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In this paper using a Gedanken experiment we have measured the black
hole horizon temperature. In this process, the total thermal uncertainty is
calculated.
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1. Introduction

It is interesting that there is a relationship between Schwarzschild solu-
tions with laws of thermodynamics [1–6]. This picture was completed when
the black hole evaporation was discovered [7] and the relation between the
horizon and temperature was obtained [8–10]. It has been pointed out that
the temperature of black hole is usually regarded as a kinetic effect, de-
pending on the coordinate chart used by a class of observers such as free
falling and fiducial observers, but not a property of the space-time geometry
in general [14–20]. On the other hand, as pointed out in [13], if the hori-
zon links the aspects of microscopic physics with the bulk dynamics, it can
provide a link between the statistical mechanics and dynamics of a solid.
In this picture, it is interesting that one can connect the field equations
of describing the dynamics of gravity with the horizon thermodynamics.
So there is an intriguing analogy between the gravitational dynamics and
thermodynamics of horizons. This idea was further developed when the
thermodynamics interpretation of Einstein equations was obtained [12, 13].
As shown by Kothawala et al. [12], it is possible to interpret the field equa-
tions near any spherically symmetric horizon as thermodynamics identity,
T dS = dE + PdV . So the thermodynamical interpretation of gravitational
dynamics is not restricted to only the spherically symmetric or static hori-
zons but is quite generic in nature and indicates a deeper connection between
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gravity and thermodynamics. In this paper, using a Gedanken experiment
we have studied the horizon temperature. In this study, a generalised form of
thermal uncertainty is obtained. The organization of the paper is as follows:
in Section 2, we will consider the standard thermal uncertainty relation in
the Schwarzschild space time. In Section 3, using a Gedanken experiment
we will obtain a generalised thermal uncertainty relation. Final remarks are
presented in Section 4.

2. Standard thermal uncertainty relation

In the Schwarzschild black hole, a fiducial observer measures an effective
temperature at distance r as (for example see [31–36],

T =

(

1 −
2GM

r

)

−1/2
~

8πGM
, (1)

where ~

8πGM is the Hawking temperature. Climbing-out of gravitational po-

tential well, the radiation is gravitationally red-shifted by the factor
(

1− 2GM
r

)

.
It could be detected by an observer at infinity as Hawking temperature.

Instead, at horizon r ∼ 2GM the temperature as measured by a fidu-
cial observer diverges. In viewpoint of fiducial observer, this temperature is
certainly a real effect. Since, in the point of view of a free falling observer
the horizon is no special place, after passing the horizon, the free falling ob-
server cannot communicate with fiducial observer, and no immediate logical
contradiction arises. In classical general relativity an observer has no direct
access to the apparent horizon; no signal is emitted from black hole. If an
observer tries to obtain the temperature of the apparent horizon, it should
measure the mass (and charge in the Reissner–Nordström case) of the black
hole from the motion of test particles at infinity and then resort to the the-
ory which predicts Eq. (1) for T as function of M . Alternatively, one can
perform a scattering experiment and again resort to the theory which pre-
dicts relation between the measured cross-section and T . For instance, for
ultra-relativistic particles impinging on a Schwarzschild black hole, general
relativity predicts a lower capture cross-section. Instead, it is not possible
to measure the temperature of horizon directly, that is, using an apparatus
which records photons emitted by the horizon itself, and without resorting
to relationship predicted by the theory. In this sense, from an operational
view in classical general relativity, relation (1) must be considered as defini-
tion of T , rather than a prediction which can be tested experimentally. In
a quantum theory of gravitation, however, the emission of Hawking radia-
tion allows an observer at infinity to receive a signal coming from apparent
horizon and to perform a direct measurement of its temperature at least
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at level of a gedanken experiment. The temperature of the horizon and
mass and charge (in the RN case) of black hole becomes three quantities
subject to independent experimental determination. It makes sense to ask
whether the relation given in (1) is satisfied. In following, we examine if
there is an intrinsic bound to precision of experimental determination of T .
First, let us better specify the setting of our gedanken experiment. In a
Schwarzschild black hole, the Hawking radiation is emitted spontaneously
as photons with energy E. It might even consist of a single photon, again
of wavelength λ = hc/E. For definiteness, we indeed consider the situation
in which a single photon is emitted. At 90 degree with incoming photon,
detector containing a thermometer can detect the temperature of photons
emitted. Recording the experiment, we obtain a “thermal images” of black
hole.

