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In this paper example of local differential calculus over Fedosov alge-
bra is constructed. The trivialization isomorphism for Fedosov ∗-algebra
is used. The explicit formulas for deformed derivations are given up to
power 2 of formal parameter. The resulting calculus can be considered as
a building block for the theory of Seiberg–Witten map with Fedosov type
of noncommutativity.
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1. Introduction

The aim of this paper is to give an explicit example of differential calculus
over Fedosov algebra of formal power series with coefficients in functions on
symplectic manifold. The term “differential calculus” refers here to an unital
N-graded algebra with nilpotent antiderivation i.e. to a structure analogous
to the Cartan algebra of differential forms. The motivation for such inves-
tigation could be provided by the theory of Seiberg–Witten map [1]. The
underlying noncommutativity of this theory is given by Moyal star prod-
uct. One may ask about generalizations to other types of noncommutativ-
ity described by deformation quantization procedures e.g. to the Fedosov
∗-product on a symplectic manifold. When passing from Moyal to Fedosov
product one encounters some difficulties. They generally originate in the
fact that operators ∂

∂xi which are derivations of both undeformed algebra
of functions and Moyal algebra, are no longer derivations with respect to
the Fedosov product. For this reason, the framework of the usual Cartan
algebra cannot be used for developing consistent Seiberg–Witten map with
Fedosov product. The construction presented in this paper may be regarded
as a building block for such a theory. The approach presented here is sim-
ilar to that developed in [2] and could be considered as its extension which
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enables explicit calculations (see concluding section for a discussion on re-
lations between this paper and [2]). Fedosov-type deformations of algebra
of differential forms were also analyzed in [3] with methods of geometry
of supermanifolds. However, the resulting deformation does not preserve
N-graded structure. The deformation of Cartan algebra with Moyal non-
commutativity was considered in [4]. In [5] global and general scheme for
deformation of bimodule of sections of arbitrary vector bundle is presented.
Unfortunately when trying to adopt these methods for the purpose of the
deformation of Cartan algebra, one faces severe problems with constructing
compatible deformation of both tensor and wedge product. The paper is or-
ganized as follows. First, the general scheme of Fedosov construction of the
∗-product on arbitrary symplectic manifold is recalled. Next (Section 3) the
trivialization procedure for Fedosov algebras (originally formulated in [6])
is analyzed. The explicit formulas (up to h2) for trivialization isomorphism
with arbitrary underlying homotopy of symplectic connections are given.
The concept of trivialization turns out to be crucial for construction of our
example of differential calculus. This is described in the fourth section.
Finally, some concluding comments are given.

2. Fedosov construction

This section is given mainly for the purpose of fixing the notations. Thus,
the proofs are omitted, and the numbers of theorems in original formulation
in [6] are given. For detailed insight into geometrical ideas behind Fedosov
construction one may refer to [7]. Some further properties and examples can
be found in [8]. In the first step, one constructs a bundle on the base manifold
M, called formal Weyl algebras bundle W , with fibres being algebras Wx

consisting of formal power series

a(h, y) =
∑

k, p≥0

hkai1...ipy
i1 . . . yip , (1)

where y ∈ TxM , ai1...ip are components of some symmetric covariant tensors
in local Darboux coordinates and h is a formal parameter. One prescribes
degrees to monomials in formal sum (1) according to the rule

deg(hkai1...ipy
i1 . . . yip) = 2k + p .

For nonhomogeneous a its degree is given by the lowest degree of nonzero
monomials in formal sum (1). The fibrewise ◦-product is defined by the
Moyal formula

a ◦ b =
∞
∑

m=0

(

−
ih

2

)m 1

m!

∂ma

∂yi1 . . . ∂yim
ωi1j1 . . . ωimjm

∂mb

∂yj1 . . . ∂yjm
.
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This definition is invariant under linear symplectomorphisms i.e. under trans-
formations of yi generated by transitions between local Darboux coordinates
on M. We also consider bundle W⊗Λ. Sections of this bundle can be locally
written as

a =
∑

hkai1...ipj1...jq(x)yi1 . . . yipdxj1 ∧ · · · ∧ dxjq .

