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A possible application of the evolution equation for the truncated Mellin
moments to determination of the parton distributions in the nucleon is
presented. We find that the reconstruction of the initial parton densities
at scale Q2

0 from their truncated moments at a given scale Q2 is exact and
unique for small number of free parameters (≤ 3), even for the limited
x-region of experimental data. For larger number of adjustable parameters
the obtained fits are not unique and one needs an additional knowledge of
the small-x behaviour of the parton densities to make the reconstruction
procedure reliable. We apply successfully our method to HERMES and
COMPASS spin-dependent valence quark data.

PACS numbers: 12.38.Bx

1. Introduction

Determination of unpolarised as well polarised parton distribution func-
tions (PDFs) is nowadays a topic of intensive theoretical and experimental
investigations. At the dawn of the LHC, where high center-of-mass energy
√

(s) = 14TeV is available and all large Q2 reactions are parton collisions,
the precise knowledge of the PDFs is needed. Despite recent progress in ex-
perimental measurements and theoretical perturbative QCD analyses, our
present knowledge of the partonic spin structure of the nucleon is still incom-
plete. According to the conservation law of the nucleon angular momentum,
the nucleon spin is distributed among quarks and gluons. The spin of the
partonic constituents as well as their orbital angular momentum contribute
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to the total nucleon spin of 1/2. Recent experiments on polarised deep in-
elastic lepton–nucleon scattering imply that quarks and anti-quarks carry
only a small part of the proton’s spin (about 30%) — less than half the pre-
diction of relativistic quark model (about 75%). This result has stimulated
theoretical activity to understand the proton spin structure. A possible ex-
planation for the discrepancy may lie in a large gluon contribution, specially
from the small-Bjorken x-region. The present RHIC data cannot distinguish
between different (positive, negative and sign-changing) forms of the gluon
distributions ∆G(x) and therefore one cannot definitely determine the quark
and gluon contribution to the nucleon spin. Hence a primary goal of the spin
program is to determine the gluon polarisation ∆G.

A knowledge of the low-x behaviour of the unpolarised or polarised nu-
cleon structure functions enables the estimation of their Mellin moments and
hence the sum rules. This is particularly important in view of the insuffi-
cient small-x experimental data. Theoretical perturbative QCD analysis is
usually based on the evolution equations satisfied by the parton densities. In-
teractions between quarks and gluons violate the Bjorken scaling [1] and the
parton distribution functions change with Q2 according to the well-known
Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) equation [2–5]. The
DGLAP equations can be solved with use of either the Mellin transform or
the polynomial expansion in the x-space. This approach requires a knowl-
edge of the initial parton densities at low-Q2 scale for the wide range of
x-values. Input parametrisations are fitted to the available experimental
data. Standard DGLAP approach operates on the parton densities q. Hence
their moments, which are e.g. the contributions to the proton’s spin can be
obtained by the integration of q over x. In this paper we propose an al-
ternative approach, in which the main role is played by truncated moments
of the quark and gluon distribution functions. The evolution equation for

the nth truncated at x0 moment
∫

1

x0
dxxn−1 q(x,Q2) has the same form

as that for the parton density itself with the modified splitting function
P ′

ij(n, x) = xnPij(x) [6]. The truncated moments approach refers directly

to the physical values-moments (rather than to the parton densities), what
enables one to use a wide range of deep-inelastic scattering data in terms of
smaller number of parameters. In this way, no assumptions on the shape of
parton distributions are needed. Using the evolution equations for the trun-
cated moments one can also avoid uncertainties from the unmeasurable very
small x → 0 region. This approach allows for direct study of the behaviour
of the truncated moments and can also be applied for determination of the
parton densities. The latter is a topic of our paper. Determination of the
quark and gluon distributions from their truncated moments can be done
very simply via differentiation of the moment with respect to the point of
truncation x0. For practical purposes one can also reconstruct the parame-
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ters in PDF parametrisation using Marquardt’s procedure. We describe this
problem in detail and successfully apply our method to recent HERMES
and COMPASS spin-dependent valence quark data.

