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Multifractal formalism is tested if it can work as a robust estimator
of monofractals when scaling intervals are fixed. Intervals for scaling are
selected to be consistent with known frequency bands of power spectral
analysis used in estimates of heart rate variability: low frequency (LF),
very low frequency (VLF), and ultra low frequency (ULF). Tests on frac-
tional Brownian motions and a binomial cascade are performed to vali-
date popular multifractal methods: Wavelet Transform Modulus Maxima
and Multifractal Detrended Fluctuation Analysis. Then the methods are
applied to identify monofractal elements of control processes driving the
heart rate. A transition is found in the dynamic organization of autonomic
nervous system control of the heart rate related to the change in scaling
intervals. The control over the diurnal heart rate is of a multifractal type
when considered in LF and of a monofractal type when observed in ULF.
Additionally, this transition affects on a switch in a relation between widths
of diurnal and nocturnal multifractal spectra.

PACS numbers: 95.75.Wx, 87.90.+y, 89.75.Da, 05.65.+b

1. Introduction

Frequency of heart contractions is mediated by two parts: sympathetic
and parasympathetic, of autonomic nervous system (ANS) and hormonal
(rennin—angiotensin—aldosterone system) activity [1-5]. Since discovering
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the relation between heart rate variability (HRV) and the state of ANS,
wide investigations have been continued to specify this connection. Conven-
tionally it is done by developing time- and frequency-characteristics derived
from analysis of signals consisting of time intervals between subsequent heart
contractions (RR-intervals) [1]. Because of our increasing understanding of
complex systems, so-called, non-linear indices have been proposed [6-8| and
then included into the set of standard markers of HRV [9]. Multifractal anal-
ysis has been found as a promising source of new assessments of HRV [10-17].

Power spectral analysis of normal heart rate has gained popularity be-
cause it is believed that by this analysis we are able to measure dynamic
changes in the ANS control of heart rate [1]. The reduced levels of the spec-
tral power have been identified as predictors of all-cause mortality (see [5]
for discussion). Traditionally the power spectral analysis is performed in
two bands: high-frequency (HF: 0.15-0.4 Hz) and low-frequency (LF: 0.04—
0.15 Hz). The HF band is attributed to parasympathetic modulation. The
LF band appears to be jointly mediated by both parts of ANS: parasympa-
thetic and sympathetic. The physiological meaning of the two other ranges
of power spectrum: very-low-frequency (VLF: 0.004-0.04 Hz) and ultra-low-
frequency (ULF: < 0.004 Hz) is less clear. There are evidences that these
bands are influenced by thermoregulatory mechanisms and humoral rennin—
angiotensin system. However a physical activity affects them too [18].

The power spectrum in the VLF and ULF bands has a power-law form,
i.e., it decays like 1/ f? where f is frequency [6-8|. If a healthy heart rhythm
is analyzed then ( is close to 1. But in the case of the heart failure 3
becomes significantly greater than 1. Therefore, § is considered as a marker
of autonomic control [20]. Similar markers which would be related to the
HF and/or LF bands are awaited. Efforts are made to quantify properties
of short-time scales by, for example, discussing fluctuations of RR-signals in
scales of few contractions [19-21]. Calls can be found for further research to
discover the nonlinear indices with clear physiological meaning [5,21,22].

In the case of stationary processes, a power-law decay of the spectral
density is directly related to the slow decay of autocorrelation function. It is
said that the stationary process is driven by long range dependences (LRD).
Moreover, any process having LRD, asymptotically, becomes a monofractal,
i.e., in large time scales the process is self-similar with the self-similarity
index H determined by 5: H = (8 + 1)/2 [23,24]. This way monofractal
properties found in a signal provide a direct understanding to dynamics of
a studied system. The potential of monofractal analysis is far from being
fully exploited [25].

