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FROM GLOBAL MONOPOLE:
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By applying ‘Darmois–Israel formalism’, we establish a new class of
thin shell wormhole in the context of global monopole resulting from the
breaking of a global O(3) symmetry. Since global monopole is asymp-
totically conical (no longer asymptotically flat), we call it as conical thin
shell wormhole. Different characteristics of this conical thin shell worm-
hole, namely, time evolution of the throat, stability, total amount of exotic
matter have been discussed.

PACS numbers: 04.20.Gz, 04.50.+h, 04.20.Jb

1. Introduction

It is believed that during the evolution, the universe had undergone
a number of phase transitions. Phase transitions in the early universe can
give rise to various forms of topological defects. They can be monopoles,
cosmic strings or domain walls [1–3]. Among them monopoles and cosmic
strings are well studied for their cosmological as well as astrophysical im-
plications. A global monopole is a heavy object that forms in the phase
transition of a system composed of a self coupling scalar field, φa whose
original O(3) symmetry is spontaneously broken to U(1) [4]. There has been
a fairly large amount of discussions [5–18] on the gravitational field of global
monopoles beginning with the work of Barriola and Vilenkin (BV) [4]. Ac-
cording to BV, global monopoles have Goldstone fields with energy density
decreasing with the distance as r−2. BV have also shown that the space
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time produced by global monopole has no Newtonian gravitational poten-
tial in spite of the fact that the geometry produced by this heavy object has
a non-vanishing curvature.

The quest for traversable Wormhole in theoretical physics started at the
end of 1980s. In two remarkable works, Morris and Thorne [19] and also
Morris, Thorne and Yurtsever [20] have shown that these are the solutions
of Einstein field equations that have two regions connected by a throat. To
get a Wormhole solution, one has to tolerate the violation of null energy con-
dition (NEC). This means a ghost like matter (i.e. a matter which violates
NEC) distribution should present as a source of Energy Momentum Tensor.
Definitely, it is very difficult to deal with this ghost like matter (exotic mat-
ter). So, physicists have been trying to minimize the total amount of exotic
matter. In a pioneer work, Visser [21] designed a model of minimizing the
usage of exotic matter to construct a Wormhole in which the above matter
is constructed at the Wormhole throat. This model is constructed by surgi-
cally grafting two manifolds to form a geodesically complete region in such
a way that no horizon is permitted to form. This theoretical construction of
Wormhole is known as thin shell Wormhole. Down to the present moment,
various thin shell Wormholes have been discussed. For examples, thin shell
Wormholes in Schwarzschild geometry [22], Reissner–Nordström black hole
geometries [23], Dilaton fields [24], Einstein–Maxwell theory with a Gauss
Bonnet term [25], Higher dimension space time [26], Heterotic string the-
ory [27] and thin shell Wormhole from dyadosphere and tidal charged black
hole [28].

One of the most challenging current problems in theoretical physics is
explaining the structure formation of the Universe. Pando et al. [29] have
proposed that topological defects are responsible for structure formation
of the galaxies. Nucamendi and others [30–32] have suggested that the
monopole ( its density being proportional to 1

r2 ) could be the galactic dark
matter in the spiral galaxies. The gravitational field of global monopole may
lead to the clustering in matter and they can induce anisotropies in cosmic
microwave background radiation. At this moment there is no contradiction
with observation data and there is no observation data which permits rule
out definitely the possibility of existence of topological defects [33]. Recently,
Eiroa et al. [34] and Bejarano et al. [35] have studied cylindrical thin shell
Wormhole in the context of cosmic strings. Also, several authors have been
discussed Wormholes associated cosmic strings [36–38]. Like cosmic string,
global monopole shows some peculiar results. It exerts no gravitational force
on surrounding matters but space around it has a deficit solid angle and light
rays are deflected by the same angle, independent of the impact parameter.
So it is of great interest to investigate the different characteristics of the
thin shell wormhole constructed by global monopole. We develop the model
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by cutting and pasting metrics corresponding to BV’s monopole. Various
aspects of these thin shell Wormhole, namely, temporal, evolution of the
throat, stability, total amount of exotic matter will be discussed.

The layout of the paper as follows: In Section 2, the reader is reminded
about global monopole solution obtained by BV. In Section 3, Thin shell
Wormhole has been constructed by means of the cut and paste techniques.
In Section 4, the time evolution of the radius of the throat is considered
whereas linearized stability analysis is studied in Section 5. In Section 6,
the total amount of exotic matter has been calculated. Section 7 is devoted
to a brief summary and discussion.

