
Vol. 40 (2009) ACTA PHYSICA POLONICA B No 6

A SHELL MODEL CALCULATION FOR 52Fe

IN THE FULL fp SPACE

G. Puddu

Dipartimento di Fisica dell’Universita’ di Milano

Via Celoria 16, I-20133 Milano, Italy

(Received January 8, 2009)

We discuss a shell model calculation for 52Fe in the full fp space us-
ing the GXPF1A interaction. Several energy levels for the same angular
momentum are obtained. The results for the energy levels and transition
rates are compared with previous calculations. Using collective models an
attempt is made to classify the spectrum into bands.

PACS numbers: 21.60.Cs, 21.60.Ev, 23.20.–g, 27.50.+e

1. Introduction

Ideally we would like to have a description of collective properties of
nuclei in terms of spherical shell model results. In practice this goal is ham-
pered by the size of the Hilbert space which limits the potentials of the
shell model approach to the description of nuclear energy levels, expectation
values and transition rates. The traditional shell model approach (see for ex-
ample Ref. [1,2] and references in there) consists first in the determination of
the effective Hamiltonian, either by modifying renormalized nucleon–nucleon
interactions, or simply by fitting all possible two-body matrix elements and
single-particle energies to the available experimental data. Subsequently the
Hamiltonian matrix, written in a selected single-particle space, is diagonal-
ized. The most popular method used in the shell model approach is the
Lanczos method and nowadays there are several computer codes that are
used to describe the low-energy properties of nuclei.

It should be stressed that the shell model approach is not the only
method that can be used in the description of nuclear spectra. Other meth-
ods such as The VAMPIR method and its extensions (Ref. [3]), the Quantum
Monte Carlo Method (Ref. [4]) and the Hybrid Multi-determinant method
(Ref. [5]) do not have the intrinsic limitations of the shell model diagonal-
ization method, since they can approach the exact results as the number
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of trial wave functions is increased, and are being used and have been used
in the description of nuclei especially in situations where the shell model
diagonalization method is too demanding for the computers available today.
The analysis of collective properties is usually carried out first diagonalizing
the nuclear Hamiltonian and evaluating expectation values and B(E2) and
then comparing the results with the predictions of collective models. In this
way, for example, deformed bands (and a superdeformed band) have been
identified in closed shells nuclei as 56Ni (Ref. [6]) and 40Ca (Ref. [7]).

In this work we perform a shell model calculation for 52Fe using the full
fp space and the modern GXPF1A interaction (Ref. [8]) for several states
with spin 0, 2, 3, 4, 5, 6, 7, 8, 10 and 12, altogether 34 levels, group these states
according to the their B(E2) values into bands, and analize the results in
terms of collective models. One of the motivations for calculating several
states with the same spin and parity originally was whether this nucleus
exibits states at high energy compatible with large deformations. The choice
of the nucleus is motivated by the fact that the size of the Hilbert space is not
prohibitively large and therefore a large number of levels can be computed
without truncation of the Hilbert space, which can affect the results at large
excitation energy. Moreover, it is interesting to see whether the shell model
results are compatible with a stable triaxial deformation (this nucleus has
an experimental and theoretical low energy 2+

2 state, a typical signature of
stable triaxial deformation). Previously this nucleus has been studied in
the full fp space in Ref. [9] using the KB3 interaction for some even spins,
and in Ref. [10] in a truncated Hilbert space using the KB3G interaction.
The present study gives the prediction of the GXPF1A interaction for a
large number of levels without truncation of the Hilbert space for even and
odd spins. As an additional motivation, we would like to see whether the
GXPF1A interaction predicts the experimental energy inversion between the
isomeric 12+

1 state and the the 10+
1 state, since, as mentioned in Ref. [10], the

GXPF1 interaction does not reproduce the experimental relative position of
these two states.

