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This paper is devoted to explore tilted kinematic self-similar solutions
of the the general cylindrical symmetric spacetimes. These solutions are
of the first, zeroth, second and infinite kinds for the perfect fluid and dust
cases. Three different equations of state are used to obtain these solutions.
We obtain a total of five independent solutions. The correspondence of
these solutions with those already available in the literature is also given.

PACS numbers: 04.20.—q, 04.20.Jb

1. Introduction

Einstein’s theory of General Relativity (GR) relates the geometry (cur-
vature) to the physical content of spacetime (matter) through the Einstein
field equations (EFEs) given by

1
Rab - iRgab = RTab ; (1)

where R, is the Ricci tensor, R is the Ricci scalar, k is the coupling con-
stant and T,y is the energy-momentum tensor. These equations are coupled,
second order, non-linear, partial differential equations (PDEs) and have no
general solution.

Self-similarity is a scale transformation under which the set of field equa-
tions remains invariant with the assumption of appropriate matter field.
This leads to the existence of scale-invariant solutions of the field equations
which are called self-similar solutions. The beauty of this restriction is that
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it reduces the EFEs to a set of ordinary differential equations (ODEs) which
makes them easier to solve.

Cahill and Taub [1] were the pioneers who introduced the concept of
self-similarity in GR corresponding to Newtonian self-similarity of the ho-
mothetic class. They studied spherically symmetric self-similar solutions of
the EFEs for a perfect fluid in the cosmological context. Carr and Coley [2]
discussed different types of self-similarity in GR. They mainly focussed on
spatially homogenous and spherically symmetric self-similar solutions. Carr
et al. [3] considered kinematics self-similar (KSS) vector associated with the
critical behavior observed in the gravitational collapse of spherically symmet-
ric perfect fluid with equation of state p = kp. This work was extended [4]
to discuss the physical aspects of the solutions.

Sintes et al. [5] investigated KSS solutions of the infinite kind in the
cases of plane, spherically or hyperbolically symmetric spacetime. Bicknell
and Henriksen [6] considered the self-similar growth of black holes for a class
of equation of state p = c2p, where ¢, is the constant sound speed. They
concluded that this growth is possible in the sufficiently bounded regions
surrounding the black hole. Mitsuda and Tomimatsu [7] investigated the
stability of self-similar solutions of gravitational collapse from the perspec-
tive of their nature as an attractor. They studied the critical phenomena
and stability of a naked singularity. Harada and Maeda [8] explored spher-
ical collapse of a perfect fluid with equation of state p = kp by full general
relativistic numerical simulations. Ori and Piran [9] described a family of
general relativistic solutions for self-similar spherical collapse of an adia-
batic perfect fluid including naked singularities. A counterexample to the
cosmic-censorship hypothesis was also provided. In another paper, they [10]
examined the structure of general relativistic spherical collapse solution for
a perfect fluid with a barotropic equation of state.

Sharif and Aziz [11,12] discussed perfect fluid and dust solutions for the
special and the most general plane symmetric spacetimes. They explored
the first, second, zeroth and infinite kinds with different equations of state
when the KSS vector is tilted, orthogonal and parallel to the fluid flow. The
same authors [13-15] discussed the properties of the self-similar solutions of
the first kind for spherically, cylindrically and plane symmetric spacetimes.
They have also studied the self-similar solutions for a special cylindrically
symmetric spacetime [16]. Recently, self-similar solutions of the general
cylindrically symmetric spacetime have been investigated [17] for the parallel
and orthogonal cases. In this paper, we take the most general cylindrically
symmetric spacetimes and find the KSS solutions of the first, zeroth, second
and infinite kinds when the KSS vector is tilted to the fluid flow both for
perfect fluid and dust cases.
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The paper is organized as follows. Section 2 is devoted in formulation of
the KSS vector for different kinds of self-similarity. In Sections 3 and 4, we
investigate self-similar solutions for the tilted perfect fluid and dust cases
respectively. Finally, Section 5 is furnished with summary of the results
obtained.