LRD leave the features of short-time scales essentially unspecified. The
multifractal analysis allows to get insights on these local irregularities [23].
Unfortunately, the multifractal analysis cannot be applied as a black box.
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It involves sophisticated mathematical tools and as a result numerical pro-
cedures are sensitive to many known (such as finite size of signals) and
unknown (e.g., so-called linearization effect [26]) reasons. The relation be-
tween properties expected from rigorous investigations and properties re-
ceived from a numerical approach is the accepted measure of the quality of
multifractal tools [15,16,26-29].

Following this idea, in the present paper we examine how two popular
multifractal methods: Wavelet Transform Modulus Maxima (WTMM) [27]
and Multifractal Detrended Fluctuation Analysis (MDFA) [28] map mo-
nofractality. In particular, we test in what way multifractal properties of
the most popular monofractal processes, i.e., fractional Brownian motions
(fBm), are represented when the multifractal analysis is performed in time
scales corresponding to physiologically grounded frequency bands: LF, VLF
and ULF. Unfortunately, due to high numerical errors the HF band appears
as not accessible.

In our estimates we will use some of indices of monofractality studied by
us earlier [15,17,30]. However, in the present paper, the robust method to
distinct a monofractal from a multifractal will be proposed. Then we apply
results of our tests to heart rate signals to discover monofractal elements in
series of RR-intervals of normal sinus rhythm of a healthy man. Our basic
concern is whether complexity of HRV, if investigated in particular time
intervals: LF: 10-30 heart beats, VLF: 30-300 heart beats and ULV: over
300 heart beats, can be approximated by some fractional Brownian motion.
Changes in HRV will be discussed considering influence of the circadian
rhythm. Namely, we consider separately data corresponding to the diurnal
activity and data describing the nocturnal rest.

The paper is organized as follows. In Section 2, after a short introduction
to the mathematics of the multifractal formalism, we present the method
how to distinguish a monofractal signal from a multifractal one. We start
with fixing necessary properties for a multifractal spectrum to be read as
a representative for some fBm, Subsection 2.2. We show by simulation tests
that this method improves the quality of numerical results, Subsection 2.3.
Then we report tests performed how WTMM and MDFA methods repre-
sent monofractality if scaling intervals are limited, Subsection 2.4. Finally,
in Section 3 we show and discuss the results of the methods in discovering
monofractal ingredients in RR signals. In the following we operate with
the same series of RR-intervals that were considered in our previous stud-
ies [15,17]. These old results are partially restored in the present paper
when we investigate multifractal properties in the ULF band. Preliminary
investigations about effects on multifractality caused by change of a scaling
interval can be found in [30]. In the last section we collect and conclude our
observations.
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2. Set of spectrum accumulation points

2.1. Quantities for scaling

As it was mentioned the multifractal formalism is a nice piece of so-
phisticated mathematics. Therefore, it is instructive to start with a short
review of rigorous mathematics to understand better limits of numerical ap-
proximations and to be ensured that any change in these approximations
demands validations. The review is based on [23,27,28].

The mathematical meaning of multifractality arises from the notion of
pointwise regularity of a continuous function X (t). Namely, for any ¢y one
searches for a maximal value h(to) such that

| X (to + 6t) — X (to)| < C|st|" () (2.1)

for some C' > 0 and if 6t — 0. Notice that if a signal X (¢) is differentiable
at to then h(tg) = 1. If h(tg) > 1 then the neighboring values of X (t) are
similar to X (to), while if h(t) < 1 then in any neighborhood of X (ty) the
wide set of values of X(t) can appear.

Then one asks what is the structure of a subset E(h) = {to : h(to) = h}
that collects points of the domain where the exponent h(tg) in (2.1) is equal
to a given value h. By changing h one obtains a family of sets F(h) which
decomposes the domain of X (t) according to the singularity exponents of
a signal. In the case of multifractal signals each set E(h) has a complex
— fractal structure, and sets E(h) are highly interwoven. The structure of
each set E(h) is assessed by its Hausdorff dimension:

D(h) = dimg{E(h)} . (2.2)

By a multifractal spectrum one calls a function h — D(h). Hence if a sig-
nal X is differentiable everywhere then the multifractal spectrum is reduced
to a single point (1,1).

