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We study the dynamics of spherically symmetric solutions in the
Einstein–Skyrme model. We focus our attention on generic long-time evo-
lution of initial data resulting in the formation of the B = 1 soliton, which
plays the role of an attractor. We demonstrate that similarly to the case
of flat space evolution, the relaxation to the regular soliton (which we will
call Skyrmion) is universal and may be treated as a superposition of two
effects — quasinormal oscillations responsible for intermediate asymptotics
and a power-law tail describing the behavior of the system at very long
times. We determine the values of parameters describing asymptotics and
examine their dependence on the value of dimensionless coupling constant
of the model.

PACS numbers: 03.50.Kk, 03.65.Pm, 11.10.Lm

1. Introduction

This paper is concerned with intermediate and final asymptotics of spher-
ically symmetric solutions in Einstein–Skyrme (ES) model and is meant as
a natural extension of similar analysis done in [1]. ES model is known [2, 3]
as the model which admits a surprisingly rich spectrum of asymptotically
flat static spherically symmetric solutions, both with and without horizon.
In particular, the static B = 1 spherically symmetric solution (Skyrmion) is
stable [3–5]. Such stable static solutions are very important configurations in
any physical model as they are natural candidates for endstates of a generic
evolution. During this evolution the system relaxes to the final stable con-
figuration radiating energy to infinity. This radiation contains information
about the nature of the central object, therefore the understanding of the
mechanism of the emission is of crucial importance.

Skyrme model was suggested by Skyrme [6] as a model describing prop-
erties of baryons in particle physics. It is a nonlinear model of a chiral field
in which baryons are identified as solitons — topologically stable static field
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configurations. Apart from its usefulness in particle physics the model is in-
teresting theoretically because despite of its simplicity we may observe here
— both in flat space as well as in self-gravitating case — all features of the
relaxation process. So for generic initial data after short period of evolution
sensitive to the initial conditions, the system reaches intermediate asymp-
totics which may be described by the sum of exponentially decaying oscilla-
tions (so called quasinormal modes) superimposed on final, static Skyrmion
configuration. Its long-time asymptotics is governed by the power-law tail.

The rest of this paper is organized as follows. We start in Section 2 with
the specification of the model. Then in Section 3 we discuss the linear sta-
bility of the Skyrmion. Section 4 is devoted to the calculation of parameters
of quasinormal modes. In Section 5 we describe the numerical method used
in calculation of time evolution and demonstrate the results of calculation of
quasinormal modes obtained directly from the numerical evolution as well
as from the method described in Section 4. In this section we discuss also
the results for power-law tails.

2. Settings

We consider the Einstein–Skyrme model, so the matter in our model is
a chiral field — an SU(2)-valued scalar function U(x) with dynamics given
by the Lagrangian [6]:

L =
f2

4
Tr

(

∇a∇
aU−1

)

+
1

32e2
Tr

[

(∇aU)U−1, (∇bU)U−1
]2

−
1

16πG
R , (1)

where ∇a is the covariant derivative with respect to the spacetime metric,
G — gravitational constant and R — scalar of curvature. By choosing ap-
propriate units of mass and length we set the values of coupling constants f
and e to one.

We restrict ourselves to the case of spherical symmetry and use the polar
time slicing and the areal radial coordinate so we may parameterize the
metric as follows

ds2 = −e−2δ(r,t)N(r, t)dt2 +N−1(r, t)dr2 + r2dΩ2 , (2)

where dΩ2 is the standard metric on the unit 2-sphere. For the chiral field
we apply the usual hedgehog ansatz U = exp(i−→σ · r̂F (r, t)), where −→σ is
the vector of Pauli matrices and r̂ — unit radial vector. We denote ∂

∂t
and

∂
∂r

by overdots and primes respectively and introduce an auxiliary variable

P = ueδN−1Ḟ , where u = r2 + 2 sin2 F and as a result obtain the following
set of ES equations:
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Ḟ = e−δ N
P

u
, (3)

Ṗ =
(

e−δNuF ′

)′

+ sin(2F )e−δ

(

N

(

P 2

u2
− F ′2

)

−
sin2 F

r2
− 1

)

, (4)

Ṅ = −
2α

r
e−δN2PF ′ , (5)

δ′ = −
αu

r

(

P 2

u2
+ F ′2

)

, (6)

N ′ =
1 −N

r
−
α

r

(

2 sin2 F +
sin4 F

r2
+ uN

(

P 2

u2
+ F ′2

))

. (7)

Here α = 4πGf2 is dimensionless coupling constant.
We are interested in regular asymptotically flat solution of ES equations.

