing (except the first point). The longer the connection path,
the more dispersed the final distribution is (greater σ and H). This conclu-
sion supports our modeling.
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Fig. 7. H Evolution of δNr
in function of the connection intermediate routers quan-

tity.

Concluding, we have shown in this section that a multiplicative law can
indeed be observed in the Internet traffic behavior. Thus it becomes legiti-
mate to use a log-normal modeling in order to describe the Internet traffic
variability. The Internet traffic burstiness can be also explained with a sim-
ple modeling based on the IAT of connection packets.
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Fig. 8. Geometric standard deviation evolution of δNr
in function of the connection

intermediate routers quantity.
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