Direct numerical calculations, going by (2.1) and (2.2) to a multifractal
spectrum, are extremely difficult. Fortunately, they can be simplified thanks
to the multifractal formalism. The multifractal formalism is based on the
relation between multifractal spectrum of X (¢) and so-called scaling expo-
nent function 7(q) received from estimates of scaling properties of partition
functions calculated for X (¢).

Let {X(4)}i=1,2,... be a discrete approximation to a sample path of some
stochastic process X(t). Let the series {X (i)} be divided into boxes con-

sisting of n points. Any quantity Rg?)(k:) which describes some property of
a signal in a k-th box is called the multiresolution quantity. It is said that X
possesses scaling properties if the partition function, i.e., the averages of ¢
moments of a given multiresolution quantity, depend on a scale n in the
power-law form, namely:
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where 7(q) is the scaling exponent function. The multifractal spectrum
(h, D(h)) is obtained by the Legendre transform applied to the scaling ex-
ponent function (g,7(q)):

dr(q)

h = .

D(h) = qh —7(q) - (2.4)

Again, the direct usage of (2.3) and (2.4) suffers from numerical difficul-
ties what often effects in wrong estimates. However, after wide simulations
(see e.g. [28,29]) the following two numerical methods, though only related
intuitively to rigorous mathematics, are used to calculate multifractal spec-
tra.

The first method is called the Wavelet Transform Modulus Maxima
(WTMM) method [27]. The wavelet coefficient of the wavelet transform

of a signal X is chosen as a multiresolution quantity: Rg?)w(k‘), 1 denotes
the mother wavelet transformed to a scale n and shifted to a k-th box. But
the partition function is constructed differently from (2.3). In a given scale n

a set of the local maxima of a function k¥ — ]Rg?)w(k:)] is determined. Then
at a given time position the maxima are chained across scales to establish,
so-called, maxima lines. The partition function Z(n,q) is formed from the
largest multiresolution quantities along the maxima lines, 7.e.:

Zoa) = > R

local maxima
across scales

‘q (2.5)

k:sup

A multiresolution quantity of the second method called Multifractal De-
trended Fluctuation Analysis (MDFA) 28], estimates departures of the sig-

(n)

nal X from a local polynomial trend: R (k) where P% is a polynomial

X,Pk
trend of m order found for the k-th box:
(k+1)n 9 %
Ry = Y [x6)-Ph0)] ] (2.6)
i=kn+1

The partition function F(n,q) is given as

K

F(n,g) =Y (B (1)) (2.7)

k=1



1532 D. MAKOWIEC ET AL.

Notice that the partition function (2.7) differs from (2.3) and the original one
given in 28] by absence of the coefficient 1/K. Thanks to this modification
the scaling exponent functions 7(q) provided by (2.5) or (2.7) are exactly
the same.

In the following we will call a multifractal spectrum calculated on the
base of Z(n,q) as a WTMM spectrum and a multifractal spectrum received
from F'(n,q) as a MDFA spectrum.

2.2. Monofractality by multifractal estimators

A self-similar process with a self-similarity index H gives a point multi-
fractal spectrum located at (H,1). Fractional Brownian motions fBmy are
the simplest self-similar processes with the self-similarity index H € (0,1).
Hence a sample path of fBmy has everywhere a local singularity exponent h
equal to H. Moreover, a multifractal spectrum of a process of integrated
values of fBmy (i): fBmitt(k) = > i—o... Bmp (i) is a point too. The point
of a spectrum takes the value (H™™* =1+ H,1).

The quality of multifractal tools — methods WTMM and MDFA, will
be assessed according to their representation of a point spectrum of fBmpy,
namely, by:

(a) the distance between the expected value and the value at which the
maximum of a multifractal spectrum is attained,

(b) the width of the multifractal spectrum.
Moreover, we also check

(c) how the properties (a) and (b) are represented if multifractal spectra
are received from integrated signals fBml (k)

(d) the dependence between the properties (a)—(c) and the interval where
the scaling (2.3) is performed.