The content of this paper is as follows. In the next section we recall the
evolution equations for the truncated moments. Next, we present a gen-
eralisation of the obtained equations for the double truncated moments
∫ xmax

xmin
dxxn−1 q(x,Q2). Section 3 contains details for determination of the

parton densities from their truncated moments. Our approach is presented
with help of a general example for different input parametrisations of PDFs.
In Section 4 we reconstruct the valence quark densities from recent HER-
MES and COMPASS data for their truncated first moments. In this way we
can compare our predictions for the reconstructed parton densities with the
PDFs fit and test the accuracy of our method. A summary and conclusions
are given in Section 5.

2. Evolution equations for truncated moments

Standard PQCD approach is based on DGLAP evolution equations for
parton densities [2–5]. The DGLAP equations can be solved with use of
either the Mellin transform or the polynomial expansion in the x-space.
The differentio-integral Volterra-like evolution equations change after the
Mellin transform into simple differential and diagonal ones in the moment
space and can be solved analytically. Then one can again obtain the x-space
solutions via the inverse Mellin transform. The only problem is knowledge of
the initial moments — integrals over the whole region 0 ≤ x ≤ 1. The lowest
limit x → 0, which implies that the invariant energy W 2 = Q2(1/x−1) of the
inelastic lepton–hadron scattering becomes infinite, will never be attained
in experiments. Therefore, it is very useful to study the parton distributions
only in a limited range of the Bjorken variable and hence their moments
truncated at low-x0.

In [6] we have derived the evolution equations for the truncated Mellin
moments of the parton densities. We have found that the truncated moments
obey the DGLAP-like evolution equation

dq̄n(x0, Q
2)

d ln Q2
=

αs(Q
2)

2π
(P ′

⊗ q̄n)(x0, Q
2) , (2.1)

where

t = ln

(

Q2

Λ

)

, (2.2)

q(x,Q2) is the parton distribution function and q̄n(x0, Q
2) denotes its nth

moment truncated at x0:
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q̄n(x0, Q
2) =

1
∫

x0

dxxn−1 q(x,Q2) . (2.3)

A role of the splitting function plays P ′(n, z):

P ′(n, z) = zn P (z) (2.4)

and ⊗ abbreviates a Mellin convolution over x

(P ⊗ f) (x,Q2) =

1
∫

x

dy

y
P

(

x

y

)

f(y,Q2) . (2.5)

It can be shown, that the double truncated moments

q̄n(xmin, xmax, Q
2) =

xmax
∫

xmin

dxxn−1 q(x,Q2) (2.6)

also fulfill the DGLAP-type evolution, namely

dq̄n(xmin, xmax, Q
2)

d ln Q2
=

αs(Q
2)

2π

×

1
∫

xmin

dz

z
P ′(n, z)q̄n

(xmin

z
,
xmax

z
,Q2

)

. (2.7)

We would like to emphasize that although the central role in the QCD stud-
ies play PDFs, dealing with their truncated moments can be also useful.
This approach has the following major characteristics:
— refers directly to the physical values-moments (not to the parton densi-
ties), what enables one to use a wide range of experimental data in terms of
smaller number of parameters. In this way, no assumptions on the shape of
parton distributions are needed;
— allows one to study directly the evolution of moments and the scaling
violation;
— one can avoid uncertainties from the unmeasurable very small x → 0 and
high x → 1 region;
— the suitable evolution equations are exact and diagonal (there is no mix-
ing between moments of different orders);
— can be used for different approximations: LO, NLO, NNLO etc. and in
the polarised as well as unpolarised case.
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Concluding, evolution equations for the truncated Mellin moments of
the parton densities (2.1), (2.7) can be an additional useful tool in the QCD
analysis of the nucleon structure functions. In the next section we exam-
ine one of the possible application, which is a reconstruction of the parton
distributions.

3. The application of the evolution equation

for truncated moments

The evolution equation (2.1) enables one to study the behaviour of the
truncated moments (2.3) within different approximations (LO, NLO, NNLO
etc.) and can be solved with use of standard methods of solving the DGLAP
equations. In this way one can study the evolution of the truncated moments
without making any assumption on the small-x behaviour of the parton den-
sities themselves. One needs to know only the truncated moments of the
parton distributions at the initial scale Q2

0
(e.g. from the experimental data),

what constrains a number of the input parameters. The solutions for trun-
cated moments can be used in the determination of the parton distribution
functions via differentiation

q(x,Q2) = −x1−n ∂q̄n(x,Q2)

∂x
, (3.1)

which results from (2.3). In order to reconstruct the parton densities from
their truncated moments, we proceed the following steps:

1. Preparing available experimental data for moments q̄n(x0, Q
2
1) as a func-

tion of xmin ≤ x0 ≤ 1 at the same scale Q2
1.