2. Results and discussion

The shell model code used in this work was written in the same spirit
of the code ANTOINE (Ref. [11]) and it is the same used in Ref. [12]. In
Table I we give the theoretical energies and spectroscopic quadrupole mo-
ments of four Jπ = 0+, 3+, 4+, 6+ states, five Jπ = 2+ states, three Jπ =
5+, 7+, 8+, 10+ states and for the yrast 12+ state. The experimental levels
are taken from Ref. [13]. As in the case of the GXPF1 interaction reported
in Ref. [10], the energy inversion between the 10+ state and the 12+ state is
not reproduced, although the 10+ state is lower than the 12+ by only 4 keV.
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TABLE I

Shell model energies in MeV and quadrupole moments in efm2 for 52Fe. Experi-
mental energies are from Ref. [13].

J+
n

Eth(MeV) Qs(efm
2) Eexp(MeV)

0+
1 0.0 0 0.0

2+
1 0.884 −30.9 0.849

4+
1 2.435 −38.5 2.385

2+
2 2.669 33.9 2.760

3+
1 3.198 −1.4

4+
2 3.344 −9.9 3.587

0+
2 3.592 0 4.146

2+
3 3.871 −25.6 4.456

6+
1 4.206 −17.1 4.326

3+
2 4.388 52.5

4+
3 4.429 28.0

5+
1 4.575 −19.3

6+
2 4.650 6.9 4.872

6+
3 4.708 0.4

5+
2 4.768 −12.5

0+
3 4.916 0

2+
4 4.924 −16.8

4+
4 5.017 −14.2

2+
5 5.303 31.9

3+
3 5.394 9.5

6+
4 5.411 52.2

3+
4 5.559 −17.1

5+
3 5.617 15.0

7+
1 5.906 21.5

7+
2 5.996 −21.7

8+
1 5.997 −14.3 6.360

8+
2 6.040 −22.8 6.493

0+
4 6.056 0

7+
3 6.219 32.9

8+
3 6.661 1.0

10+
1 6.799 20.9 7.381

12+
1 6.803 54.8 6.957

10+
2 7.804 −5.8

10+
3 7.854

The agreement with the experimental yrast states for Jπ = 2+, 4+, 6+ is
good and the energy of the yrast 8+ is only 363 keV below the experimen-
tal value, this discrepancy increases for the yrast 10+ (which is predicted
482 keV lower the experimental value), while the 12+ energy is in good
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agreement with the experimental value. The 4+
2 and the 6+

2 energies are also
in good agreement with the data. The 0+

2 is lower than the experimental
value by 554 keV. In Ref. [10] it was found that the KB3G interaction pre-
dicts this level about 600 keV above the experimental value, in a truncated
Hilbert space.

TABLE II

B(E2) in e2fm4 for selected transitions.

J+
i J+

f B(E2) J+
i J+

f B(E2) J+
i J+

f B(E2) J+
i J+

f B(E2)