The direct estimates of the described features experience difficulties re-
lated to shapes of numerically calculated multifractal spectra. Typically
a multifractal spectrum has a parabola-like shape. Identification of the spec-
trum maximum is not difficult. But it also happens that a spectrum looks
like a parabola modified by some mirror and/or rotation transformations. In
such a case determination of the maximum is not obvious. Moreover it often
occurs that one of the wings of a spectrum is enormously wide. Then cal-
culations of the width of a spectrum needs special effort. For these reasons
we propose to consider the following procedure to quantify a multifractal
spectrum:
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e Let us consider a set of singularity exponents {h;} obtained numer-
ically according to the formula (2.4). Namely, if ¢; = qo + iAg and
Agq > 0 is small enough, then we have:

hi = A7(qi)/Aq = [17(q: + Aq) — 7(q:)]/Aq. (2.8)

Let a function pdf(h;) describe the probability that h; occurs in the set
of {h;}. Each local peak in pdf will be called a spectrum accumulation
point and denoted hec.
We expect that in the case of fBmy and meiﬁt signals we obtain only a
single spectrum accumulation point h,.. and its value coincides with the
maximum in a multifractal spectrum. Thus, ha.. = H for fBmpy series and
hace = 1 + H for mei;}t.

2.3. Validation of the spectrum accumulation point approach

In the following subsection we discuss how the set of spectrum accumu-
lation points represents a multifractal spectrum. We show also that this
approach provides a robust procedure of recognizing monofractality.

It is not surprising that a set of accumulation spectrum points should
depend on the interval of ¢ where a partition function is calculated. To check
the g-interval influence we compare pdfs received when different ¢-inter-
vals are considered. We decide to present results obtained from series with
H = 0.2 because the heart rate signals are known to be related to this value.
Moreover, we deal with series consisting of 25000 points because signals with
RR-intervals have the similar lengths

For the three samples of fBmg s (produced by tsfBm software [31]) the
partition functions F'(n,q) and Z(n,q) (using Physionet software [32]) were
found for all |¢| < 50, with a step Ag = 0.1. The scaling exponent functions
7(q) were calculated for scales n > 100, i.e., in the scaling interval usually
used in multifractal estimates. In the first row of Fig. 1 we present the
scaling exponent functions 7(¢) and the MDFA and WTMM spectra. Below
the pdfs of these spectra are shown. The size of a bin is Ah = 0.02.

If |g| is large then each negative (¢ < 0) and positive (¢ > 0) part of
7(q) separately can be fitted very accurately by a linear function. Therefore
the corresponding pdf has two accumulation points located at the limits of
the spectrum, see grey (yellow on-line) boxes in Fig. 1. But values of these
accumulation points are weakly depended on the expected value and they
variate from a sample to a sample. Variability in the limit behavior of 7(q)
means that we are outside the g-interval where the multifractal formalism
is valid. It is said that the scaling exponent function 7(q) suffers from the
linearization effect [26].
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Fig. 1. Multifractal analysis results obtained by MDFA and WTMM together with
corresponding pdf functions for three samples of fBmgo. The first row contains
plots of the scaling exponent functions and multifractal spectra received by both
estimators for pure (left part) and integrated (right part) signals. Below pdfs are
plotted when an interval of ¢s is subsequently limited.

When |g|-interval is narrower, e.g., |q| < 10, see dark grey striped (green
on-line) boxes in Fig. 1, then most of the distributions of h;s become a
cap-like. Only WTMM spectra received from integrated signals still give
wide distributions of a cup-like. Thus the set of spectrum accumulation
points has been changed due to the change in the g-interval — two limiting
accumulation points have disappeared, and a single accumulation point has
emerged. When ¢-interval is squeezed further then the value of the maximum
in pdf grows. In the case of |¢| < 3, we see sharp peaks determining h,e. as
located close to 0.2 for fBmg 2 signals, and to 1.2 in the case of fBmi% series
(see black boxes in Fig. 1). Unfortunately this observation is not true in the
case of the WTMM method applied to integrated signals.