To ensure the regularity in the center, N(r) = 1 + O(r2), we impose the
following boundary condition F (r, t) ∼ r for r → 0. Asymptotic flatness
of initial data N(r, 0) = 1 + O(1/r) requires that F (r, 0) = Bπ + O(1/r2)
at infinity, where the integer B, which we will call baryon number, is equal
to the topological degree of the chiral field. As long as no horizon forms
the baryon number of initial configuration is preserved during the evolution.
Therefore the asymptotic flatness condition breaks the initial value prob-
lems into infinitely many disjoint topological sectors labeled by the baryon
number B. Below we consider mainly B = 1 sector. In is a well established
fact [3] that in this sector for α ≤ αcrit ≃ 0.040378 the Eqs. (3)–(7) have two
regular static solutions. One of them is linearly stable and is identical with
flat Skyrmion for α = 0, so we regard it just as a gravitationally distorted
Skyrmion. The second one, which we denote by Xu is unstable. This two
solutions coalesce at α = αcrit and disappear for α > αcrit.

3. Linear stability of gravitating Skyrmion

We are interested in relaxation processes of solutions to the static con-
figuration, therefore we start with the linear stability analysis of Skyrmion.
As we restrict ourselves only to the spherically symmetric perturbations, we
use the following standard decomposition of solutions:

F (r, t) = S(r) + f1(r, t) ,

N(r, t) = N0(r) + n1(r, t) ,

δ(r, t) = δ0(r) + δ1(r, t) , (8)

where (S(r), N0(r), δ0(r)) denote static Skyrmion configuration. We plug
this decomposition into Eqs. (3)–(7) and linearize. As it was demonstrated
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in [4], the analysis of such system simplifies considerably because in spherical
symmetry the metric perturbations which enter the pulsation equation for
f1(r, t) are completely determined by the matter perturbations. Exploiting
this and introducing auxiliary field v(r, t) defined by the formula

v(r, t) =
f1(r, t)

√

r2 + 2 sin2 S
, (9)

we obtain the linear pulsation equation for v(r, t):

eδ0N−1
0 v̈ −

(

e−δ0N0v
′

)′

+ e−δ0Uv = 0 . (10)

Let us note that the potential U = U0 +αU1 +α2U2 is determined entirely
by the functions describing the static Skyrmion and is given by the formulae:

U0 =
2

r2
−

1

(1 + 2w2)2

(

4w2
(

1 + 3w2 + 3w4
)

+
N0 − 1

r2

)

, (11)

U1 = 8w
(

1 + w2
)

S′ cosS −
w2

(

2 + w2
)

1 + 2w2
− 2

(

1 + 2w2
)

S′2 , (12)

U2 = 2
(

1 + w2
) (

2 + w2
)

S′2 sin2 S . (13)

Here w ≡ sin(S
r
).

Let us examine the behavior of the finite part of potential V (r) = U(r)−
2/r2 for large r. We may easily find, that this behavior in the flat space and
in the case of the self-gravitating model are different. In both cases we
have S(r) ∼ π − 1/r2 what means that w ∼ 1/r3. In the case of the flat
model we have additionally α = 0, N0(r) = 1; this means that potential
V (r) ∼ 1/r6. For the self-gravitating case N0 ∼ 1 − b/r what leads to the
relation V (r) ∼ 1/r3 for r → 0. This difference will be important in the
discussion of power-law tails.