2. Interpolation of the given data points into points which are Chebyshev
nodes. This allows us to use the Chebyshev polynomials technique for
solving the evolution equations.

3. Evolution of the truncated moments from Q2
1 to Q2

2 according to (2.1)
for different xmin ≤ x0 ≤ 1.

4. Reconstruction of the parton density q(x,Q2
2
) from its truncated mo-

ment at the same scale Q2
2 applying Marquardt procedure to fit free

parameters.

Since numerical integration is more stable than numerical differentiation, we
perform the final fitting (in step 4.) with respect to moments and not to
their derivatives.
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Let us test the above procedure on the nonsinglet function parametrised
in a general form:

q(x,Q2
0) = N(α, β, γ) xα(1 − x)β(1 + γx) . (3.2)

Now we create ‘experimental data’: for input parametrisation (3.2) we cal-
culate truncated moments (2.3) at Q2

0
and evolve them to Q2. Obtained

results q̄n(x0, Q
2) are our starting point in the above described 4-steps pro-

cedure. Finally we can compare the reconstructed parton densities with the
assumed form (3.2).

In our test we construct simulated data sets, what may seem to be a “toy”
proceeding. This approach has however a major advantage: knowing the re-
sult “in advance”, we are able test the accuracy of the reconstruction of
the parton densities. The presented evolution equations for the truncated
moments will be really useful in such QCD analyses, where we know the mo-
ments (e.g. from direct measurements), while the PDFs are poorly known.

The results are presented in Fig. 1. We performed our test using three
different input parametrisations q(x,Q2

0
): one nonsingular (∼ const.) and

two singular ∼ x−0.4 and ∼ x−0.8 as x → 0. One can see that our recon-
struction is satisfactory independently on the input parametrisation. The
agreement is very good even for the limited region of the data x0 ≥ 0.01.
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Fig. 1. Reconstruction of the initial parton density q(x, Q2
0) from its first truncated

moment after back Q2 evolution from Q2 = 10 GeV2 to Q2
0 = 1 GeV2 (solid).

Comparison with the origin function q(x, Q2
0) (points). The dotted line (mostly

overlapped by the solid one) represents the reconstruction from the limited x-region

of available data x0 ≥ 0.01. Results are shown for 3 different small-x behaviour of

q(x, Q2
0): (1)(∼ const.), (2)∼ x−0.4 and (3)∼ x−0.8.
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It must be however emphasized that success of the determination of the
parton densities from their truncated moments depends on the number of
the fitted parameters and also on the available data. A lack of data for
the very small-x is a constraint in the reliable determination of q(x,Q2) in
this region. More free parameters need more data points and too many free
parameters make a unique fit of the data not possible. In our test we have
fitted three parameters (α, β and γ), obtaining almost the same values as
those assumed in (3.2). In the next section we shall reconstruct the valence
quark distributions from recent HERMES and COMPASS data. This needs
to fit more parameters (minimum three for u-quarks and three for d-quarks)
and will be another test of the accuracy of our method.

4. Determination of the spin-dependent valence quark densities

from HERMES and COMPASS data

for truncated first moments

In the previous section we have presented the general idea of the de-
termination of the parton densities from their truncated moments. Now,
we will try to reconstruct the polarised valence quark densities from recent
HERMES [8] and COMPASS [9] data. These data (moments) have not been
obtained in direct measurements but with use of a given PDF fit. Never-
theless, we can compare our predictions for reconstructed parton densities
with a given fit (input parametrisation) and in this way test our method for
a larger number of fitted parameters. The results are shown in Figs. 2–5.
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Fig. 2. Initial spin-dependent valence quark distributions x(∆uv −∆dv), x∆uv and

x∆dv at Q2
0 = 4 GeV2: dotted — reconstructed from HERMES data for the first

truncated moment of the nonsinglet polarised function gNS
1 at Q2 = 5 GeV2 [8],

solid — original BB fit [10]. Plots for x(∆uv − ∆dv) overlap each other.
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Fig. 3. The first truncated moment of the nonsinglet polarised structure function

gNS
1 versus the truncation point x0, calculated from the reconstructed fit (solid).