Thus the proposed marker of monofractality can be trapped by the lin-
earization effect. To limit the influence of this trap, the interval of ¢ should
be chosen to be close to 0. However, one can ask if by squeezing the interval
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of ¢ we do not weaken our possibility to discover multifractality. To test
how much we can limit the ¢ interval in a safe way, let us observe the set
of spectrum accumulation points received from a discrete approximation of
the binomial cascade, see Fig. 2.

binomial cascade: m = 0.75
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Fig.2. Multifractal analysis results received for a binomial cascade signal with
m=0.75. The first row contains plots of the scaling exponent functions and mul-
tifractal spectra calculated by both estimators. Below pdfs are plotted for interval
of ¢ subsequently restricted. The bottom pdf plots are in log-scale to emphasize
the pdf values inside the spectra interval. The bin size is 0.05. Theoretical limits
are 0.415 and 2.0.

A binomial cascade signal is known from its transparent multifractal
properties. It is constructed through the multiplicative iterations charac-
terized by m parameter, see e.g. [23,28| for details. The scaling exponent
function 7(q) for ¢ — oo should be linear with the coefficient —In(m)/In(2),
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and for ¢ — —oo should be linear with the coefficient —In(1 —m)/In(2). In
Fig. 2 we see that there are two peaks corresponding to the two limiting lin-
earities of 7(¢) in pdfs, only if the interval of |¢| is large enough. If g-interval
is too narrow, e.g., |¢| < 3, then the distribution of {h;}s becomes almost
uniform.

In summary, there are at least two sources of the spectrum accumulation
points. The crucial one is related to the intrinsic properties of a signal and it
provides the characterization to a multifractal spectrum. The second source
is the linearization effect which is related to limits of multifractal formalism.
The linearization effect is absent in the case of multifractality of the binomial
cascade type, but in the case of self-similar signals this effect is present,
especially in the WTMM spectra received from integrated signals. But by
observing emergence and/or disappearance of the spectrum accumulation
points when g¢-interval is changed, the monofractality of fBmg type can be
clearly distinguished from the multifractality of the binomial cascade type.

2.4. Spectrum accumulation points in LF, VLF, ULF bands

Now we test the possibility of observing the monofractal indiced (a)—(c)
in signals when mulifractal formalism is considered in the LF, VLF and
ULV bands separately. The tests of MDFA and WTMM estimators were
performed as follows. 50 samples (consisting of 25000 points) for each process
fBmy with H = 0.1,0.2,...,0.9 were prepared by [31]. For each sample the
partition functions Z(n,q) and F(n,q) for direct signals and Z"*(n, q) and
F"t(n, q) for integrated signals, were found for n > 10 and ¢ < 5 with
a step Ag = 0.1 (software packets of Physionet [32] were used). Then
the group averages (Z(n,q))y, (Z"%(n,q))u, (F(n,q))y and (F™(n,q))y
were calculated. For each group average, the scaling functions 7(g) were
found separately in each scaling interval: LF, VLF and ULF. Finally, the
multifractal formalism was applied to each 7(q).

In Fig. 3 we show the MDFA and WTMM spectra and the analysis of
these spectra done by means of pdfs for fBmgs and mebng signals. To
observe emergence and disappearance of accumulation points, pdfs are cal-
culated in two g-intervals: ¢ < 3 and ¢ < 5.