The ◦-product in W⊗Λ is defined by the rule (a⊗η)◦(b⊗ξ) = (a◦b)⊗(η∧ξ).
The commutator of a ∈ W ⊗ Λr and b ∈ W ⊗ Λs is given by [a, b] =
a ◦ b − (−1)rsb ◦ a. One introduces an operator δ acting on elements of
W ⊗ Λ as follows

δa = dxk ∧
∂a

∂yk
= −

i

h

[

ωijy
idxj, a

]

.

Similarly, δ−1 acting on monomial akm with k-fold y and m-fold dx yields

δ−1akm =
1

k + m
ysι

(

∂

∂xs

)

akm

for k + m > 0 and δ−1a00 = 0. Both δ and δ−1 are nilpotent and for
a ∈ W ⊗ Λk the Leibniz rule δ(a ◦ b) = (δa) ◦ b + (−1)ka ◦ δb holds. An
arbitrary a ∈ W ⊗ Λ can be decomposed into

a = a00 + δδ−1a + δ−1δa .

Let a be a section of W . Symplectic connection ∂ can be extended to the
Weyl bundle by the formula ∂a = dxi ∧ ∂ia, where ∂ia denotes covariant
derivation of tensor fields in (1) with respect to ∂

∂xi . Using Darboux coordi-

nates and connection coefficients Γ l
jl one may write ∂a in the form

∂a = da +
i

h

[

1

2
Γijky

iyjdxk, a

]

,

with Γijk = ωilΓ
l
jl (any further raising or lowering of indices is also per-

formed by means of ω). When dealing with sections of W ⊗ Λ, we can
compute ∂ using the rule

∂(η ◦ a) = dη ◦ a + (−1)kη ◦ ∂a ,

where η is a scalar k-form. The ◦-Leibniz rule holds for ∂ and one could be
interested in other connections with this property, namely in the connections
of the form

∇ = ∂ +
i

h
[γ, · ] ,
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with γ ∈ C∞(W ⊗ Λ1). One can calculate that ∇2 = i
h
[Ω, · ] with the

curvature 2-form Ω = R + ∂γ + i
h
γ ◦ γ, where R = 1

4Rijkly
iyjdxk ∧ dxl

and Ri
jkl denotes the curvature tensor of symplectic connection on M. The

connection D is called Abelian if it is flat (D2 = 0) i.e. if its curvature is
a scalar form. Fedosov proves ([6] theorem 5.2.2) that for arbitrary symplec-
tic connection ∂ there exists unique Abelian connection

D = −δ + ∂ +
i

h
[r, · ] ,

with curvature form Ω = −1/2ωijdxi ∧ dxj and r satisfying δ−1r = 0,
deg r ≥ 3. The 1-form r is the unique solution of the equation

r = δ−1R + δ−1

(

∂r +
i

h
r ◦ r

)

.

Section a ∈ C∞(W ) is called flat if Da = 0. Flat sections form subalgebra
of the algebra of all sections of W . We denote this subalgebra by WD.
If the underlying symplectic connection is flat and we work in Darboux
coordinates for which Γijk ≡ 0, then Abelian connection reads D = d − δ.
The corresponding subalgebra of flat sections is called trivial algebra in this
case. For a ∈ C∞(W ⊗ Λ) define Q(a) as a solution of the equation

b = a + δ−1(D + δ)b

with respect to b. One can prove that this solution is unique, and that Q
is linear bijection. Clearly Q−1a = a − δ−1(D + δ)a. It turns out ([6] theo-
rem 5.2.4) that Q establishes bijection between C∞(M)[[h]] and WD. For
f, g ∈ C∞(M)[[h]] the ∗-product is defined according to the rule

f ∗ g = Q−1(Q(f) ◦ Q(g)) .

In proofs of theorems related to Fedosov construction the iteration method
is frequently used. Given an equation of the form

a = b + K(a) (2)

one may try to solve it iteratively with respect to a, by putting a(0) = b and
a(n) = b+K(a(n−1)). If K is linear and raises degrees (i.e. deg a < deg K(a)
or K(a) = 0) then it can be easily deduced that the unique solution of (2)
is given up to degree n by a(n). We need one more theorem for further
purposes.

Theorem 2.1 (Fedosov 5.2.6). Equation Da = b (for some given b ∈
C∞(W ⊗ Λp), p > 0) has a solution if and only if Db = 0. The solution
may be chosen in the form a = −Qδ−1b .
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3. Trivialization

In this section general methods developed by Fedosov are applied to the
specific case of deformation quantization of symplectic manifold. The term
trivialization refers to the procedure of establishing isomorphism between
some given algebra WD and the trivial algebra. The construction of this
isomorphism is based on the following theorem.

