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The instanton-antiinstanton contributions to the qq bound state pole in
the four-point Green function in the Schwinger Model are calculated. It is
shown that these configurations, thanks to the cancellation of all unwanted
terms, are responsible for the restoration of the perfect factorizability of
the residue.
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In gauge field theories the interplay between gauge group and space-time
dimension may lead to the appearance of nontrivial topological effects, re-
sulting from homotopy properties. The most important example of such
a theory is Quantum Chromodynamics, where specific (instanton) gluon-
field configurations play a significant role in the formation of the intricate
vacuum and are related to various effects like chiral symmetry breaking and
nonzero value of the quark condensate, provide solution of the U(1) problem
or influence quark interactions and meson or baryon correlators, to enu-
merate only few examples [1–5]. To clarify these issues much work has been
devoted to the study of instantonic effects in model theories and particularly
in the Schwinger Model [6–13], which is highly nontrivial and — due to its
similarity to QCD in many aspects — of real physical importance [14]. The
significance of this model for the investigations in hadronic physics should
be emphasized especially as it allows exact and analytic results for a variety
of interesting quantities.

In our previous paper [15] we concentrated on the Bethe–Salpeter wave-
function for the qq bound state, picked out from the polar term of the
two-fermion Green function. This Green function was found exactly both
with and without instanton contributions [13, 16, 17]. The incorporation of
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higher instanton sectors (i.e. for instanton number k = ±1,±2) turned out
not only to modify the form of the Bethe–Salpeter function, which acquired
additional terms, but also to destroy the factorization property of the residue
in the bound state pole. This factorization was still maintained on the level
of the S matrix, but proved to be spoilt in the Green function. The other
instantonic effect was the appearance of nonpolar, branch-point singularities,
for P 2 = µ2, where µ is the invariant mass of the bound state. The goal of
this brief paper is to show that the obtained nonfactorization of the bound-
state pole residue may be cured, if one includes into consideration instanton–
antiinstanton (IA) configurations.

The calculation of the IA effects is more challenging than ordinary in-
stanton calculus. Such a configuration formally bears k = 0 topological
number and there are only approximate fermionic zero modes of the Dirac
operator, contrary to the latter case, where Atiyah–Singer index theorem
guarantees the existence of true zero modes [18]. However, when the sepa-
ration between instanton and antiinstanton becomes very large, these quasi

zero modes approach real ones. Happily this is just the situation, we are
interested in. Picking up the polar term out of the coordinate-space two-
fermion Green function requires Fourier integration over infinite space, and
the leading contribution is determined by the behavior at space-time infinity.
One can then make instanton–antiinstanton separation arbitrarily large.

Following [7, 13] we substitute into the path integral in the generating
functional

Z[η, η, J ] =

∫

DΨDΨDAei
R

d2x[L+ηΨ+Ψη+JµAµ] , (1)

the following form of the gauge potential

Aµ(x) = A(0)µ(x) + εµν∂νb(x) , (2)

with εµν being the antisymmetric symbol. The integration, which will be
led in euclidean space, is now performed over A(0)µ and is restricted to the
instanton sector k = 0, which requires the topologically trivial behaviour of
the gauge field at infinity. The substitution (2) is a simple shift and does
not influence the integration measure. The background function b is chosen
below for our convenience. L is the standard Schwinger Model Lagrangian

L(x) = Ψ(x) (iγµ∂µ − gγµAµ(x)) Ψ(x) − 1
4Fµν(x)Fµν(x) . (3)

with a gauge fixing term, if needed1. Since we are interested in the IA
configuration, b will be taken as a simple sum of the fields corresponding

1 Green functions are, naturally, gauge dependent. The following formulae will be given

in the Landau gauge.
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to pure instanton and pure antiinstanton at shifted positions [19, 20]. The
function b has, therefore, the following (euclidean) form

b(+−)(x) =
i

2g
ln

(

(x + R/2)2 + ρ2

ρ2

)

− i

2g
ln

(

(x − R/2)2 + ρ2

ρ2

)

, (4)

where (+−) refers to the IA configuration. For AI one, we will have b(−+)(x)
= −b(+−)(x). The separation of I and A is set equal to R and we will be
interested in the limit R → ∞.

The functional integration over A(0)µ in (1) is simple. First we have
to gauge away the term gΨ 6A(0)Ψ from the Lagrangian by the appropriate
redefinition of fermion fields (which leads to the appearance of the gauge-
boson mass term with µ2 = g2/π). Next A(0)µ appearing in source terms
(because of the above redefinition) is replaced with the functional derivative
over external current Jµ and may be driven out from under the integral.
The remaining integral becomes then Gaussian and easy to be taken. The
details of this calculation are given in [13] and are not dependent on the
specific choice of the function b, hence there is no need to repeat them here.