Using the radial coordinate ρ defined by

dρ

dr
= eδ0(r)−δ0(0)N−1

0 , ρ(0) = 0 , (14)

and assuming the time-dependence of the form v(r, t) = e−iktψ(ρ), we trans-
fer Eq. (10) into a radial p-wave Schrödinger equation [4]

(

−
d2

dρ2
+

2

ρ2
+ V (ρ)

)

ψ = k2e2δ0(0)ψ . (15)

Here the potential

V (ρ) = e−2δ0(r)+2δ0(0)U(r(ρ)) −
2

ρ2
(16)
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is bounded for all ρ. The investigation of linear stability is then reduced to
study the eigenvalue problem (15) in the space of square integrable functions.
This was done in [3], where it was found, that the spectrum around the
Skyrmion is continuous and positive, k2 > 0. This means that the gravi-
tating Skyrmion is linearly stable. If we make similar calculation for Xu we
find out that Eq. (15) has exactly one bound state with k2

b < 0, indicating an
instability — exponentially growing mode with the exponent γb = ikb > 0.
In addition, for α → αcrit, the instability exponent γ → 0. Numerical
calculation done in [5,7] confirm the above results also in nonlinear analysis.

4. Calculation of quasinormal modes

Linear stability of the Skyrmion is an important property of ES sys-
tem because it tells us that this solution is an attractor describing the final
configurations in B = 1 sector of initial data problem. However, it does
not provide a direct information about the way this configuration is reached
in the evolution. To obtain the intermediate and long time asymptotics
of solutions of Eqs. (3)–(7) one usually discuss the Eq. (15) describing the
perturbation of Skyrmion. A problem of this type — especially perturba-
tions of black holes and compact objects — has a long history starting with
the papers of Regge and Wheeler [9], Zerilli [10] and Price [11], for a review
see [8] and [12]. As we will see the perturbations of Skyrmion at intermediate
times are described by quasinormal modes, whereas late time asymptotics is
controlled by a power-law tail. To simplify the notation we will neglect the
difference between the radial coordinates r and ρ, so the Eq. (15) takes the
form:

−Ψ ′′ +

(

2

r2
+ V (r)

)

Ψ = k2Ψ . (17)

In the case of ES system by quasinormal mode we will understand the
solution of Eq. (17) satisfying the outgoing wave conditions for r → ∞:

Ψ(r) ∝ eikρ , k = ω − iγ , γ > 0 , (18)

and regular at the center.
We expect, that the mode with the least dumping γ will dominate the

intermediate asymptotics in the B = 1 sector. To find a proper solution
we have to apply the above boundary condition to the solution of Eq. (17);
this will quantize the eigenvalue k. However, it is not easy to implement the
boundary condition of this type (especially for long-range potentials). To
see that let us remark, that for r > R, where R — the range of potential,
any regular solutions Ψ of Eq. (17) may be decomposed in terms of Riccati–

Hankel functions ĥ
(+)
1 (kr) and ĥ

(−)
1 (kr) as follows:

Ψ = a+(k) ĥ
(+)
1 (kr) + a−(k) ĥ

(−)
1 (kr) . (19)
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The Riccati–Hankel functions have the following asymptotic behavior:
ĥ±1 (kr) ∼ e±ikr, hence the outgoing wave boundary conditions correspond to
the zeros of a−(k) coefficient. However, this is numerically difficult to achieve
as the “unwanted” ingoing component of (19) decreases exponentially with r.
Therefore, we try to remove a numerically small ingoing component on the
background of large outgoing component. To achieve this we should have
there a very good resolution, at least of the order of O(e−2γR). For this
reason a usual procedure of shooting from r = 0 and varying k until a−(k)
vanishes (naive shooting) is not feasible, especially in case of γR ≫ 1. We
have found that much better way of proceeding is to use a shooting-to-a-
fitting-point technique which is much more accurate and additionally may
be generalized to the case of long-range potentials. In this technique we
shoot from two sides — r = 0 (requiring that the solution is regular for
r → 0) and some large r2, where the decomposition (19) works and try to
match both solutions at some intermediate rf .