2+
1 0+

1 216.1 5+
1 3+

1 226.0 2+
4 0+

2 129.1 3+
3 3+

1 0.5
4+
1 2+

1 283.6 3+
2 35.8 0+

3 25.2 3+
2 3.6

2+
2 0+

1 57.1 4+
1 47.6 2+

3 70.8 4+
1 1.6

2+
1 11.7 4+

2 67.5 3+
2 4.6 4+

2 0.3
4+
1 0.1 4+

3 131.2 4+
3 0.9 4+

3 23.0
3+
1 2+

1 74.6 6+
1 0.0 2+

5 0+
1 0.5 4+

4 3.0
2+
2 406.4 6+

2 6+
1 99.3 0+

2 2.0 5+
1 4.4

4+
1 1.0 4+

1 97.9 0+
3 3.5 5+

2 3.3
4+
2 2+

1 65.1 4+
2 197.3 2+

1 2.5 3+
4 2+

1 0.4
2+
2 214.3 4+

3 7.6 2+
2 0.2 2+

2 5.2
3+
1 352.3 5+

1 115.0 2+
3 1.2 2+

3 54.9
4+
1 4.2 6+

3 6+
1 119.5 2+

4 1.2 2+
4 36.7

0+
2 2+

1 41.6 4+
1 0.0 4+

1 0.2 2+
5 6.2

2+
2 324.7 6+

2 72.8 4+
2 0.0 3+

1 14.0
2+
3 0+

1 6.9 5+
1 123.7 4+

3 0.0 3+
2 4.4

0+
2 125.7 4+

2 197.6 4+
4 0.0 3+

3 3.4
2+
1 42.2 4+

3 12.0 4+
4 2+

1 7.7 4+
1 53.6

2+
2 32.4 5+

2 3+
1 29.3 2+

2 3.6 4+
2 0.0

3+
1 181.0 3+

2 58.8 2+
3 86.3 4+

3 0.0
4+
1 0.5 4+

1 29.8 2+
4 12.2 4+

4 78.7
4+
2 110.9 4+

2 63.2 3+
1 35.7 5+

1 2.7
6+
1 4+

1 197.5 4+
3 303.9 3+

2 6.6 5+
2 3.4

4+
2 0.0 5+

1 272.7 4+
1 73.8 6+

4 4+
1 0.1

3+
2 2+

1 0.0 6+
1 2.9 4+

2 0.3 4+
2 0.0

2+
2 0.1 6+

2 5.4 4+
3 0.1 4+

3 0.0
2+
3 1.4 6+

3 0.4 5+
1 96.6 4+

4 0.2
4+
1 0.0 0+

3 2+
1 58.9 5+

2 25.4 5+
1 0.1

4+
2 4.7 2+

2 0.5 6+
1 8.6 5+

2 0.1
3+
1 0.1 2+

3 8.1 6+
2 4.8 6+

1 0.0
4+
3 2+

1 0.5 2+
4 0+

1 3.0 6+
3 12.0 6+

2 0.5
2+
2 16.8 2+

1 7.0 3+
3 2+

1 1.4 6+
3 0.2

2+
3 0.7 4+

1 18.2 2+
2 0.2 5+

3 3+
1 21.0

3+
1 19.3 2+

2 37.1 2+
3 0.0 3+

2 29.0
3+
2 352.2 3+

1 7.4 2+
4 4.6 3+

3 0.0
6+
1 0.1 4+

2 7.5 2+
5 413.5 3+

4 0.5
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In Table II and Table III we show the shell model B(E2) values. We have
used effective charges 1.5e and 0.5e for protons and neutrons respectively, a
common choice in this mass region.

TABLE III

The same as TABLE II.

J+
i J+

f B(E2) J+
i J+

f B(E2) J+
i J+

f B(E2) J+
i J+

f B(E2)

5+
3 4+

1 0.2 6+
4 6+

3 0.2 7+
3 6+

1 2.3 8+
2 7+

1 25.5
4+
2 8.8 7+

1 5+
1 20.7 6+

2 1.4 7+
2 151.7

4+
3 18.2 5+

2 9.5 6+
3 1.7 8+

3 6+
1 5.4

4+
4 0.6 5+

3 12.0 6+
4 132.5 6+

2 0.6
5+
1 24.0 6+

1 17.6 7+
1 0.1 6+

3 22.9
5+
2 8.8 6+

2 72.5 7+
2 0.7 6+

4 0.3
6+
1 1.8 6+

3 39.5 8+
1 0.3 7+

1 72.1
6+
2 1.5 6+

4 3.4 8+
2 0.0 7+

2 4.6
6+
3 3.0 7+

2 5+
1 217.7 8+

1 6+
1 129.8 7+

1 1.0
6+
4 1.0 5+

2 24.8 6+
2 1.9 8+

1 215.0
6+
4 4+

1 0.1 5+
3 4.7 6+

3 21.3 8+
2 2.8

4+
2 0.0 6+

1 1.5 6+
4 0.6 10+

1 8+
1 85.3

4+
3 0.0 6+

2 0.4 7+
1 41.4 8+

2 0.0
4+
4 0.2 6+

3 59.5 7+
2 0.0 8+

3 0.3
5+
1 0.1 6+

4 0.3 8+
2 6+

1 29.0 10+
2 8+

1 0.1
5+
2 0.1 7+

3 5+
1 0.0 6+

2 251.8 8+
2 268.3

6+
1 0.0 5+

2 0.0 6+
3 156.4 8+

3 5.6
6+
2 0.5 5+

3 0.0 6+
4 0.0

In order to analyze the shell model results we use the following expres-
sions for the spectroscopic quadrupole moment, in the case of the axial rotor
model (Ref. [14])