Q2 = 5 GeV2. Comparison with HERMES data [8] based on BB fit [10] (points

with error bars).
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Fig. 4. Initial spin-dependent valence quark distributions x(∆uv +∆dv), x∆uv and

x∆dv at Q2
0 = 0.5 GeV2: dotted — reconstructed from COMPASS data for the

first truncated moment of the function ∆uv + ∆dv at Q2 = 10 GeV2 [9], solid —

original DNS fit [11]. Plots for x(∆uv + ∆dv) overlap each other.
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In Fig. 2 we plot the initial spin-dependent valence quark distributions
x∆uv(x,Q2

0) and x∆dv(x,Q2
0), reconstructed from the HERMES data [8]

for the first truncated moment of the nonsinglet polarised function

gNS
1 = 1

6
(∆uv − ∆dv) . (4.1)

We compare our results to the original Blümlein–Böttcher (BB) fit [10].
Fig. 3 shows x0 dependence of the first truncated moment

ḡNS
1 (x0, Q

2) =

1
∫

x0

gNS
1 (x,Q2)dx (4.2)

calculated from the reconstructed fit, compared with the experimental data.
Figs. 4 and 5 contain the same analysis as Figs. 2 and 3 respectively, but
for COMPASS ∆uv + ∆dv data [9] with the original de Florian, Navarro,
Sassot (DNS) fit [11].
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Fig. 5. The first truncated moment of the function ∆uv+∆dv versus the truncation

point x0, calculated from the reconstructed fit (solid). Q2 = 10 GeV2. Comparison

with COMPASS data [9] based on DNS fit [11] (points with error bars).

One can see a satisfactory agreement between the reconstructed fits and
experimental data. Reconstructed combined functions x(∆uv − ∆dv) and
x(∆uv + ∆dv) overlap HERMES and COMPASS results, respectively. For
the extracted valence quark densities alone the agreement is worse but still
acceptable. We have found, however, that these fits are not unique and
equally good agreement with the data can be obtained with use of the other
(not only BB and DNS, respectively) sets of free parameters. When the
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number of adjustable parameters is large (> 3) and there are no experimen-
tal points from the low-x region x < 0.001, one cannot distinguish which
fit is the best one. Only an additional constraint for small-x behaviour of
the parton densities makes the fit procedure more reliable. In our test we
found the best HERMES fit taking into account also the small-x (x < 0.01)
gNS
1 data. Concluding, even for the large number of adjustable parameters

(6 for HERMES and 8 for COMPASS data), the presented method of re-
construction can be a hopeful tool for determining parton densities from
experimental results for their truncated moments.

5. Summary

We have shown how to determine the parton densities from their first
truncated at x0 Mellin moments. The method is based on the recently
derived evolution equations for nth truncated moments q̄n(x0, Q

2). After
evolution of the q̄1 results from a given scale Q2 to the initial one Q2

0
, one

can reconstruct the input quark and gluon distributions. In our analyses
we have used different simulated data sets in order to test the accuracy of
the reconstruction. In our first test we have fitted three parameters from
the general form of the nonsinglet input function, obtaining a very good
agreement with assumed original parametrisations. We have found, that for
small number of the fitted parameters (≤ 3), the reconstruction is satisfac-
tory independently on the small-x behaviour of the assumed input and even
for the limited region of the data x0 ≥ 0.01. Next we have applied this tech-
nique to the experimental HERMES and COMPASS data for the polarised
valence quarks. In this way, we have tried to reconstruct the original fits
with larger number of free parameters (6 and 8, respectively). The results
of the reconstruction have been again satisfactory. We have found however,
that for larger number of adjustable parameters the obtained fits are not
unique. We would like to emphasize that success of the determination of
the parton densities from their truncated moments depends on the number
of the fitted parameters and also on x-region of the available experimental
data. An additional knowledge of the small-x behaviour of the parton den-
sities, based either on the experimental data or the theoretical expectations,
can make the fit procedure more reliable. Indeed, we have found the best
HERMES fit taking into account also the small-x gNS

1
data.

Concluding, the presented evolution equations for the truncated mo-
ments allowing for a direct study of the Q2-dependence of the moments,
offer a new, promising tool towards improving our knowledge of the unpo-
larised and polarised partonic structure of the nucleon.
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