Technically [1], we use the amplitude-phase representation for the solu-
tion of Eq. (17): Ψ = A exp(iΦ). As a result, this equation for complex
function Ψ is replaced by the following system of two equations for real
functions A and Φ:

A′′ −Aφ′2 −

(

2

r2
+ V + γ2 − ω2

)

A = 0 , (20)

Aφ′′ + 2A′φ′ − 2ωγA = 0 . (21)

Regularity at the center requires:

A(r) ∼ r2 and φ(r) ∼
ωγ

5
r2 for r → 0 . (22)

We solve this equations numerically from r = 0 up to some relatively small
intermediate rf . For r > rf we replace the Schrödinger equation (17) by its
Riccati form

g′ + g2 − 2/r2 − V + k2 = 0 , (23)

where g is defined as a logarithmic derivative of Ψ : g = Ψ ′

Ψ
= A′

A
+ iφ′. We

solve this equation backwards in r from some large r2 to the intermediate rf

defined above, starting with the initial value g(r2) =
k(ĥ

(+)
1 (kr2))′

ĥ
(+)
1 (kr2)

. We as-

sume, that r2 is large enough, so the Riccati–Hankel function ĥ
(+)
1 (kr) =

(−i + 1
kr

)eikr which is exact outgoing solution of the free (V = 0) Riccati
equation approximates well the solution of the full Riccati equation. Now
the quantization condition for the quasinormal modes is the matching of
logarithmic derivatives at intermediate matching point rf .
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5. Numerics and results

We have performed extensive numerical studies of long time asymptotics
of solutions in ES model. To this end we have solved initial value problem
(3)–(7) for various baryon numbers, coupling constant and initial data. To
do this we apply the standard method of lines to the pair of dynamic equa-
tions (3) and (4). This means that we discretize space and replace spatial
derivatives by proper algebraic difference approximations. In that way we
change the original set of dynamical PDEs into a system of ODEs, which
may be solved by standard methods. Usually we use 5-point, fourth-order
accurate spatial discretization and solve the resulting ODE system by means
of fourth-order Runge–Kutta method. In addition, on each time layer we up-
date the metric functions N and δ by solving the slicing condition (6) and
Hamiltonian constraint (7). Here we also use fourth-order Runge–Kutta
method with spline interpolation for the values of grid functions at the po-
sitions out of the grid which are also required by the integration procedure.
As a result we have finite difference method which is fourth-order accurate
both in space and time. We apply this method to the calculation of time
evolution which starts with different initial conditions. Typical examples of
initial data are:

F (t = 0, r) = tanh
x

s
, P (t = 0, r) = 0 (24)

for B = 1 sector and

F (t = 0, r) = Ar3 exp
[

−((r − r0)/s)
4
]

, P (t = 0, r) = 0 (25)

for B = 0 sector of initial value problem. To ensure the regularity at the
origin we impose the boundary conditions: F (t, r = 0) = 0, P (t, r = 0) = 0.
On the outer boundary we apply outgoing wave boundary condition. This
is not enough when we calculate the properties of tails; in order to avoid
the contamination of results by the part of solution reflected from the outer
boundary, we use the size of the grid big enough, so the calculation stops
before the reflected signal reaches the observation point. In calculations of
this kind the quadruple precision is crucial, otherwise the accumulation of
round-off errors spoils the results at late times.

The typical results of long time evolution in B = 1 sector is demonstrated
in Fig. 1(a). In this figure a value of the field P measured at a fixed value
of r is plotted as a function of t. In this figure we may observed all features of
relaxation process towards a stable Skyrmion configuration: the beginning
of evolution is strongly dependent on the shape of initial data. After some
time an intermediate asymptotics sets in (5 < t < 100) where the relaxation
manifest itself as a damped oscillations. Finally, at large times (t > 100) we
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observe the power-law tail. The same features may be observed on a com-
plementary picture where a late-time snapshot of solution (see Fig. 1(b)),
i.e. |P (t = ta, r)| as a function of r is seen. Here we may also observe, that
the fragment of solution corresponding to the quasi-normal modes treated
as a function of r grows exponentially, what makes the procedure of finding
the mode parameters difficult numerically. Using numerical data we may
extract the parameters of least-damped quasi-normal mode (see Fig. 2 for
details).
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Fig. 1. An example of time evolution in B = 1 sector. Left panel: we plot

ln|P (t, r0 = 5)| as a function of time and observe different phases of relaxation

process. Right panel: the snapshot of a solution for ta = 160.

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 0  20  40  60  80  100  120  140

ln
|P

(t
,r

0)
| 

t

numerical data

fit to the QN mode

Fig. 2. Intermediate asymptotics of relaxation towards Skyrmion. Fitting the ex-

ponentially damped oscillation P (t, r0) = Ae−γt cos(ωt+α)| to the numerical data

we may estimate the parameters of the least damped quasi-normal mode.