2. Cylindrically symmetric spacetimes
and kinematic self-similarity

The line element for the general cylindrically symmetric spacetimes is
given as [18§]
ds? = eZV(t,r)dt2 - e2¢(t,r)dr2 - e2,u(t,r)d02 _ 62)\(t,r)dz2 7 (2)

where v, ¢, p and X are functions of ¢ and r only. Notice that the four
structure functions are used since we are using a co-moving frame. The
energy-momentum tensor for a perfect fluid is given by

Tap = [p(t7 7") + p(tv T’)]’LLa’LLb - p(tv T)gab ) (aa b= 0,1,2, 3) ) (3)

where p and p are the density and pressure respectively and wu, is the
4-velocity of the fluid. In co-moving coordinate system, the 4-velocity can
be written as u, = (€,0,0,0). For the line element (2), the EFEs take the
form

87Gp = e 2 (b + Mdr + Nete) + €2 (= pirr + prhr

—17 = Aer + Mooy = AT = i Ar) (4)
0 = —pur — Mr + e + My + Gpir + Ar iy

—Ar At — fhifhr (5)
87Gp = € P (—pu — At + v + v — Mepir — pi — A7)

+e 2 (pevy + Aty + Arpir) (6)
8TGp = € 2 (—u — Mt + iy + Mt — My — ¢ — AY)

+e 2 W+ 17 = Ve + M+ Aer = M+ X)), (7)
8TGp = e (= — pae + vy + vy — bt — ¢F — pi)

+e 2 (v + 1 — Ury + Uy + per — pedr + 7). (8)

The conservation of energy-momentum tensor, T“b;b = 0, yields the following
equations

Pt Pr
O = — — it — A, Up = — . 9
p+p " p+p ©)
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For a cylindrically symmetric spacetime, the vector field £ can have the
following form

0 0 0
gaa$a = hl(tr)a + h2(t77‘)§ )
where hy and hy are arbitrary functions of ¢ and r. The tilted perfect fluid
has both h; and hg non-zero while hy = 0 gives orthogonal case and he = 0
the parallel case. This paper is devoted to investigate the KSS solutions for
the tilted perfect fluid and dust cases.

A kinematic self-similar vector £ is defined by

£§hab = 26hab7 £§ua = QUgq , (11)

(10)

where hqp, = gap — UaUp 18 the projection tensor and «, ¢ are dimensionless
constants. We can have different kinds of self-similarity according as § # 0
or § =0 given below:
(%) 0 # 0: Here the KSS vector for the tilted perfect fluid case takes the
form 9 5 5

5aaxa = (at + ﬁ)a e (12)
The similarity index, §, yields the following three possibilities

(i) a =1 (B can be taken to zero) — first kind,

(1) a =0 (B can be taken to unity) — zeroth kind,

(#i) o # 0,1 (B can be taken to zero) — second kind,

where § can be taken as unity. The self-similar variable for self-similarity
of the first kind turns out to be { = . In the zeroth kind, i.e., a = 0, the
self-similar variable is £ = . For the second kind, the self similar variable

becomes £ = r/ (at)é. For all these kinds, the metric functions are
v(t,r) = v(8), olt.r) =o(8), e =ret®, A0 =reXS . (13)
(%) 0 = 0: Here the KSS vector can take the following form (when « # 0)

0 0 0
@ =t—+r— 14
o o T ar (14)
and the corresponding self-similar variable is § = 7. The metric function

will become

v(t,r)=v(€), otr)=—Inr+6(&), pt,r)=pl&), Atr) = )‘((g) )
15

The following equations of state (EOS) are used.

EOS(1): p = kp?, where k and ~y are constants.

EOS(2): p=kn?, p=mpn + %, where k # 0 and v # 0, 1.