After change of the g-interval peaks corresponding the spectrum accu-
mulation points emerge in all bands LF, VLF and ULF. A single ha. can
be attributed to each multifractal spectrum though in the case of some
spectra the maxima are not sharp. Both estimators, when considered in
the VLF band, give the spectrum accumulation points at values which are
closely related to the expected values, i.e., hace = 0.2 for fBmg 5 signals and
hace = 1.2 for meg.lg signals. But in the LF band, see circles (brown on-line)
in Fig. 3, the MDFA spectrum does not give an evident single accumulation
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spectrum point for fBmg s and provides ha.. at the wrong position in the
case of fBmi. The WTMM method works correctly in the LF band. The
opposite observation holds in the ULF band, see squares (green on-line) in
Fig. 3. Here the WTMM spectra provide wrong results but MDFA method
finds h,e close to the expected values.
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Fig. 3. Spectrum accumulation points in the case of fBmgs. MDFA and WTMM
spectra for pure and integrated signals are in the first row. Small markers corre-
spond to spectra in |g| < 5, large markers to |¢| < 3. The middle row presents pdfs
for |q| < 5, the bottom row pdfs for |¢| < 3.

In addition, thanks to a pdf we can easily estimate the spectrum width
even a spectrum has a complicated shape. The influence of numerical in-
stabilities leading to enormously large left or right wing can be limited by
taking into account only values that are symmetrical with respect to the haec.
Then the width of a spectrum in a given g-interval is calculated as the size
of symmetric h interval where pdf is nonzero.

The results of analysis of properties (a)—(c) for all groups of fBmy signals
are collected in Fig. 4 and can be summarized as follows.

In the LF band the MDFA method finds multifractal spectra of {Bmpg
with H < 0.6 definitely different from the expected results. The spectra
are enormously wide and the maxima are overestimated. When integrated
signals are considered (the right column in Fig. 4) then the maxima are
underestimated though the widths of the spectra are still large. Fortunately,
in the VLF and ULF bands the MDFA spectra are located at the expected
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values and they can be considered as a point-width spectra since their widths
are less than about 0.05. In the case of the WTMM method, the spectra
received in the ULF band are wrong. But WTMM spectra received in the
LF and VLF intervals provide an acceptable picture of a point-like spectra.

1.0 2.0
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£ 0.8 1 £ 1.8 1 2
b -] [ -
3 0.6 & 3 1.6 - c{g&
T k-]
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Fig.4. Maxima (dots) and widths (arms) of mean spectra obtained by MDFA and
WTMM estimators in power spectral bands LF, VLF and ULF for {Bmy series
(left column) and integrated fBmy (right column). H =0.1,0.2...,0.9, ¢ € [-5,5].
Dashed lines correspond to theoretical values.

For a comparison let us consider a binomial cascade signal, Fig. 5. In
this case we see that each pdf has two accumulation points: left and right.
Here the values of h,.. approximate correctly the known asymptotic values
of multifractal spectra only if the MDFA method is used to VLF and ULV
bands, and the WI'MM method is used to LF and VLF.
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Fig. 5. Spectrum accumulation points in the case of a binomial cascade signal with
m = 0.75. MDFA and WTMM spectra are in the first column. Small markers
correspond to spectra in |¢| < 5, large markers to |¢| < 3. The middle column
presents pdfs for || < 5, the left column pdfs for |¢| < 3.

3. Heart rate variability by spectrum accumulation points
in LF, VLF and ULV bands

At present we are well equipped to investigate sets of spectrum accumu-
lation points describing multifractal features of a normal sinus rhythm (nsr).
The signals were collected from 39 healthy individuals (characterization of
this group can be found in [17]). From 24-hour electrocardiogram two sub-
sets (of five hours long) were selected to separate the diurnal activity from
nocturnal rest. These subsets will be referred to as nsr gda wake and
nsr__gda__sleep, respectively. All series are accessible from [33].

For each signal RR(i) the corresponding integrated signal RR™ (k) =
Ei:l,...,k RR(i) was considered. Notice, that by integrating RR intervals we
obtain a sequence of moments of time when a k-th heart beat happens.