To calculate the parameters of quasi-normal modes we use also the semi-
analytic method described in Section 4.
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To achieve this, we solve — using standard fourth-order Runge–Kutta
method — Eqs. (20), (21), (23) together with time-independent version of
system (3)–(7), which gives the potential V . To get the value of (ω, γ)
parameters of the least damped quasi-normal mode we proceed as follow: we
treat the method described in Section 4 as a function T which transforms
starting values of mode parameters into the values corresponding to the
mode in question:

T : (ω0, γ0) → (ω, γ) . (26)

We require that the true solution corresponds to a fixed point of transforma-
tion T with the universal values of starting mode parameters ω0 = 1, γ0 = 1.
In addition we require that the T procedure is not sensitive to the values
of the intermediate matching point rf and external shooting point r2. This
means, that if we look at the value of the solution as a function of rf and r2
we should observe a plateau. Fig. 3 shows that it is really the case. We
observe, that for r2 = 14, the solution of semi-analytic method does not
depend on the value of rf for 1 < rf < 3. Similarly — if we fix rf = 2 then
the solution of semi-analytic method does not depend on the value of r2 for
9 < r2 < 18. In addition, in both cases the value of semi-analytic solu-
tion agrees with the solution obtained as a fit to the numerical data. This
confirms that the semi-analytic method works well and is a good tool for
estimation of the parameters of the least damped quasi-normal mode.
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Fig. 3. The sensitivity of results for the parameters (ω, γ) obtained via shooting-

to-a-fitting-point on rf and r2 parameters. Flat regions in both plots demonstrate

the robustness of the method.

Values of the QNR parameters as a function of dimensionless coupling
constant α are plotted in Fig. 4. Both parameters decrease with growing α
and go to zero as α approaches the critical value αcrit. It means that, as
α→ αcrit the wavelength of perturbation of Skyrmion and life-time of these
perturbations are growing to ∞.
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Fig. 4. The dependence of the parameters of the fundamental quasinormal mode

on the coupling constant. The solid lines and points denote data obtained from fit

to numerical solutions and by means of shooting technique, respectively.

In Fig. 5 we present the dispersion relation γ vs. ω for α → αcrit. Nu-
merical analysis seems to suggest, that this relations takes the form: γ ∼ ω3.
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Fig. 5. The dispersion relation at the critical value of coupling constant α→ αcrit.

We have also studied late time asymptotics, where quasi-normal modes
are negligible and the relaxation process is dominated by power-law tail.
Our numerical calculations show that at late times the relaxation to the
Skyrmion takes the form: F (t, r)−S(r) ∼ t−γ where the value of γ depends
on the coupling constant α and is equal 5 for α = 0 and 4 for α > 0. As it
was already pointed out in [1] for the case of flat space, this does not agree
with the predictions of linear scattering theory (see e.g. [11,14]). According
to this theory, for late times the evolution of the system is well described by
a linear wave equation with potential V (r) (see Eq. (10)). Let us consider
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more general case, described by the equation:

−Ψ ′′ +

(

l(l + 1)

r2
+ V

)

Ψ = k2Ψ , (27)

where V (r) is the finite part of potential. If the fall-off of V (r) at spatial
infinity is β, i.e. V (r) ∼ r−β for r → ∞, then for compactly supported
initial data linear theory predicts: γ = 2l + β. As in our problem we have
l = 1 and β = 6 for flat and β = 3 for gravitating case (see Section 3),
we may expect 8 and 5 for the values of power-law tail exponent for flat
and gravitating model respectively, which is in disagreement with numerical
results. This is another example of a situation where the tail has genuinely
non-linear character and linear theory fails. To describe the tail correctly,
one should use a nonlinear perturbatively scheme proposed recently by Bizon
et al. [1,15–18]. The application of this technique to the case of B = 1 sector
of ES model is tedious, so we have checked, that we get the same values of
tail exponents in the case of B = 0 sector of ES model and in non-linear
sigma model. Analyzes of tails in these models will be published elsewhere.
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