The next step is to perform fermion integrals. They are more complicated
but, fortunately, the majority of the work has already been done in [13]. We
limit ourselves to the four-point Green function, which is the fourth-order
coefficient of the expansion of (1) in powers of fermionic sources η and η
(i.e. it is G from the term η η Gη η). This four-point function was found
exactly with all the instantonic corrections (k = 0,±1,±2), as well as the
form of the qq bound state pole and the appropriate formulae may be found
in [13,15]. What we would like to concentrate on below, is the sector k = 0
with the background configuration (4), when R approaches infinity. This
calculation is somewhat similar to that for k = ±2 in the sense that we have
again two (quasi) zero modes, which (both) have to appear in the Green
function due to the rules of Grassman integration (cf. formula (51) of [13]).
We are only concerned with the leading asymptotic term, so these two quasi

zero modes may be taken as that of the pure instanton centered on −R/2
and that of the pure antiinstanton centered on R/2 [7, 10, 21]. Obviously,
for finite R they are not exact.

χ1(x) =
1√
2π

(

1

(x + R/2)2 + ρ2

)1/2 (

0
1

)

, (5)

χ2(x) =
1√
2π

(

1

(x − R/2)2 + ρ2

)1/2 (

1
0

)

. (6)
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They are eigenfunctions (with eigenvalues ±1) of the chirality operator γ5

(our conventions as to the γ matrices are given in [13]).
Now our previous calculation can be applied with only obvious modi-

fications and with the additional difference that our formulae will become
precise only in the limit R → ∞. Referring the Reader to [13] and without
going into details, we can write down the formula for the IA contribution to
the Green function in question

GIA
ab;cd(x1, x2;x3, x4) = − 1

λ1λ2

[

χ1a(x1)χ
+
1c(x3)χ2b(x2)χ

+
2d(x4)

× e−ig(b(+−)(x1)+b(+−)(x3)−b(+−)(x2)−b(+−)(x4))

+ χ2a(x1)χ
+
2c(x3)χ1b(x2)χ

+
1d(x4)

× eig(b(+−)(x1)+b(+−)(x3)−b(+−)(x2)−b(+−)(x4))

]

× eig2[β(x1−x3)+β(x2−x4)−β(x1−x4)−β(x1−x2)−β(x2−x3)−β(x3−x4)]

−
{

c ↔ d
x3 ↔ x4

}

. (7)

Here a, b, c, d are spinor indices, the function β was defined in [13] and λ1,2 are
eigenvalues for two quasi zero modes of the Dirac operator given below in (8)
and appear in denominator due to the normalization of the vacuum–vacuum
transition amplitude to unity in the k = 0 topological sector (other sectors do
not contribute to this amplitude if fermions are massless, since the tunneling
between various topological vacua is suppressed by zero eigenvalues). We
would like to stress here again that χ1,2 are not eigenvectors with eigenvalues
λ1,2, but approach them when R tends to infinity. Neither quasi zero modes
nor their eigenvalues λ1,2 have to be known exactly, but it is sufficient to
know their asymptotic behaviour (naturally λ1,2 tend to zero).

Now we have to estimate these eigenvalues for large R. In this limit the
true quasi zero modes can be chosen to be arbitrarily close to χ1,2. Therefore,
following [5,22,23] we assume, that the subspace in question is spanned just
by χ1 and χ2. The euclidean Dirac operator in the IA background has
the form

DIA =

(

0 i∂2 − ∂1

i∂2 + ∂1 0

)

− 1
(

x + R
2

)2
+ ρ2

×
(

0 x1 + R1
2 − i

(

x2 + R2
2

)

x1 + R1
2 + i

(

x2 + R2
2

)

0

)

+
1

(x−R
2 )2+ρ2

(

0 x1−R1
2 −i

(

x2−R2
2

)

x1−R1
2 +i

(

x2−R2
2

)

0

)

. (8)
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In the vector space with the scalar product defined as 〈f |g〉=
∫

d2xf+(x)g(x),
it is a hermitian operator with only off-diagonal matrix elements

(

0 DIA
1,2

DIA
2,1 0

)

(9)

and eigenvalues equal to ±
√

DIA
1,2D

IA
2,1, where indices 1 and 2 refer to the

functions (5) and (6). The diagonal elements disappear since (8) inverts the
chirality and χ1,2 are chirality eigenvectors.

One can easily verify, that DIA
1,2 = DIA

2,1, which means that the eigenvalues
are real, as necessary for the hermitian operator. These eigenvalues should
be substituted for λ1,2 in (7), but what we need, is only their asymptotic
form. For instance we have

DIA
2,1 =

∫

d2xχ+
2 (x)DIAχ1(x) (10)

=
1

2π

∫

d2x
x1 − ix2

(x2 + ρ2)3/2((x + R)2 + ρ2)1/2
,

where the integration variable has been shifted by R/2. This integral may
be performed using the method of Feynman parameters, usually applied in
the calculation of Feynman diagrams, and we obtain

DIA
2,1 = − 1

π

1
∫

0

dα

√

α(1 − α)(R1 − iR2)

R2α(1 − α) + ρ2
∼ − 1

R1 + iR2
, (11)

which leads to the asymptotic form for the product of eigenvalues λ1 λ2 ∼
1/R2.