Theorem 3.1 (Fedosov 5.4.3). Let Dt = d+ i
h
[γ(t), · ] be a family of Abelian

connections parameterized by t ∈ [0, 1], and let H(t) be t-dependent section
of W (called Hamiltonian) satisfying the following conditions:

1. DtH(t) − γ̇(t) is a scalar form,

2. deg(H(t)) ≥ 3.

Then, equation
da

dt
+

i

h
[H,a] = 0 (3)

has the unique solution a(t) for any given a(0) ∈ W ⊗ Λ and the mapping
a(0) 7→ a(t) is an isomorphism for arbitrary t ∈ [0, 1]. Moreover, a(0) ∈
WD0 if and only if a(t) ∈ WDt.

The proof can be performed by integrating equation (3) to

a(t) = a(0) −
i

h

t
∫

0

[H(τ), a(τ)] dτ . (4)

and using iteration method. We are interested in constructing isomorphism
between WD and the trivial algebra. This requires establishing homotopy
of Abelian connections and compatible Hamiltonian. From now WD0 will
denote the trivial algebra.

Theorem 3.2 (Fedosov 5.5.1). Any algebra WD on Fedosov manifold
(M,ω, ∂) is locally isomorphic to the trivial algebra WD0 on R

n .

Proof. Let O be a neighborhood of some point x0 ∈ M , for which Darboux
coordinates xi may be chosen. The symplectic connection on M generates
unique Abelian connection

D = d +
i

h

[

ωijy
idxj +

1

2
Γijky

iyjdxk + r, ·

]

,

where r = 1/8Rijkly
iyjykdxl + . . . is 1-form obtained from iterational pro-

cedure (2). Consider a local homotopy of symplectic connections ∂(t) such
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that for connection coefficients we have Γ ijk(0) = 0 and Γ ijk(1) = Γijk. It
generates homotopy of local Abelian connections

Dt = d +
i

h

[

ωijy
idxj +

1

2
Γ ijk(t)y

iyjdxk + r(t), ·

]

= d +
i

h
[γ(t), · ] ,

satisfying D1 = D and D0 = d−δ (trivial Abelian connection). Notice, that
these Abelian connections have constant curvature Ω(t) = −1/2ωijdxi∧dxj.
We look for a Hamiltonian being a solution of the equation DtH(t) = γ̇(t).
According to the theorem 2.1 one have to check condition Dtγ̇(t) = 0.

We get Dtγ̇(t) = Ω̇(t) = 0 and hence, the Hamiltonian may be written
as H(t) = −Qtδ

−1γ̇(t). Since d/dt commutes with δ−1 and the standard
normalizing condition for an Abelian connection is δ−1r = 0, one obtains

H(t) = −
1

6
Qt

(

Γ̇ ijk(t)y
iyjyk

)

,

with deg(H(t)) ≥ 3. Thus assumptions of theorem 3.1 are fulfilled. The
mapping defined therein is the desired isomorphism between WD0 and WD.

To obtain its explicit form we need explicit form of H(t). Using iteration
method one can calculate H(t) up to the fifth degree

H(t) = −
1

6
Γ̇ ijk(t)y

iyjyk −
1

24
∂

(t)
i Γ̇ jkl(t)y

iyjykyl

−
1

120
∂

(t)
i ∂

(t)
j Γ̇ klm(t)yiyjykylym −

1

80
Rijpk(t)Γ̇

p

lm(t)yiyjykylym

+
1

32
h2Rijkl(t)Γ̇

ijk
(t)yl + . . . . (5)

Let T−1 : WD0 → WD denote isomorphism mentioned in theorem 3.1. Its
inverse T : WD → WD0 is called local trivialization of WD. Using (5) when
iterating equation (4) one can compute first terms of T−1. They read

T−1(Q0(a0)) = Q(a0) + h2Q





1

24
ωls ∂a0

∂xs

1
∫

0

∂Γ ijk(τ)

∂xl
Γ̇

ijk
(τ)dτ

+
1

16
ωls ∂2a0

∂xs∂xk
Γ ijkΓijl +

1

24

∂3a0

∂xi∂xj∂xk
Γ ijk

)

+ . . . .