Qs = Q0

3K2 − J(J + 1)

(J + 1)(2J + 3)
, (1)

Q0 being the intrinsic quadrupole moment. For transitions between levels
of the same K band, in this model the expression of the B(E2, Ji → Jf) is

B(E2, Ji → Jf) =
5

16π
Q2

t 〈Ji K 2 0 |Jf K〉2 (2)

as customarily we take Qt = Q0. For transition between levels belonging to
a K = 2 band and a K = 0 band we take

B(E2, JiK → Jf , 0) = M 〈Ji K 2 − 2|Jf 0〉2 , (3)

where M is a constant, since intraband transition may not be sufficient
to verify the interpretation of the shell model results in terms of collective
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models. Since the 2+
2 level is low in energy, we consider also the rigid triaxial

model (Ref. [15]), which might be useful in analyzing the low energy part
of the spectrum. We use the tables of Ref. [16] which give the spectroscopic
quadrupole moments in units of

Q′

0 =
3eZR2β′

√
5π

, (4)

where Z is the proton number, R = 1.2A1/3fm is the nuclear radius and β′

is the deformation variable pertinent to the triaxial case (the ′ is needed in
order to distinguish its value from the case of the axial rotor). The unit for

the B(E2) values in the tables of Ref. [16] is Q′

0

2/(16π). The deformation
variable β relevant to the axial case can be extracted from Qs(2

+
1 ) using the

expression

Q0 =
3eZR2β(1 + 0.36β)√

5π
. (5)

For the rigid triaxial model the γ deformation variable, which determines the
deviation from axial symmetry, is determined from the ratio E(2+

2 )/E(2+
1 )

which in this model is given by the expression

E(2+
2 )

E(2+
0 )

=
3 + x

3 − x
, x =

√

9 − 8 sin2(3γ) . (6)

The value of the deformation variable β′ can conveniently be determined
from the expression for B(E2 − 2+

1 → 0+
1 ) which is given by the expression

B(E2, 2+
1 → 0+

1 ) =
Q′

0

2

16π

1

2

[

1 +
3 − 2 sin2(3γ)

x

]

(7)

since this quantity has only a mild dependence in the variable γ. Also,
in the rigid triaxial model the position of the first 3+ state (not known
experimentally) is fixed by the position of the 2+

1 and 2+
2 states as E(3+

1 ) =
E(2+

1 ) + E(2+
2 ). In the shell model calculation this relation is reproduced

within 10% error. The analysis of the shell model results with these models
can be helpful in identifying bands characterized by large intraband B(E2)
values (in the case of the triaxial model some intraband B(E2) can be 0, cf.

Ref. [16]).
The interpretation of the shell model results in terms of the γ−unstable

model of Wilets and Jean (Ref. [17]), at least in its simplest version, can
be ruled out by looking at allowed transition in the model, for example the
3+
1 → 4+

1 . However, this transition is strongly suppressed in the shell model
calculation. Large B(E2) values are typically of the order of 102 e2fm4
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while B(E2, 3+
1 → 4+

1 ) = 1. e2fm4 (the Weisskopf unit for this nucleus is
11.5 e2fm4). Moreover, in the γ-unstable model, the transition 3+

1 → 2+
1

is forbidden. Instead this transition is reasonably large in the shell model
calculation since B(E2, 3+

1 → 2+
1 ) = 74.6 e2fm4.