EOS(3): p=kp, —1<k<1, E#0.
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3. Tilted perfect fluid case
3.1. Self-similarity of the first kind

Using Eq. (13) in Egs. (4) and (6)—(8), the mass density and pressure
must take the following forms [19]

wplt,r) = 50(6). (16)

wplt7) = 5p(E). (1)

where the self-similar variable is £ = r/t. If the EFEs and the equations
of motion for the matter field are satisfied for O[(r)~2], we obtain a set of
ODEs given by

p=—+i+Np+p), (18)
2p—p = v(p+p), (19)
0 = j1p+ Ao+ M, (20)
pe?? = —ji— A= =N =201 —2)\+2¢
Fhad+ A — A —1, (21)
0= i+ A+ 2+ X2 +a+A—w— v

—20 — $fi— dX, (22)
0= —ji—A—f2 =N — = N=No+ fw+ Ao, (23)
pe®® = 14 i+ N+ 20+ o + v+ Mo, (24)
0= —-A—@* =N —d—A—dA+dr+Ap, (25)
pe?® = i+ A+ 2+ X2+ A+ A — g — oA — @, (26)
0= —¢—ji=¢* — > —¢—jp—G+ov+pr,  (27)
pe®? = D i+ P 4 — v — g — ¢ (28)
where dot represents derivative with respect to &. Since the first kind is not
compatible with EOS(1) and EOS(2), hence no solution exists.
3.1.1. EOS(3)
If a perfect fluid satisfies EOS(3), then we have the following solution
v = In(ct*?), ¢=c, p=c, A=c3,
p = p = const. (29)

corresponding to the metric

ds® = ()24t — dr? — r?(d6? + d2?) . (30)
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3.2. Self-similarity of the zeroth kind
Here the quantities p and p take the form

w0 = 5 {p(© + ()}, (31)

W = 5@+ Pp(©), (32)

where the self-similar variable is & = re~* and the set of ODEs become

pr = —(@+n+N(pr+p), (33)
pa = —(d+ i+ N(p2+p2), (34)
2p1 —p1 = v(pr+p1),s (35)
—p2 = U(p2+p2), (36)
;e = —fi— A= =N —21—2\+2¢
+ 1)+ A — Aji—1, (37)
p2e® = 1o+ A+ M, (38)
0 = i+ A+ 2+ X+ a4+ —w— v
— 2 — it — PA, (39)
Pp1e®® = 14+ N+20+ o+ v+ Mo, (40)
poe? = —ji—A— @2 =N = Au+ p + o, (41)
p1e?? = DA+ 2N A+ A — d— dA— &, (42)
pee? = —p—XN— % — N2 — b\ + dv + A, (43)
120 = D+ 4t  — v — g — ¢, (44)
p2e® = —¢— ji— ¢ — i — P+ i + fur. (45)
3.2.1. Equations of state
For EOS(1) with k # 0 and v # 0,1, Egs. (31) and (32) become
k
pr=p1=0, py= Fp; [Case ] (46)
For EOS(2) with k£ # 0 and 7 # 0,1, Egs. (31) and (32) take the form
k 1 7
p=0=p pe <,02 - 1p2> . [Case1]  (47)
EOS(3) yields two more cases for k = —1 [Case III] and for k # —1

[Case IV].
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Case I: Solving the equations simultaneously, we obtain

v=oc,d=—InE+In( —c3)+co, p=—In€+cy, A=—Iné+cs,
—3(634-62)

= (0= = t. = 4 48
n p1, P2 = const., p2 201 (€3 — cy) (48)
The corresponding metric is
2 2 0 — cze ? 2 2t 92 2
The second solution is
Vv = C1, ¢:%ln£+627 ,u:%lnﬁ—i—c?,, A:—1H£+C4,
p1 = 0=p1, p2=py= const. (50)
and the corresponding metric is
2 _ g2 T ..9 2 192 2 7.2
ds* =dt —g(dr + rdf”) — e*dz". (51)
The third solution is
Vv = C1, ¢:%ln£+627 ,u:—lnﬁ—l—c;),, )\:%IH£+C47
p1 = 0=p1, p2=py=const. (52)
and the metric takes the form
2 2 T oo o TP,
ds® = dt* — —dr® — e'df” — —dz". (53)
e e
The Case II gives the same solutions as the Case 1.
Case III: Here the solution becomes
Vv = C1, ¢:_1n£+627 ,u:—lnﬁ—l—c;),, )\:—ln£+04,
p1 = 0=p1, p2=py= const. (54)
and the corresponding metric is
2 s €, 2/ 192 2
ds* = dt* — r—2(dr +r7(df” + dz7)). (55)