Isomorphism T−1 depends on the choice of homotopy Γ (t). However for
homotopies of the form Γ ijk(t)=f(t)Γijk (f : [0, 1] → R, f(0)=0, f(1)=1),
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the result is independent (at least up to h2) of the choice of f . In this case
T−1 reads

T−1(Q0(a0)) = Q(a0) + h2Q

(

1

48
ωls ∂a0

∂xs

∂Γijk

∂xl
Γ ijk

+
1

16
ωls ∂2a0

∂xs∂xk
Γ ijkΓijl+

1

24

∂3a0

∂xi∂xj∂xk
Γ ijk

)

+ . . . , (6)

and conversely

T (Q(a0)) = Q0(a0) − h2Q0

(

1

48
ωls ∂a0

∂xs

∂Γijk

∂xl
Γ ijk

+
1

16
ωls ∂2a0

∂xs∂xk
Γ ijkΓijl +

1

24

∂3a0

∂xi∂xj∂xk
Γ ijk

)

+ . . . .

The above form of trivialization isomorphism will be used in the next section.

4. Differential calculus

In this section we are going to construct a differential calculus based on
noncommutative Fedosov algebra of formal series. We initially make use of
some ideas of Madore and collaborators [11, 12] and then follow standard
approach to Cartan algebra presented in [13]. First, let us recall algebraical
definition of differential calculus [11, 14].

Definition 4.1. A complex, unital and associative algebra K with product ∧
is called differential calculus over K0 if it is N-graded

1. K =
⊕

n≥0

Kn ,

2. Kk ∧ Kl ⊂ Kk+l ,

and it is equipped with compatible nilpotent antiderivation d : K → K

3. dKl ⊂ Kl+1 ,

4. d(η ∧ ξ) = (dη) ∧ ξ + (−1)lη ∧ dξ for arbitrary η ∈ Kl and ξ ∈ K ,

5. d2 = 0 .

Let O be a neighborhood of some point x0 for which trivialization the-
orem holds. Let Λ0 = A be usual algebra of functions on O and Λ0

∗ =
A∗ — algebra of formal series obtained by Fedosov deformation quanti-
zation procedure. Following ideas of [11, 12], we are going to choose set
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X = {X1, . . . ,Xn} of n derivations Xi ∈ Der(A∗), which is analogous to
the frame in the classical geometry. We will use derivations of the form
Xi = i

h
[λi

∗, · ]. The λis may be taken as

λi := ωijQ
−1T−1Q0x

j .

Using (6) one finds that

λi = ωijx
j −

h2

48

∂Γjkl

∂xi
Γ jkl + . . . .

Derivation Xi acting on f ∈ A∗ yields

Xi(f) =
i

h
[λi

∗, f ] = Q−1T−1 ∂

∂yi
(TQf) =

∂f

∂xi

−h2

{

1

48
ωls ∂f

∂xs

∂

∂xi

(

∂Γmjk

∂xl
Γmjk

)

+
1

16
ωls ∂2f

∂xs∂xk

∂(ΓmjkΓmjl)

∂xi

+
1

24

∂3f

∂xm∂xj∂xk

∂Γmjk

∂xi

}

+ . . . . (7)

The most important properties of the “frame” X are consequences of the
following lemma.

Lemma 4.2. The commutation relations for λi are given by

i

h
[λi

∗, λj ] = −ωij . (8)

Proof. The straightforward calculation yields

i

h
[λi

∗, λj ] =
i

h

[

ωikQ
−1T−1Q0x

k ∗, ωjlQ
−1T−1Q0x

l
]

= ωikωjl

i

h
Q−1T−1

[

Q0x
k ◦, Q0x

l
]

= ωikω
klωjl =−ωij .

Corollary 4.3. XiXj = XjXi for each Xi,Xj ∈ X .