Finally, from each 24-hour recording, the eight partition functions were
Ca.lClﬂated: Zwake (n,q), Fwake (n,q), Zsleep (n,q), Fileep (n,q), Zé\?;ko(na q),
Fit (n,q), Z;ﬁfep(n, q), Fsllréf:p(n, q). The partition functions were found for
q € [—5,5] with a step Ag = 0.1 and n > 10. The individual functions were
averaged in the eight groups to establish one representative for each group
(one can learn more about the group representatives and other details of
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numerical and statistical procedures from [30]). The multifractal formalism
was applied to each group representative and in each of LF, VLF and ULF
band. In Figs. 6-8 the MDFA and WTMM spectra are presented.
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Fig.6. MDFA and WTMM spectra (the first column) and pdfs found accordingly
for wake and sleep, and direct and integrated series in the ULF band. Two ¢
intervals are considered |g| < 5- upper panels and |¢| < 3 bottom panels.
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The ULF component corresponds to the long-time control of ANS and in
this time interval the multifractal properties are usually investigated. In the
case of a healthy heart, the standard multifractal estimates of RR-intervals
give a nocturnal multifractal spectrum wider than diurnal one, and with
maximum moved to lower values of h. This picture of the circadian rhythm
is said to reflect the known physiological fact about stronger HRV during
the sleep.

In Fig. 6 one can find these properties in MDFA and WTMM spectra
received by us in the ULF band. Remembering that the WTMM method is
partially reliable in the ULF band, it is worth to notice that values of the
maxima in MDFA and WTMM spectra are close to each other. They appear
at about 0.20. The spectrum accumulation points calculated from the wake
MDFA spectrum indicate at a single ha.. at about 0.20. For integrated
wake series, the MDFA method provides two accumulation points which
values are close each other, and one of them is h,.. =~ 1.2. Hence, basing on
our experience with fBmy;, we can hypothesis that in this band the dynamics
of ANS control can be described by a process of a monofractal type. The
self-similarity index for this process is about H = 0.20.

The nocturnal HRV in the ULV band does not allow for such simple
description. A strong spectrum accumulation point at 0.2 is still observed
in the pdfs. But the integrated sleep signals provide the MDFA spectra with
all h < 1 what disagrees with property (c) of fBmy.

A first message which can be read from Fig. 7 is that in the VLF band
the multifractal spectra of RR-signals depend on the applied method. The
WTMM spectra are separated systematically from MDFA spectra — they
are moved to left, i.e., to lower values of h. It looks like the WTMM method
finds RR-signals to be more rough. However, if estimates are performed
on integrated signals then both methods find a consistent with each other
multifractal picture. For example, we see a clear separation between the
maxima of multifractal spectra representing wake and sleep signals.

One can search for an explanation to the described result in numerical
procedures which are involved, compare Section 2.1. In general, the WTMM
method is concentrated on taking out singularities across scales while the
MDFA method measures departures from a local polynomial trend in a given
scale. In the case of fBmpy where trends are absent, both methods give the
same multifractal characterization. In addition, if a strong trend is imposed
on a signal, e.g., by integrating values of a signal, then this discrepancy
vanishes. Therefore one can suppose that the difference between MDFA and
WTMM spectra is observed if a signal has complicated other than polyno-
mial dependences.
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Fig.7. MDFA and WTMM spectra in the VLF band. The plots are arranged in
the same way as in Fig. 6.
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Fig.8. MDFA and WTMM

same way as in Fig. 6.

spectra in the LF band. The plots are arranged in the
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The MDFA spectra in the VLF band provide wide and almost uniformly
distributed pdfs for wake and sleep signals independently of g-interval. Such
shape indicates that an RR signal could be compared to a binomial cascade
signal. The pdfs received for integrated signals are also wide though, here,
a strong single spectrum accumulation point h,e. =~ 1.0 is present. Also,
the pdfs obtained from WTMM spectra (from direct and integrated signals)
suggest a monofractal representation to physiological processes involved in
wake activity in this band. This driving process can be assessed as H €
(0.1,0.2). But, similarly to the observations found in the ULF band, in the
case of sleep signals we cannot describe the main process as a monofractal
type because the direct signals give H = 0.18 while integrated signals lead
to H = 0.92, i.e., to the value smaller than 1.