Using the shell model value for E(2+
2
)/E(2+

0
) ratio and Eq. (6), as-

suming rigid triaxiality, we have γ = 22.24◦ and from the expression of
B(E2, 2+

1 → 0+
1 ) in Eq. (7) we have β′ = +0.27 (since Qs(2

+
1 ) < 0). If

we assume axial symmetry, the value of β is 0.24, slightly lower than the
value obtained in Ref. [10] using the KB3G Hamiltonian. In Table III, we
show a comparison between the intraband B(E2)’s for the gs band and the
quasi-γ band (the 2+

2 , 3+
1 , 4+

2 , 5+
1 , 6+

2 , 7+
1 , 8+

2 states) given by the shell model,
with the triaxial (we use the tables for γ = 22.5◦, of Ref. [16]) and the ax-
ial rotor model and the experimental values reported in Ref. [9]. Although
the agreement is satisfactory at low spins, the collective models predict too
large B(E2) at high spin (we considered energy independent deformation
variables) compared with both experimental and shell model values.

The interband quasi-γ to gs band B(E2)’s, shown in Table IV, are far
more difficult to reproduce. The coefficient M in Eq. (3), which is needed
for the interband B(E2) in the case of the axial rotor model, has been fixed
using the B(E2, 2+

2 → 0+
1 ) shell model value. Both models fail to reproduce

the shell model values although the axial rotor model is in fair agreement
with the scarce experimental data. Although it seems that the bands have a
mixed character it does not seem to be the K-mixing of the triaxial model.

The spectroscopic quadrupole moments for the triaxial rotor, the axial
rotor and the corresponding shell model values are shown in Table V. The
intrinsic Q0 was determined from the B(E2, 2+

1
→ 0+

1
) shell model value.

Overall it seems that there is a considerable K mixing and that both models
are not fully adequate for this nucleus.

From the B(E2)(2+
3 → 0+

2 ) and B(E2)(4+
4 → 2+

3 ) values of Table III
it is plausible to interpret the 0+

2 , 2+
3 , 4+

4 states as members of a “quasi-
β” band, although the intraband B(E2) should increase with the angular
momentum. The large B(E2) between 0+

2 and 2+
2 (324 e2fm4) point out to

a very strong (and unexpected) coupling between this “quasi-β” band and
the quasi-γ band. Also the 2+

3 has a large B(E2) to the 3+
1 and 4+

2

The 3+
2 state (cf. Table II) has no B(E2) to the lower levels and, if

collective, are not part of any quasi-γ band, since both axial and triaxial
rotor models predict Qs = 0 for such a state. On the other hand, Qs(3

+
2 ) is

large and it is tempting to classify this state as the band head of a K = 3
band. If we assign to this state a K = 3, then Q0 = 126 efm2. Other
possible members of this band (very likely of strongly mixed nature) are
the the 4+

3 , 5+
2 , 6+

3 states (these last two states are nearly degenerate). The
interpretation of these states as members of a K = 3 band is not entirely con-
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TABLE IV

Shell model gs and γ intraband and interband B(E2) in e2fm4 and their correspond-
ing triaxial rotor (γ = 22.5◦) and axial rotor values. The experimental values are
from Ref. [9].

J+
i → J+

f B(E2)(SM) B(E2)(triaxial) B(E2)axial Exp.