Proof. Using lemma 4.2 and the Jacobi identity one obtains for f ∈ A∗

XiXjf = −
1

h2
[λi

∗, [λj
∗, f ]] =

1

h2
[f ∗, [λi

∗, λj ]] +
1

h2
[λj

∗, [f ∗, λi]]

= −
1

h2
[λj

∗, [λi
∗, f ]] = XjXif .
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Let T k
∗ (X ) denote the vector space (over C) of mappings from X k

(k-fold product X × X × · · · × X ) to A∗. T k
∗ (X ) has a natural structure of

A∗-bimodule given by the relations

(f ∗ η) (Xi1 , . . . ,Xik) = f ∗ η (Xi1 , . . . ,Xik) ,

(η ∗ f) (Xi1 , . . . ,Xik) = η (Xi1 , . . . ,Xik) ∗ f ,

for f ∈ A∗, η ∈ T k
∗ (X ) and Xi1 , . . . ,Xik ∈ X . For T ∈ T k

∗ (X ) and S ∈
T l
∗ (X ), the tensor product T ⊗∗ S ∈ T k+l

∗ (X ) may be defined as

(T ⊗∗ S)(Xi1 , . . . ,Xik+l
) := T (Xi1 , . . . ,Xik) ∗ S(Xik+1

, . . . ,Xik+l
) .

Theorem 4.4. The product ⊗∗ has the following properties

(S1 + S2) ⊗∗ T = S1 ⊗∗ T + S2 ⊗∗ T ,

T ⊗∗ (S1 + S2) = T ⊗∗ S1 + T ⊗∗ S2 ,

(f ∗ S) ⊗∗ T = f ∗ (S ⊗∗ T ) ,

S ⊗∗ (T ∗ f) = (S ⊗∗ T ) ∗ f ,

(S ∗ f) ⊗∗ T = S ⊗∗ (f ∗ T ) ,

(S ⊗∗ T ) ⊗∗ U = S ⊗∗ (T ⊗∗ U) ,

for S1, S2, S, T, U belonging to some (not necessarily the same) T k
∗ (X ), and

f ∈ A∗.

Proof is a straightforward consequence of properties of A∗. One may
introduce [11,12] the exterior derivative of f ∈ A∗ as a mapping d∗f ∈ T 1

∗ (X )
defined by

d∗f(Xi) := Xi(f) .

It can be easily observed that d∗ fulfills the Leibniz rule

d∗(f ∗ g) = (d∗f) ∗ g + f ∗ d∗g .

Our choice of X enables us to introduce “coframe” Θ = {θ1, . . . , θn} consist-
ing of θj ∈ T 1

∗ (X ) defined by

θj := d∗

(

ωjkλk

)

= d∗
(

Q−1T−1Q0x
j
)

.

By lemma 4.2 we calculate

θj(Xi) = Xi

(

ωjkλk

)

= −ωjkωik = δj
i . (9)

(Concept of Θ dual to X is derived from [11, 12]). As a consequence one
infers that each θj commutes with an arbitrary f ∈ A∗, i.e.

f ∗ θj = θj ∗ f .

Define Bk as a set of all k-fold products θi1 ⊗∗ · · · ⊗∗ θik (B1 = Θ).
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Theorem 4.5. Bk freely generates A∗-bimodule T k
∗ (X ).

Proof. For arbitrary T ∈ T k
∗ (X ) one has

T = T (Xi1 , . . . ,Xik) ∗ θi1 ⊗∗ · · · ⊗∗ θik , (10)

and equation ri1...ik ∗ θi1 ⊗∗ · · · ⊗∗ θik = 0 evaluated on (Xj1 , . . . ,Xjk
) yields

rj1...jk
= 0.

One concludes that Bk is A∗-basis of T k
∗ (X ). We put Λ1

∗ = T 1
∗ (X ).

Properties of X provide that construction of Λk
∗ for k > 1 may follow usual

construction of Λ. The approach presented here is based on the classical
textbook [13]. The omitted proofs are just identical to those in [13]. We call
η ∈ T k

∗ (X ) alternating if

η
(

. . . ,Xip , . . . ,Xiq , . . .
)

= −η
(

. . . ,Xiq , . . . ,Xip , . . .
)

for arbitrary 1 ≤ p < q ≤ k. The subset of T k
∗ (X ) consisting of all alternat-

ing η ∈ T k
∗ (X ) is a A∗-subbimodule of T k

∗ (X ). We put this submodule to
be Λk

∗ . If iq = ip for some q 6= p then η(Xi1 , . . . ,Xik) = 0. Hence Λk
∗ vanish

for k > n. The projection form T k
∗ (X ) to Λk

∗ can be chosen in the standard
way. For T ∈ T k

∗ (X ) let

Alt(T ) (Xi1 , . . . ,Xik) :=
1

k!