Case I'V: This case gives the two solutions out of which the first is

v=oc, ¢=2Inf+co, p=—Iné+c3, A=—-—In€+cy,
p1 = 0=p1, p2 = ps = const. (56)
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and the corresponding metric is

4
ds® = dt? — %alr2 — e*(do? + d2?). (57)

The second solution is

V:(lj:\/i)lng—’_clu ¢:CZ7 m=cs, )‘2647
p1 = p1=const., py=0=po (58)

and the corresponding spacetime is

2:+2/2
ds? = (;) dt? — dr? — 12 (d6? + d=?) . (59)

8.8. Self-similarity of the second kind
Here the EFEs imply that

1 r?
Kp = 3 01(5)+t—2p2(f) ) (60)
1 r?
rp = 3 &)+ gpe() o (61)
where the self-similar variable is & = 7/(at)'/®. The set of ODEs become
pr = —(@+a+Npr+p1), (62)
P2 +2apy = —(d+ fo+ A)(p2 + p2), (63)
2p1 —p1 = v(p1+p1), (64)
—p2 = v(p2 +p2), (65)
;e = —fi— A= =22 =21 -2\ +2¢
+ A+ A — A —1, (66)
a?p2e® = jip+ Aj + M, (67)
0 = jit A+ 24+ X2 +a+A—w— v
—2¢ — dp— PA, (68)
P1€2 = 14+ A+ 204 v + Ao+ M, (69)
o?pae® = —ji—A— 2 =N —ap— al
— N+ w4 A, (70)
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?pae® = —p— A= =N —adp—ar— A+ v+ v, (72)
p1e®® = Ut jit 0P+ (P ot i — G — G — ¢, (73)
a’pae® = —¢—ji— ¢ — i’ — ad — i — i+ ov + i, (T4)
3.3.1. Equations of State
For EOS(1) (k # 0 and v # 0,1), Egs. (60) and (61) imply that

p1 = 0 = P2, a =7, b2 = K~ 1 25 27 17 [Case I] (75)
1 k )

When a perfect fluid satisfies EOS(2) for k # 0 and v # 0, 1, it follows from
Egs. (60) and (61) that

- 2y v —(~v—1
P2 = 5 T m_li = (v — D)p2,
p1 =0, a=r~, |[Casell] (77)
k 2
po= Wf py =(y—1)p1,
1
pe =0, a= - [Case IV] (78)

EOS(3) yields two more cases (Case V and Case VI) for k = —1 and k # —1
respectively.

Case I: Solving the ODEs simultaneously, we obtain the solutions as

v = ¢, qﬁ:%lng—i-cz, p=—Iné+c3, A=—-Iné+ ¢y,
pr = p2=0=p; =p2, Oé:% (79)

and the corresponding metric is

2 2 2\** 3\ 2
ds® = dt* — 3 rdr — ) (d6* + dz*) . (80)

The second solution is

v=c, ¢=2In€f+cy, p=—Iné+c3, A=2Iné+ ¢y,
pr = p2=0=p1=p2, a=-3. (81)
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Its metric form is

1

2 _ 3,2 A(_an\4/37.2
ds® = dt* — r*(=3t)*°dr =L

do? — rS(=3t)"3dz%.  (82)

The third solution is

v=c, ¢=2In€f+cy, p=2Iné+cs, A=—-Iné+cs,
pr = p2=0=p1=p2, a=-3 (83)

and the corresponding metric is

1
d82 = dt2 — 7’4(—3t)4/3(d7‘2 + T2d02) — Wd22 . (84)

It is mentioned here that the Cases II, III and IV have the same solutions
as given by Egs. (80), (82) and (84). It is also noted that the Case V has
only one solution given by Eq. (80).