In the LF band, see Fig. 8, the MDFA method is partially reliable only.
Discussing results offered by WTMM method we see that the maxima in
nocturnal WTMM spectra are attained at the similar values as in diurnal
WTMM spectra when direct signals are considered. Moreover, the sleep
spectra are narrower than the wake spectra what is opposite to findings
reported in the ULF band. The wake signals provide a wide spectrum lim-
ited by easily seen two accumulation spectrum points. These points survive
the change in g-interval what indicates that they are not related to the lin-
earization effect but they represent the intrinsic organization of the data in
wake signals. In the case of sleep series we observe only one h,c. point if
lg] < 3 what suggests existence of strong driving monofractal ingredient.
However, pdf obtained for integrated sleep signals is moved right only by
about 0.80 what locates the spectrum below 1. As it was mentioned earlier,
such values disagree with the property (c) of monofractals. Hence here in
the LF band both ANS states: diurnal and nocturnal, cannot be described
as a monofractal process of fBmy type.

4. Conclusions

The hypothesis was tested, whether the multifractal analysis can be per-
formed in fixed intervals of scaling procedure, in the aim to find a new source
of indices for ANS control of heart rate. For this reason the intervals for
scaling were selected to LF, VLF and ULV bands, to be suitable for diagnos-
tic interest of cardiologists. Moreover, the search for the dominating process
responsible for HRV within the several seconds (LF), less than a minute
(VLF), and few minutes (ULF), is crucial in simplifying our understanding
of the complexity in HRV.

Since the best numerical tools for multifractal analysis: WTMM and
MDFA are heuristic, the validation of the hypothesis was given by tests
on signals with known multifractal properties. We practiced with signals
of fractional Brownian motions and binomial cascade. The robust method:
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markers (a)—(d), was proposed to detect and quantify monofractal properties
by multifractal tools. The performed analysis provided us the following
arguments about the quality of WTMM and MDFA methods as estimators
of monofractality in a signal:

(i) Both methods when applied to the VLF band, provide values correctly
related to the expected ones.

(#) In the ULF band, the WTMM method wrongly finds signal properties
while MDFA is a good estimator.

(i4i) In the LF band, the MDFA method does not estimate correctly mul-
tifractal spectra but the WTMM method works well.

Let us draw attention to the result (7). Our observation could be a possi-
ble explanation to a rather common judgment that the WTMM method is
a worse estimator of multifractality than the MDFA method [17,28,29].

Because an answer to the hypothesis has to be read as ‘yes, though with
care’, we have gained a delicate tool to study RR~intervals in time scales of
physiological interest. A promising way to find new methods to evaluate the
state of the ANS control has been established.

We have found that the ANS control during the human daily activity in
the ULF band can be described by a process of a monofractal type. It means
that in scales of minutes the HRV complexity can be approximated by some
self-similar process with self-similarity index H = 0.2. But in short time
scales which correspond to the LF band we obtain a multifractal picture
of ANS activity. Hence a transition is found in the dynamic organization
of ANS control connected to the change in time scales. In the effect of
this transition the switch in the relation between widths of wake and sleep
multifractal spectra is observed. In the LF band the wider multifractal spec-
tra are attributed to diurnal activity, while in the ULF band the nocturnal
RR-signals lead to wider spectra.

One can object that our observations are restricted to the numerical tools
that we have used, namely, tsfBm packet [31] as generator of fBmy signals
and multifractal software from the Physionet [32]. However, the similar
properties have been received when series were obtained by different fBm
generators and different numerical representations of WI'MM and MDFA
estimators are used [34].

We kindly acknowledge Dr. P. O$wiecimka for performing tests, with
other series and other numerical tools, supporting our observations. The
work is supported by the Polish Ministry of Higher Education and Science
— PB: 1921/B/H03/2008/34.
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