∑

σ∈Sk

sgn(σ)T
(

Xiσ(1)
, . . . ,Xiσ(k)

)

,

where Sk denotes the group of permutations of {1, . . . , k}, sgn(σ) = 1 for
even and sgn(σ) = −1 for odd permutations.

Theorem 4.6. The Alt operation has the following properties

Alt(T ) ∈ Λk
∗ ,

Alt(f ∗ T + S ∗ g) = f ∗ Alt(T ) + Alt(S) ∗ g ,

Alt(η) = η , (11)

Alt(Alt(T )) = Alt(T ) ,

for T, S ∈ T k
∗ (X ), η ∈ Λk

∗ and f, g ∈ A∗.

The second relation can be easily obtained from definition of Alt. The
others are proven in [13]. For η ∈ Λk

∗ and ξ ∈ Λl
∗ the exterior product

η ∧∗ ξ ∈ Λk+l
∗ is defined as

η ∧∗ ξ :=
(k + l)!

k!l!
Alt(η ⊗∗ ξ) .
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Theorem 4.7. The ∧∗ product has the following properties

(ξ1 + ξ2) ∧∗ η = ξ1 ∧∗ η + ξ2 ∧∗ η ,

η ∧∗ (ξ1 + ξ2) = η ∧∗ ξ1 + η ∧∗ ξ1 ,

(f ∗ η) ∧∗ ξ = f ∗ (η ∧∗ ξ) ,

η ∧∗ (ξ ∗ f) = (η ∧∗ ξ) ∗ f ,

(η ∗ f) ∧∗ ξ = η ∧∗ (f ∗ ξ) ,

(η ∧∗ ξ) ∧∗ ζ = η ∧∗ (ξ ∧∗ ζ) ,

for η ∈ Λk
∗, ξ, ξ1, ξ2 ∈ Λl

∗ and f ∈ A∗.

All except for the last of these relations are simple consequences of the-
orems 4.4 and 4.6. For associativity the proof is more elaborated, but can
be performed exactly in the same way as in [13]. Omitting its details let us
notice, that the key step is to prove the formula

Alt(Alt(η ⊗∗ ξ) ⊗∗ ζ) = Alt(η ⊗∗ ξ ⊗∗ ζ)

= Alt(η ⊗∗ Alt(ξ ⊗∗ ζ)) . (12)

Theorem 4.7 justifies extension of exterior product to 0-forms. For f ∈
Λ0
∗ = A∗ and η ∈ Λk

∗ we put f ∧∗ η := f ∗ η and η ∧∗ f := η ∗ f . Notice
that in general one cannot obtain relation analogous to η ∧ ξ = (−1)klξ ∧ η.
Fortunately, due to (9), the following formula holds

θi ∧∗ θj = −θj ∧∗ θi , (13)

for arbitrary θi, θj ∈ Θ, and in general

θi1 ∧∗ θi2 ∧∗ · · · ∧∗ θik = sgn(σ)θiσ(1) ∧∗ θiσ(2) ∧∗ · · · ∧∗ θiσ(k) , (14)

for σ ∈ Sk and θi1, . . . , θik ∈ Θ. Using lemma 4.5 and formulas (11), (12)
one can represent arbitrary η ∈ Λk

∗ as

η =
1

k!
η (Xi1 , . . . ,Xik) ∗ θi1 ∧∗ · · · ∧∗ θik .

Applying (14) one reduces the above relation to

η =
∑

1≤i1<···<ik≤n

η (Xi1 , . . . ,Xik) ∗ θi1 ∧∗ · · · ∧∗ θik .

The A∗-linear independence of the set Ck := {θi1 ∧∗ · · · ∧∗ θik : 1 ≤ i1 <
· · · < ik ≤ n} can be proven. Hence, Ck is A∗-basis of Λk

∗ and

dim(Λk
∗) =

(

n

k

)

.
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Moreover (14) guarantees that

1

k!
ηi1...ik ∗ θi1 ∧∗ · · · ∧∗ θik =

1

k!
η[i1...ik] ∗ θi1 ∧∗ · · · ∧∗ θik .