2. Global monopole

In this section, we briefly review the work of BV [4]. The Lagrangian of
a global monopole in general relativity has the form

L = 1
2∂µφa∂µφa − 1

4λ(φaφa − η2)2 . (1)

The field configuration describing a monopole is

φa = ηα(r)
xa

r
, (2)

where xaxa = r2 (a = 1, 2, 3). The most general static metric admitting
spherical symmetry is given by

ds2 = −B(r)dt2 + A(r)dr2 + r2(dθ2 + sin2 θdφ2) . (3)

The field equation for φa reduces to a single equation for α(r):

(r2α′)′

Ar2
+

1

2B

(

B

A

)′
α′ − 2α

r2
− λη2α(α2 − 1) = 0 (4)

(prime refers to differentiation with respect to radial coordinate). Using
Lagrangian (1) and the metric (3), the components of energy momentum
tensor can be written via

Tµν = 2
∂L

∂gµν
− Lgµν (5)
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as follows:

T t
t = η2

[

α2

r2
+

α′2

2A
+

λ

4
η2(α2 − 1)2

]

, (6)

T r
r = η2

[

α2

r2
− α′2

2A
+

λ

4
η2(α2 − 1)2

]

, (7)

T θ
θ = T φ

φ = η2

[

α′2

2A
+

λ

4
η2(α2 − 1)2

]

. (8)

In the flat space the monopole core has a size δ ∼ 1√
λη2

and mass M ∼
λη4δ3 ∼ η√

λ
. Outside the core, one can approximate α(r) ∼ 1 and equations

(6)–(8) simplify to

T t
t = T r

r =
η2

r2
, T θ

θ = T φ
φ = 0 . (9)

Now using the Einstein’s field equations, Rµν = 8πG(Tµν − 1
2gµνT ), one can

obtain the solutions as

B = A−1 = 1 − 8πGη2 − 2GM

r
, (10)

where M is a constant of integration and can be considered as the mass of
the monopole core.

Thus finally, one gets the metric describing the gravitational field of
global monopole as

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

2 , (11)

where

f(r) = 1 − 8πGη2 − 2GM

r
. (12)

This monopole exerts no gravitational force on non relativistic matter, but
the space around it has a deficit solid angle. Neglecting the mass term and
rescaling the time and radial coordinates, one can get the monopole metric
as

ds2 = −dt2 + dr2 + r2(1 − 8πGη2)dΩ2
2 .

This metric describes a space with a deficit angle. Actually, the surface
θ = π

2 has the geometry of a cone with a deficit angle ∆ = 8π2Gη2.
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3. Formation of the conical thin shell wormhole

In this section, we use cut and paste technique to construct conical thin
shell wormhole from global monopole space-times. Consider two space-times
G+ and G− , which are endowed with the same metric as (11) (i.e. corre-
sponding to the same global monopole space-time). Taking two copies of
region from G+ and G− with r ≥ a: M± ≡ (x|r ≥ a) where a > δ [δ =
radius of the monopole core and ± indicates two copies], one can paste two
copies M± together at the hypersurface Σ = Σ

± = (x|r = a). This con-
struction creates a geodesically complete manifold M = M+

⋃

M− with two
asymtotically conical regions connected by a throat placed at Σ . Now, one
can expect that the surface stresses of this thin junction surface Σ are pro-
portional to a delta function. Following Darmois–Israel formalism [39], we
shall determine the surface stresses at the junction boundary. The intrinsic
coordinates in Σ are taken as ξi = (τ, θ, φ) with τ is the proper time on the
shell. To understand the dynamics of the wormhole, we assume the radius
of the throat be a function of the proper time a = a(τ). The parametric
equation for Σ is defined by

Σ : F (r, τ) = r − a(τ) = 0 . (13)

The second fundamental form ( extrinsic curvature ) associated with the two
sides of the shell are

K±
ij = −n±

ν

[

∂2Xν

∂ξi∂ξj
+ Γ

ν
αβ

∂Xα

∂ξi

∂Xβ

∂ξj

]
∣

∣

∣

∣

Σ

, (14)

where n±
ν are the unit normals to Σ in M :

n±
ν = ±

∣

∣

∣

∣

gαβ ∂F

∂Xα

∂F

∂Xβ

∣

∣

∣

∣

−1/2 ∂F

∂Xν
(15)

[i, j = 1, 2, 3 corresponding to boundary Σ ; α, β = 1, 2, 3, 4 corresponding
to original spacetime] with nµnµ = 1.