2+
1 → 0+

1 216.1 216.5 216
4+
1 → 2+

1 283.6 315.5 309 300 ± 69
6+
1 → 4+

1 197.5 385 340 124 ± 40
8+
1 → 6+

1 129.8 428 356 74 ± 25

4+
2 → 2+

2 214.3 103.6 129
5+
1 → 3+

1 226 207 206
6+
2 → 4+

2 197.3 193 254
7+
1 → 5+

1 20.7 293 285
8+
2 → 6+

2 251.8 233 306
3+
1 → 2+

2 406.4 387 386
4+
2 → 3+

1 352.3 157 288
5+
1 → 4+

2 67.5 221 206
6+
2 → 5+

1 115. 32 152
7+
1 → 6+

2 72.5 143 116
8+
2 → 7+

1 25.5 5 91

2+
2 → 0+

1 57.1 14 57.1∗

2+
2 → 2+

1 11.7 129 82
2+
2 → 4+

1 0.1 4
3+
1 → 2+

1 74.6 25 102
3+
1 → 4+

1 1.0 41
4+
2 → 2+

1 65.1 2 34
4+
2 → 4+

1 4.2 78 100
5+
1 → 4+

1 47.6 2 91
5+
1 → 6+

1 0.0 52
6+
2 → 4+

1 97.9 2 28 29 ± 14
6+
2 → 6+

1 99.3 32 104

∗ This value was used to determine the coefficient M .

sistent, since the ratios Qs(4
+
3 )/Qs(3

+
2 ), Qs(5

+
2 )/Qs(3

+
2 ) and Qs(6

+
3 )/Qs(3

+
2 )

obtained from Eq. (3) are not consistent with the corresponding shell model
ratios. The B(E2)’s of these states to all others lying below in energy shows
that this “band” is of mixed nature.

The 2+
5 state has negligible B(E2)’s to all states lying below. On the

other hand, the 3+
3

state has a rather large B(E2) to 2+
5

(413.5 e2fm4),
a small quadrupole moment, Q(3+

3 ) = 9.5 efm2, and very small B(E2) to all
other lower states. Using Eq. (1), with the assumption of K = 2, we obtain
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TABLE V

Shell model, triaxial rotor and axial rotor spectroscopic quadrupole moments for
the gs and γ bands in units efm2. The triaxial rotor values correspond to γ = 22.5◦.

J+
n

Qs(Shell model) Qs(triaxial) Qs(axial)

2+1 −30.86 −23.7 −29.8
4+1 −38.5 −19.4 −37.9
6+1 −17.1 −16 −41.7
8+1 −14.31 −16 −43.9
10+1 20.9 −15 −45.3

2+2 33.91 23.7 29.8
3+1 −1.4 0.0 0.0
4+2 −9.9 −30 −15
5+1 −19.3 −19 −24
6+2 6.9 −44 −30
7+1 21.5 −23 −34
8+2 −22.8 −41 −36

an intrinsic quadrupole moment for the 2+
5 state Q0 = 111.65 efm2 and using

Eq. (2) for the intraband K = 2 B(E2) values, we obtain B(E2)(3+
3 → 2+

5 ) =
443 e2fm4, to be compared with the shell model value of 413.5 e2fm4. We
conclude that these two states are members of a quasi-γ band distinct from
the one previously discussed. These band was not seen in previous shell
model studies.

In Ref. [10], the 6+
2 state was interpreted as the band head of a K = 6

band. With the GXPF1A interaction such a band has the 6+
4 and 7+

3 states
as members. In fact, the 6+

4 state has no appreciable B(E2) to any state
lying below and the 7+

3 has large B(E2) only to 6+
4 (132.5 e2fm4), all other

B(E2) are smaller than 2.3 e2fm4. As a test we can extract the intrinsic
quadrupole moment from Qs(6

+
4 ) using Eq. (1) and evaluate the axial rotor

prediction for Qs(7
+
3 ) and for the intraband B(E2) value. The intrinsic Q0

for the 6+
4

state is 83.05 efm2 and Eq. (1) gives Qs(7
+
3
) = 31.75 efm2 in

good agreement with the shell model value 32.9 efm2. The B(E2) value
from Eq. (2) for the transition 7+

3 → 6+
4 is 191 e2fm4 to be compared with

the shell model value 132.5 e2fm4.
Concluding, we have compared shell model transition rates and quadru-

pole moments with the triaxial and axial rotor models in their simplest
versions. Although too simple to reproduce the low energy part of the
spectrum, the axial rotor model has been useful to analyze other bands
(a strongly mixed K = 0 band, another K = 2, possibly a K = 3 band and
a K = 6 band).
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