Now we can come back to (7). To find the polar contribution, we intro-
duce new variables, as it was done in [15]

X = 1
2(x1 + x3) , x = x1 − x3 ,

Y = 1
2(x2 + x4) , y = x2 − x4 . (12)

The translational invariance should manifest itself through the dependence
of G on xi − xj’s only or, in new variables, on Z = Y −X, x and y. This is
not visible in (7) since, for finite R, our formulae are only approximate ones.
Because we are interested in the t-channel singularity, the pole corresponding
to the bound state should be found in the complex plane of P 2, where P is
the two-momentum canonically conjugated to Z. The Z dependence of the
expression is then crucial.
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Let us begin with the first term in the square brackets in (7). Its matri-
cal structure, according to (5) and (6), has the form (1 − γ5)ac(1 + γ5)bd.
To reveal the dependence on Z we first have to simplify the expression ex-
ploiting (4), (5) and (6), which leads to the explicit cancellation of several
factors coming from b(+−) and χ1,2. Next the Z-dependent function should
be isolated of the last exponent (that containing β functions). Up to the
opposite sign, this was actually done in [15] (cf. formulae (26), (27) and
following ones). The Z dependence is there twofold: firstly in the factor
(with altered sign)

exp

[

ln

(

−µ2Z2

4

)]

= −µ2Z2

4
, (13)

and secondly in e−ipZ , which (for the polar term) simply shifts the Fourier
variable P . The rest of the expression (i.e. the pole itself, although, before
taking the Fourier transform, in the variable p) may be derived from the
formula (30).

Gathering all essential factors we see, that the function (still written in
euclidean space) to be Fourier transformed is

R2Z2

σ+
x σ−

x σ+
y σ−

y
, (14)

where σ±
x = ((X±x/2−R/2)2 +ρ2)1/2 and σ±

y = ((Y ±y/2+R/2)2+ρ2)1/2.
For the limit of infinite R the relative variables x and y become unessen-

tial and may be omitted. X and Y , in turn, can be rewritten as

X = (X + Y )/2 − Z/2

Y = (X + Y )/2 + Z/2 .

The polar term is connected only with the infinite Z integration, so (X+Y )/2
may again be disregarded as R → ∞. This leads to the simplified expression

16R2Z2

(Z + R)2 + 4ρ2)2
. (15)

Now we are in a position to perform the Fourier integration over Z, together
with the limit over R. They should be done in such a way that Z and
R are always close to each other ((Z − R)2 ≪ R2), so one can substitute
Z = R + w in (15), take the asymptotic term as R goes to infinity, and
finally perform the Fourier integral over new variable w. The Fourier factor
under the integral is ei(P−p)Z . Analyzing (15) one sees that asymptotically
the integrand function becomes unity and, therefore, the leading term of the
Fourier transform is simply (2π)2δ(2)(P − p).
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In an analogous way one can easily verify that the second term in the
square brackets in (7) does not contribute to the pole. The term obtained
by the anti-symmetrization, in turn, contributes only to the pole in the
u-channel.

We can now gather the whole expression for the IA configuration

iGIA
b.s.(P ;x, y) = −µ2

8π

cos(Px/2) cos(Py/2)

P 2 − µ2 + iǫ

× e2γE eig2(β(x)+β(y))(1− γ5) ⊗ (1+ γ5) , (16)

where b.s. stands for “bound state”. The coefficient µ2 comes from (13)
and cosine functions, together with the pole, from the expansion of the last
exponent in (7) — except of the first two β’s, which do not depend on Z —
similarly as it was done in [15].

Now we should consider the AI configuration. This contribution may be
found in an identical way and there is no need to repeat all steps again. It
simply corresponds to the substitution R → −R, so now the second term in
brackets of (7) has the appropriate limit and contributes to the pole. The
straightforward calculation leads to the similar result as above only with the
modification in the γ matrices structure, which actually might be predicted.
The two modes (5) and (6) exchange their roles, so the matrical structure is
changed into (1+ γ5)⊗ (1− γ5) and the rest of the expression (16) remains
unaltered. The whole bound state pole contribution to the Green function
is then

iGIA+AI
b.s. (P ;x, y) = −µ2

8π

cos(Px/2) cos(Py/2)

P 2 − µ2 + iǫ
e2γE eig2(β(x)+β(y))

×
[

(1−γ5) ⊗ (1+ γ5)+(1+γ5) ⊗ (1− γ5)
]

. (17)

Confronting the obtained result with that of our previous work [15] we ob-
serve that (17) exactly cancels all the unwanted terms in the formula (32)
and restores the full factorizability already on the level of the Green function.
(The absence of cos(Px/2) in the formula (33) is only a typing omission.)

The only apparent difference is in θ dependence via the two factors e−iθγ5

arising in instanton sector k = ±2 and certainly absent for the IA and AI
configurations, which belong to k = 0 sector. Actually, since both factors are
accompanied by (1± γ5), and because γ5(1± γ5) = ±(1± γ5), they simply
reduce to e∓iθ. In consequence, appearing always in opposite pairs, they
cancel each other. Anyway, in the massless theory, θ does not play any role
and may be gauged away or simply set to 0. The above calculation reveals
again the complexity of the field theory vacuum with underlying nontrivial
topological structure.
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