One also infers that any η ∈ Λk
∗ can be written as

η =
1

k!
ηi1...ik ∗ θi1 ∧∗ · · · ∧∗ θik

in the unique manner, provided that ηi1...ik is totally antisymmetric. Notice,
that given two forms η = 1

k!ηi1...ik ∗ θi1 ∧∗ · · · ∧∗ θik and ξ = 1
l!ξj1...jl

∗ θj1 ∧∗

· · · ∧∗ θjl their exterior product may be written as

η ∧∗ ξ =
1

k!l!
ηi1...ik ∗ ξj1...jl

∗ θi1 ∧∗ · · · ∧∗ θik ∧∗ θj1 ∧∗ · · · ∧∗ θjl .

We are ready to extend d∗ to forms of higher degree. Define

d∗

(

1

k!
ηi1...ik ∗ θi1∧∗ · · · ∧∗ θik

)

:=
1

k!
Xj (ηi1...ik) ∗ θj∧∗ θi1 ∧∗ · · · ∧∗ θik . (15)

Suppose that 1
k!ηi1...ik ∗ θi1 ∧∗ · · · ∧∗ θik = 1

k! η̃i1...ik ∗ θi1 ∧∗ · · · ∧∗ θik . Then
replacing Xj(ηi1...ik) by X[j(ηi1...ik]) in (15) and using relation η[i1...ik] =
η̃[i1...ik ] one can obtain

d∗

(

1

k!
ηi1...ik ∗ θi1 ∧∗ · · · ∧∗ θik

)

= d∗

(

1

k!
η̃i1...ik ∗ θi1 ∧∗ · · · ∧∗ θik

)

,

hence d∗ is well defined. Notice, that above definition of d∗ is compatible
with definition of d∗ for 0-forms since d∗f = (d∗f)(Xj) ∗ θj = Xj(f) ∗ θj for
f ∈ A∗.

Theorem 4.8. The d∗ operator has the following properties

1. d∗d∗ = 0 ,

2. d∗(η ∧∗ ξ) = (d∗η) ∧∗ ξ + (−1)kη ∧∗ (d∗ξ) for η ∈ Λk
∗ and ξ ∈ Λl

∗ .

Proof. Using corollary 4.3 and formula (13) one calculates

d∗d∗η =
1

k!
Xk(Xj(ηi1...ik)) ∗ θk ∧∗ θj ∧∗ θi1 ∧∗ · · · ∧∗ θik

= −
1

k!
Xj(Xk(ηi1...ik)) ∗ θj ∧∗ θk ∧∗ θi1 ∧∗ · · · ∧∗ θik = −d∗d∗η = 0 .

The Leibniz rule can be obtained by direct calculation involving application
of Leibniz rule for Xj and k-fold use of formula (13).

One concludes that Λ∗ = Λ0
∗ ⊕ · · · ⊕Λn

∗ together with d∗ is a differential
calculus over A∗.
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5. Final comments

The main result of this paper is the explicit construction of local differen-
tial calculus over Fedosov algebra of formal power series with coefficients in
functions on symplectic manifold. The approach presented here is generally
inspired by some standard procedures of noncommutative differential geom-
etry [11,12]. Quite similar analysis can be found in [2]. The main difference
is that in our approach we do not postulate existence of λis with commu-
tation relations given by lemma 4.2, but we rather construct them using
trivialization procedure. The explicit (up to h2) form of trivialization iso-
morphism has been calculated and thus, we are able to give explicit formulas
for deformed derivations (7). Since they commute (corollary 4.3) we may
proceed with standard methods of usual Cartan algebra. Hence, we omit all
consistency conditions [11, 12] relating noncommutativity of algebra, non-
commutativity of Xi, exterior product and exterior derivative. Moreover,
the resulting differential calculus can be regarded as the deformation of the
usual one i.e. obtained corrections vanish either at h = 0 or at Γijk ≡ 0. On
the other hand, construction presented here is local (restricted to some open
subset for which trivialization theorem holds). It should be also stressed,
that our choice of “noncommutative frame” X , although yielding some useful
properties, cannot be considered as the distinguished one. The application
of presented construction to Seiberg–Witten theory requires also some con-
cepts on “noncommutative connections”. Such ideas were considered in [15]
and they seem to be applicable also in the case of Fedosov quantization.
This is hoped to be covered in author’s forthcoming paper.

I would like to thank professor Maciej Przanowski for suggesting the
topic of investigation, giving many helpful remarks and reviewing the initial
version of this paper. I am also grateful to Jaromir Tosiek and Sebastian
Formański for discussions on Fedosov construction and noncommutative ge-
ometry.
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