The intrinsic metric at Σ is given by

ds2 = −dτ2 + a(τ)2dΩ2 . (16)

The position of the throat of the wormhole is described by Xµ = (t, a(t), θ, φ).
The unit normal to Σ is given by

nν =

(

ȧ

f(a)
,
√

f(a) + ȧ2, 0, 0

)

. (17)
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Now using equations (14), (15) and (17), the non trivial components of
the extrinsic curvature are given by

K±
ττ = ∓

1
2f ′(a) + ä

√

f(a) + ȧ2
, (18)

Kθ
θ
± = Kφ

φ
± = ±1

a

√

f(a) + ȧ2 (19)

(over dot and prime mean, respectively, the derivatives with respect to τ
and a).

We define jump of the discontinuity of the extrinsic curvature of the two
sides of Σ as [Kij ] = K+

ij − K−
ij and K = [Ki

i ] = Tr [Kij ].
The Ricci tensor at the throat can be calculated in terms of the discon-

tinuity of the second fundamental forms (extrinsic curvature). This jump
discontinuity, together with Einstein field equations, provides the stress en-
ergy tensor of Σ , where throat is localized: T µν = Sµνδ(η) [η denotes the
proper distance away from the throat (in the normal direction)] with,

Si
j = − 1

8π

(

[Ki
j ] − δi

jK
)

, (20)

where Si
j = diag(−σ,−vθ ,−vφ) is the surface energy tensor with σ, the

surface density and vθ and vφ, the surface tensions. Now taking into account
the equation (20), one can find

σ = − 1

2πa

√

1 − 8πGη2 − 2GM

a
+ ȧ2 , (21)

−vθ = −vφ = −v =
1

4πa

1 − 8πGη2 − GM
a + ȧ2 + aä

√

1 − 8πGη2 − 2GM
a + ȧ2

. (22)

Negative surface energy in (21) implies the existence of ghost like matter
at the shell. The negative signs of the tensions mean that they are indeed
pressures.

4. Time evolution of radius of the throat

Now, we consider static solutions of the shell by replacing ȧ = 0 and
ä = 0 in equations (21) and (22):

σ = − 1

2πa

√

1 − 8πGη2 − 2GM

a
, (23)

v = − 1

4πa

1 − 8πGη2 − GM
a

√

1 − 8πGη2 − 2GM
a

. (24)
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Now, one can write the equations (23) and (24) in the form

v = w(a)σ , (25)

where

w(a) =
1

2

1 − 8πGη2 − GM
a

1 − 8πGη2 − 2GM
a

. (26)

From equation (26), one can find the equation of state of matter located at
the static throat (i.e. for a given value of the throat radius). Following Eiroa
et al. [34], we assume that equation of state does not depend on derivatives
of a(τ) i.e. form of equation of state kept the same form as in the dynamic
case. Now, substituting equations (21) and (22) in (25), we get the following
expression as

ä

(

1 − 8πGη2 − 2GM

a

)

− ȧ2 GM

a2
= 0 . (27)

This implies,

ȧ(τ) = ȧ(τ0)

[

1 − 8πGη2 − 2GM
a(τ)

1 − 8πGη2 − 2GM
a(τ0)

]1/2

. (28)

Here, τ0 is arbitrary fixed time.

Thus one gets,

a(τ)
∫

a(τ0)

1
√

1 − 8πGη2 − 2GM
a

da =
ȧ(τ0)(τ − τ0)

√

1 − 8πGη2 − 2GM
a(τ0)

. (29)

This gives,

√

(1 − 8πGη2)a2(τ) − 2GMa(τ)

(1 − 8πGη2)
+

2GM

(1 − 8πGη2)3/2

× ln
[

√

(1 − 8πGη2)a(τ) +
√

(1 − 8πGη2)a(τ) − 2GM
]

=
ȧ(τ0)(τ − τ0)

√

1 − 8πGη2 − 2GM
a(τ0)

.

The above implicit expression gives the time evolution of the radius of
the throat.
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The velocity and acceleration of the throat are

ȧ(τ) = ȧ(τ0)

[

1 − 8πGη2 − 2GM
a(τ)

1 − 8πGη2 − 2GM
a(τ0)

]1/2

, (30)

ä =
ȧ2(τ0)

2GM
a2(τ)

(

1 − 8πGη2 − 2GM
a(τ0)

) . (31)

From the above two expressions, one can see that the sign of the velocity
depends on the sign of the initial velocity but the acceleration is always
positive. It is immaterial whether the initial velocity is positive or negative,
the throat expands forever. This would imply that the equilibrium position
is always unstable. However, if the initial velocity is zero, the velocity and
acceleration of the throat would be zero i.e. throat be in static equilibrium
position. Now, we shall study the stability of the configuration under small
perturbations around static solution situated at a0 (initial velocity will be
assumed to be zero).