Together with a measurement of temperature T of black hole from ther-
mometer, this provides the measurement of Th (temperature of the horizon).
One can measure the direction of propagation of photon emitted at different
angles and trace them back in order to determine the temperature of cen-
ter of black hole horizon. This experimental precision could be obtained in
the measurement process of horizon temperature. However, a photon might
carry information on a more detailed scale than λ itself [21]. As classical
thermal Heisenberg uncertainty, the resolving power of thermometer gives a
minimum error ∆(T1) on Th,

∆(T1) ∼
hc

k

sin θ

λ
, (2)

where θ, is the angle and is defined in the range of 0–90 degrees. Since the
error of final energy of black hole is ∆U ∼ hc sin θ/λ, this gives a standard
thermal uncertainty relation as [22–30],

∆

(

1

T1

)

∼
k

∆U
. (3)

3. Generalized thermal uncertainty relation

More precisely from infinity we actually observe the projection of tem-
perature of black hole on a (x, y) plane parallel to the thermometer. So
∆(T1) is the error of temperature of horizon measured along this direction
and ∆U is the error of final black hole energy. The black hole mass could
be decreased by Hawking radiance very slowly; in fact the radiated energy
is only some fraction of m, and E ∼ m. So the temperature of black hole
changes accordingly. In addition, we neglect the energy losses by the grav-
itational radiation, known to be O(E2/M), as well as losses to Hawking
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radiation. The internal energy of black hole, when it emits a quantum of
light, the quantity that we are measuring, changes discontinuously. It does
not make sense to ask whether the information carried by the outgoing pho-
ton refers to black hole immediately before emission, or immediately after,
or to something in between. The corresponding error must be considered as
intrinsic to measurement. This gives a second source of error on T which
for a Schwarzschild black hole is, ∆(T2) ∼ hc/2kG∆M . Since ∆M = h/λ
we obtain an uncertainty

∆

(

1

T2

)

∼
2hc4

kλ
·

1

T 2

P

, (4)

where TP is the Planck temperature. Note that ∆(1/T2) is only a lower
bound in uncertainty and only a Schwarzschild black hole can saturate it. If
we combine ∆(1/T1) and ∆(1/T2), using the trivial inequality

λ

sin θ
≥ λ , (5)

we obtain

∆

(

1

T

)

≥
kλ

hc
+

hc4

kλ

1

T 2

P

. (6)

In our approach, the relative numerical constant between two terms could
not be predicted. Indeed, in order to write a relation like (6) which does not
depend on features of the apparatus we have eliminated θ using the trivial
inequality (5), the price we pay is that we cannot consistently estimate the
value of this constant. Relation (6) implies that there exists a minimum
error ∆(1/T ) ∼ 1/TP, therefore the temperature of horizon is equal to the
right hand side of Eq. (1) and has no operational meaning. If we aim to
obtain a precision better than 1/TP, it is also suggestive to set a lower
bound ∆(1/T ) in terms of ∆U ∼ hc sin θ/λ. Remember that Eq. (4) is due
to the discontinuous change of horizon during the measurement process and
it is not directly related to the uncertainty of black hole internal energy after
the measurement. In fact, it is present even when the latter is zero (θ → 0).
However, we can use the trivial inequality ∆U/ sin θ ≥ ∆U to obtain

∆

(

1

T

)

≥
k

∆U
+ c−3

1

T 2

P

∆U

k
. (7)

It is natural to investigate whether the relation given in (7) that is ob-
tained considering only a very specific measurement, has a more general
validity in quantum gravity. A second conclusion that we find is an example
of a more general situation, and relation (7) is indeed a generalized ther-
modynamics uncertainty relation, which governs all measurement processes
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in quantum gravity. Relation (7) is quite generic and has both quantum
mechanical and quantum gravity limits. The quantum mechanical limit is
obtained when the second term in the right hand side of relation (7) is
negligible,

c−3
1

T 2

P

∆U

k
≪ 1 (8)

and the quantum gravity limit is obtained when

c−3
1

T 2

P

∆U

k
≈ 1 . (9)

The lower bound on uncertainty of temperature is

∆

(

1

T

)

≥
1

Tmin

. (10)

4. Final remarks

The standard thermodynamics uncertainty is obtained when 1/Tmin is
negligible. For semiclassical black hole where ∆(1/T ) ≪ 1/Tmin then the
generalized thermodynamics uncertainty applies. Both thermodynamics
limits of the Schwarzschild black hole (quantum mechanics and quantum
gravity) follow from the two-limit relation between inverse temperature and
energy.

We would like to thank the referee for helpful comments.
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