Case VI: For this case, we obtain the following solutions. The first solution
is

v = ¢, ¢:_ln€+627 ,u:—lnf—i—q),, )\:—ln§+C4,
20 — 3

pr = 0=p1, pa=py=const., k= 3 (85)
and the corresponding metric is
(at)? o
ds? = dt* — Tdﬁ — (o) *(d6? + d2?). (86)

The second solution is

v=c, ¢=2—-a)lné=c, p=—-Inl+cz, A=-Iné+cy,
pr = 0=p1, pa=py=const., k=1 (87)

and the corresponding spacetime is

T2(2—a)

2 _ 32
ds® = dt 7(%)2(2_&)/&

dr? — (at)¥*(d6* + dz?). (88)

The third solution is

v = ¢, ¢:_1n52027 u:—lnf—i-c;),, )\:—ln§+C4,
pr = 0=p1, pa=py=const., k=1, a=3 (89)
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and its metric is

£)2/3
ds® = dt* — %dﬂ — (3t)/3(d6? + dz?).

T

The fourth solution is

v=0£V2)lné+ec1, d=co,pu=c3, A=c4,
p1 = pr=const., pa=0=py, k=-3+2V2

and the corresponding metric is

” 2422
d82 = <W> dt2 — d?”z — Tz(d02 + d22) .
o a

3.4. Self-similarity of the infinite kind

Here the quantities p and p can be written in terms of £ as

W = m€) + 5(©),

= mE)+ (6.

where the self-similar variable is £ = r/t and the set of ODEs become

p1 = —(d+ A+ Np1+p1),
Pa+2p2 = —(d+ i+ N)(p2 +p2),
—p1 = v(p1 +p1),
—p2 = V(p2 +p2),
pe?? = —ji— A= 2 = N+ g+ M) — At
pae® = jid+ A+ A,
0 = i+ A+ 24+ 22— iy — Mo — i — oA,
pie?® = o+ Ao+ A,
2v

pae® = —ji— A= g2 =N == A= N+ + A,

p1e?® = D+ A+ 2+ A2+ A0 — g — PN,

PE S S ST R Y R TS 1S

pre®® = o jit 0P P — g — i,
2v

poe® = ——ji—¢* — i — P — fu— Bjr+ U + .

1563
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3.4.1. Equations of state
For EOS(1) with k£ # 0 and v # 0,1, Egs. (95) and (96) become

k
p2=0=ps, p1= FPY- [Case 1] (108)

For EOS(2) with k£ # 0 and 7 # 0,1, Egs. (95) and (96) take the form

=0= __F oy [Case II] (109)
P2 =V = P2, pl_m;’m—l P1 S—1) -

EOS(3) yields two more cases for k = —1 |Case I1I] and for k # —1 [Case IV].
Case I: Solving the ODEs simultaneously for this case, we have

v=c, ¢=c, p=c3, A=c4, p1=p2=0=p;=p2 (110)
and the corresponding metric is

1

ds? = dt* — T—zdr2 — db? — d2? (111)

which corresponds to Minkowski spacetime. The second solution is
v =In(In§{ —Iney)+ca, d=c3, p=c4, A=cs,
pr = p2=0=p1=p2. (112)
The corresponding metric is
ds? = {m <i>r a2 — Lar? — (462 + d=2) (113)
cit r2

The third solution becomes

vV = ¢3, ¢:ln<%>+627 f=0, AZO?

pr = p2=0=p1=ps. (114)
The corresponding metric is

(r — Clt)2

ds® = dt* — —

. dr? — (d6* + d=?). (115)

It is mentioned here that the Cases II, III and IV have the same solutions
as the Case L.
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4. Tilted dust case

It is well-known that a perfect fluid is characterized by the pressure and
it reduces to the dust fluid when p = 0.