5. Linearized stability analysis

Rearranging equation (21), we obtain the thin shell’s equation of motion

ȧ2 + V (a) = 0 . (32)

Here the potential is defined as

V (a) = 1 − 8πGη2 − 2GM

a
− 4π2a2σ2 . (33)

5.1. Static solution

The above single dynamical equation (32) completely determines the
motion of the wormhole throat. One can consider a linear perturbation
around a static solution with radius a0. We are trying to find a condition for
which stress energy tensor components at a0 will obey null energy condition.
For a static configuration of radius a0, we obtain respective values of the
surface energy density and the surface pressure by using the explicit form of
the metric as,

σ0 = − 1

2πa0

√

1 − 8πGη2 − 2GM

a0
. (34)

Since negative tension is equivalent to pressure, we take,

−v = −vθ = pθ = −vφ = pφ = p . (35)
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Here,

p0 =
1

4πa0

1 − 8πGη2 − GM
a0

√

1 − 8πGη2 − 2GM
a0

. (36)

One can see that surface density is always negative and implying the viola-
tion of weak and dominant energy conditions. Now, we check whether null
energy condition will be satisfied or violated. Taking the following relation-
ship,

σ0 + p0 = − 1

4πa0

(

1 − 8πGη2 − 3GM
a0

)

√

1 − 8πGη2 − 2GM
a0

. (37)

The above equation implies σ0 + p0 < 0 i.e. null energy condition is always
violated.

Hence the conical thin shell wormhole constructed by joining the ge-
ometries corresponding to monopole space-time, the null energy condition
is always violated. [Null energy condition (NEC) states that Tµνkµkν ≥ 0
for all null vectors kµ. In an orthonormal frame Tµνkµkν ≥ 0 takes the form
ρ + pi ≥ 0∀i.]

5.2. Stability analysis

Linearizing around a static solution situated at a0, one can expand V (a)
around a0 to yield

V = V (a0) + V ′(a0)(a − a0) + 1
2V ′′(a0)(a − a0)

2 + o[(a − a0)
3] , (38)

where prime denotes derivative with respect to a.
Since we are linearizing around a static solution at a = a0, we have

V (a0) = 0 and V ′(a0) = 0. The stable equilibrium configurations corre-
spond to the condition V ′′(a0) > 0. Now we define a parameter β, which is
interpreted as the speed of sound, by the relation

β2(σ) =
∂p

∂σ

∣

∣

∣

∣

σ

, (39)

V ′′(a) = −4GM

a3
− 8π2σ2 − 32π2aσσ′ − 8π2a2(σ′)2 − 8π2a2σσ′′ . (40)

From equations (21) and (22) (by using (35)), one can write energy
conservation equation as

σ̇ + 2
ȧ

a
(p + σ) = 0 , (41)

or
d

dτ
(4πσa2) + p

d

dτ
(4πa2) = 0 . (42)
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From equation (42) (by using (39)), we obtain,

σ′′ +
2

a
σ′(1 + β2) − 2

a2
(p + σ) = 0 . (43)

The wormhole solution is stable if V ′′(a0) > 0 i.e. if (by using (40) and
(43))

β2
0 <







(

1−8πGη2− 5GM
a0

)

2
(

1−8πGη2− 3GM
a0

)−

(

GM
a0

)2

2
(

1−8πGη2− 3GM
a0

) (

1−8πGη2− 2GM
a0

)






−1 .

(44)
For monopole configuration, the parameters G,M, η are known quan-

tities. So the stability of the configuration requires the above restriction
on β0. This means there exists some part of the parameter space where
the throat location is stable. For a lot of useful information, we show the
stability region graphically (see Fig. 1).

p
0.36 0.38 0.40 0.42 0.44 0.46 0.48

b

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

Fig. 1. We define p = M/a0 and choose 8πGη2 ∼ 10−6 [1] and G = 1. Here we

plot β|(a=a0) versus p. The stability region is given below the curve.

6. Total amount of exotic matter

We have seen that matter located in the shell violates the weak and null
energy conditions. That means ρ < 0 and pj + ρ < 0 ∀ j, where ρ = σ, the
energy density given in equation (21) and pj, the principal pressures (here
radial pressure, pr is zero and transverse pressures p = −v = pθ = −vθ =
pφ = −vφ are given in equation(22)). Now, outside the shell, one can note
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that T t
t = T r

r = η2

r2 and T θ
θ = T φ

φ = 0. These mean that ρ > 0 as well as
pj + ρ > 0, in other words, the weak and null energy conditions are satisfied
outside the shell. Therefore, one concludes that the ghost like matter is
located only in the shell. Now, we calculate the total amount of ghost like
matter for the conical thin shell wormhole.