4.1. Self-similarity of the first kind
When we substitute p = 0 in Eqgs. (18)—(28), it follows from Eq. (19)
vp=0 (116)
which gives the following two solutions. The first solution turns out to be
v=cy, ¢=co, p=c3, A=—-Inl+cy, p=0 (117)

with metric
ds® = dt? — dr? — r2d6? — t?d2? . (118)

The second solution is
v=cy, ¢=co, p=—-Iné+cz3, A=cq4, p=0 (119)
and the corresponding metric is

ds® = dt* — dr? — t2d6? — r2dz? . (120)

4.2. Self-similarity of the zeroth kind

When we take p; = 0 and py = 0 in Egs. (33)—(45), we obtain con-
tradiction and consequently there is no self-similar solution of the zeroth

kind.

4.8. Self-similarity of the second kind

When we substitute p; = 0 and p2 = 0 in Eqgs. (62)—(74), we obtain the
following solution

23/2_
v = ¢, qﬁzln(%), p=—Iné+c3, A=—-Iné+cy,

4 362
p1 = 07 P2 = 96201 <CQ —263/2> . (121)

The corresponding metric is

2
3¢\ Y3 [(4r3/2 — 3tc 3t\*/3
2 _ 32 2 2 2 2
ds* =dt <2> < v dr <2> (do* +dz*). (122)



1566 M. SHARIF, S. SULTAN

4.4. Self-similarity of the infinite kind

Taking p1 = 0 = py in Eqgs. (97)—(109), it yields the same solutions as
given by Egs. (111) and (115).

5. Summary and discussion

Recently, Sharif and Aziz [16] have found the KSS solutions for a special
cylindrically symmetric spacetimes. This work has been extended to inves-
tigate the KSS solutions of the general cylindrically symmetric spacetime
when the fluid flow is parallel as well as orthogonal [17]. However, we have
left the tilted case to deal it separately. In this paper, we have studied the
case when KSS vector is tilted to the fluid flow. The solutions are found
for the first, zeroth, second and the infinite kinds both for perfect fluid and
dust cases. The summary of the independent solutions is given in the form
of Table I.

TABLE 1
Tilted KSS Solutions.
S. No. Metric Equation of state Physical
1
I ds? = (7,)2izx/§dt2 P =g <0, Unphysical
—dr? — r2(df? + d=?) p=—(3+£2V2)p>0
I ds? = dt? p=p=—o-<0 Unphysical
—(r/et)(dr? 4+ r2df?) — e*dz? o2
ds? = dT? — e*T(dR? + R%*d©?
I +dZ?), p=-p=2>0 Physical
R>0, —oco<T < 400,
0<O<2T, —0< Z<+00
vV ds? = dt? — r*(3t)*/3(dr? p=0=p Physical
+T2d92) — (Bt);z/?’dZQ
ds® = dT? — dR* — R*d6?
\Y +dZ?, p=0=p Physical
R>0, —oco<T < 400,
0< O <2, —0< Z<+00
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The results can be discussed as follows:

I p= —# <0, p=—(3£2v2)p > 0. This solution is unphysical as
energy density is negative.

II. For this solution, we have p =p = —% < 0 which is unphysical.

III. This is the expanding de Sitter universe (empty expanding flat space
with cosmological constant A > 0). In this case p < 0 can be re-interpreted
and considered by most astrophysicists as physical.

IV. Here p = 0 = p. This is an empty but curved spacetime as R =0, Ry, =
0, but RgpegR™ed = % # 0 singular at t = 0 (extendible).

V. This gives p = 0 = p, RapeaR¥ = 0, i.e. empty flat, Minkowski space-
time in cylindrical coordinates.

We have seen that the number of independent solutions are very few.
Also, most of these solutions coincide with those already available in the
literature. Thus we can conclude that one may obtain already known space-
times by specializing a map adapted to some symmetries. However, the line
element may look more complicated in such a map. Moreover, such a map
may cover only a fragment of the spacetime.

We would like to appreciate the referee’s useful comments.
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