This can be quantified by the following integrals [40, 41]:

Ω1 =

∫

ρ
√−gd3x , Ωj =

∫

[ρ + pj]
√−gd3x . (45)

Following Eiroa and Simone [24], we introduce a new radial coordinate
R = ±(r − a) in M (± for M±, respectively) so that

Ω1 =

2π
∫

0

π
∫

0

∞
∫

−∞

ρ
√−gdRdθdφ , (46)

Ωj =

2π
∫

0

π
∫

0

∞
∫

−∞

[ρ + pj ]
√−gdRdθdφ . (47)

Since the shell does not exert radial pressure and the energy density is
located on a thin shell surface, so that ρ = ρ + pr = δ(R)σ0, ρ + pt =
δ(R)(σ0 + p0).

Hence, one gets,

Ωr = Ω1 =

2π
∫

0

π
∫

0

[

σ
√−g

]

|r=a0
dθdφ = 4πa2

0σ(a0)

= −2a0

√

1 − 8πGη2 − 2GM

a0
, (48)

Ωt =

2π
∫

0

π
∫

0

[

(σ + P )
√−g

]

|r=a0
dθdφ = −a0

(

1 − 8πGη2 − 3GM
a0

)

√

1 − 8πGη2 − 2GM
a0

. (49)

Thus one could see that the scale of symmetry breaking η and mass of
the monopole affect the total amount of ghost like matter needed. From the
above measures, we note that the total amount of matter would be reduced
as desired with the suitable choice of the parameters. The variation of Ωt and
Ω1 with respected to scale of symmetry breaking and mass of the monopole
are shown in figures 2–5.
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x
1 2 3 4 5

y

K1.4

K1.2

K1.0

K0.8

K0.6

K0.4

K0.2

Fig. 2. We choose y = Ω1/a0 and x = a0/M . The variation of total amount of

exotic matter on the shell with respect to the mass of the monopole is shown in

the figure (8πGη2 ∼ 10−6 and G = 1).

x
0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

y

K1.8

K1.6

K1.4

K1.2

K1.0

K0.8

K0.6

K0.4

K0.2

Fig. 3. We choose y = Ω1/a0 and x = η. The variation of total amount of exotic

matter on the shell with respect to the scale of symmetry breaking η is shown in

the figure (solid line for 2M/a0 = 0.01 and dotted line for 2M/a0 = 0.02).
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x
4 5 6 7

y

K0.6

K0.5

K0.4

K0.3

K0.2

K0.1

0.0

Fig. 4. We choose y = Ωt/a0 and x = a0/M . The variation of total amount of

exotic matter on the shell with respect to the mass of the monopole is shown in

the figure (8πGη2 ∼ 10−6 and G = 1).

x
0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

y

K0.9

K0.8

K0.7

K0.6

K0.5

K0.4

K0.3

K0.2

K0.1

0.0

Fig. 5. We choose y = Ωt/a0 and x = η. The variation of total amount of exotic

matter on the shell with respect to the scale of symmetry breaking η is shown in

the figure (solid line for M/a0 = 0.01 and dotted line for M/a0 = 0.03).

7. Summary and discussions

In this article, we have studied conical thin shell wormhole constructed
from global monopole space-times. Since, monopoles are the topological
defects created at the early stages of the Universe so it may possible to form
thin shell like wormhole during phase transitions. We have obtained the
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time evolution of the radius of throat. One could see that whether the initial
velocity is positive or negative, the throat expands indefinitely. That means,
this conical thin shell like wormholes are very much unstable. That is why,
it is not seen today. When initial velocity is zero, the radius of the throat
remains constant i.e. the throat be a position of static equilibrium. We have
analyzed the dynamical stability of the thin shell, considering linearized
radial perturbations around static solution. To analyze this, we define a

parameter β2 = p′

σ′ as a parametrization of the stability of equilibrium. We

have obtained a restriction on β2 to get stable equilibrium of the conical thin
shell wormhole(see Eq. (44)). We have calculated integral measuring of the
total amount of exotic matter. Finally, we have shown that total amount
of exotic matter needed to support traversable wormhole can be reduced as
desired with the suitable choice of the parameters. The variation of total
amount of exotic matters with respect to different parameters are depicted
in figures 2–5. From the figures, one can note that total amount of exotic
matters will be reduced with the increasing of scale of symmetry breaking
as well as with increase of the mass of the monopole.
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