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In this paper we provide a pseudospectral method for Lane–Emden
equation which models many phenomena in mathematical physics and as-
trophysics. We also use this method for solving unsteady gas equation
which model unsteady flow of a gas through a semi-infinite porous medium.
This approach is based on some orthogonal functions which will be defined.
Pseudospectral method reduces the solution of these problems to the so-
lution of systems of algebraic equations. We also compare this work with
some other numerical results.

PACS numbers: 87.10.Ed, 95.90.+v, 02.70.Jn

1. Introduction

In the study of stellar structure [1] an important mathematical model
described by the second-order ordinary differential equation

xy′′ + 2y′ + xg(y) = 0 , x > 0 , (1)

arises, where g(y) is some given function of y. One of the most popular
forms of g(y) is

g(y) = ym , (2)

subject to the conditions

y(0) = 1 , y′(0) = 0 . (3)

This equation is standard Lane–Emden equation. It was first proposed by
Lane [2] and studied in more detail by Emden [3]. The Lane–Emden equation
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describes a variety of phenomena in theoretical physics and astrophysics, in-
cluding aspects of stellar structure, the thermal history of a spherical cloud
of gas, isothermal gas spheres, and thermionic currents [4]. This equation
is one of the basic equations in the theory of stellar structure and has been
the focus of many studies [5–14]. It describes the temperature variation of
a spherical gas cloud under the mutual attraction of its molecules and sub-
ject to the laws of classical thermodynamics. The polytropic theory of stars
essentially follows out of thermodynamic considerations, that deal with the
issue of energy transport, through the transfer of material between different
levels of the star. The physically interesting range of m is 0 ≤ m ≤ 5. Nu-
merical and perturbation approaches to solve equation (2) with g(y) = ym

have been considered by various authors. It has been claimed in the litera-
ture that only for m = 0, 1 and 5 the solutions of the Lane–Emden equation
(also called the polytropic differential equations) could be given in closed
form [15].

In fact, for m = 5, only a 1-parameter family of solutions is presented.
The so-called generalized Lane–Emden equation of the first kind have been
looked at in Goenner [16] and Havas [17].

1.1. Lane–Emden equation

Recently, many analytical methods have been used to solve Lane–Emden
equation, the main difficulty arises in the singularity of the equation at
x = 0. Currently, most techniques in use for handling the Lane–Emden-type
problems are based on either series solutions or perturbation techniques.

Bender et al. [7], proposed a new perturbation technique based on an
artificial parameter δ, the method is often called δ-method.

Mandelzweig et al. [12] used quasilinearization approach to solve Lane–
Emden equation. This method approximates the solution of a nonlinear
differential equation by treating the nonlinear terms as a perturbation about
the linear ones, and unlike perturbation theories is not based on the existence
of some kind of a small parameter. He showed that the quasilinearization
method gives excellent results when applied to different nonlinear ordinary
differential equations in physics, such as the Blasius, Duffing, Lane–Emden
and Thomas–Fermi equations.

Shawagfeh [13] applied a nonperturbative approximate analytical solu-
tion for the Lane–Emden equation using the Adomian decomposition method.
His solution was in the form of a power series. He used Padé approximations
method to accelerate the convergence of the power series.

Seidov et al. [18] approximated analytical solution of Lane–Emden equa-
tion of index 5 with rational function and discussed accuracy of this solution.
Seidov [19] also calculated a well-known series solution for Lane–Emden
equation as:
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y(x) =
∞
∑

k=0

akx
2k ,

where a0 = 1 and a1 = −1/6 and

ak =
1

(k − 1)(k)(2k + 1)

k−1
∑

j=1

(jm + j − k + 1)(k − j)(2k − 2j + 1)ajak−j ,

where k ≥ 2.
In [14], Wazwaz employed the Adomian decomposition method with an

alternate framework designed to overcome the difficulty of the singular point.
It was applied to the differential equations of Lane–Emden type. Further
in [20] he used the modified decomposition method for solving analytical
treatment of nonlinear differential equations such as Lane–Emden equation.
The modified method accelerates the rapid convergence of the series solution,
dramatically reduces the size of work, and provides the solution by using few
iterations only without any need to the so-called Adomian polynomials.

Liao [21] provided a reliable, easy-to-use analytical algorithm for Lane–
Emden type equations. This algorithm logically contains the well-known
Adomian decomposition method. Different from all other analytical tech-
niques, this algorithm itself provides us with a convenient way to adjust
convergence regions even without Padé technique.

He [22] employed Ritz method to obtain an analytical solution of the
problem. By the semi-inverse method, a variational principle is obtained
for the Lane–Emden equation, which he gave much numerical convenience
when applied to finite element methods or Ritz method.

Parand et al. [23,24] presented two numerical techniques to solve higher
ordinary differential equations such as Lane–Emden. Their approach was
based on rational Chebyshev and rational Legendre tau method. They pre-
sented the derivative and product operational matrices of rational Chebyshev
and rational Legendre functions.

These matrices together with the tau method were utilized to reduce the
solution of these physical problems to the solution of systems of algebraic
equations.

Ramos [25–28] solved Lane–Emden equation through different methods.
In [26] he presented linearization methods for singular initial-value problems
in second-order ordinary differential equations such as Lane–Emden. These
methods result in linear constant-coefficients ordinary differential equations
which can be integrated analytical, thus yielding piecewise analytical so-
lutions and globally smooth solutions. Later, he [27] developed piecewise-
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adaptive decomposition methods for the solution of nonlinear ordinary differ-
ential equations. Piecewise-decomposition methods provide series solutions
in intervals which are subject to continuity conditions at the end points of
each interval, and their adaption is based on the use of either a fixed number
of approximants and a variable step size, a variable number of approximants
and a fixed step size or a variable number of approximants and a variable
step size.

In [28], series solutions of the Lane–Emden equation have been obtained
by writing this equation as a Volterra integral equation and assuming that
the nonlinearities are sufficiently differentiable. These series solutions have
been obtained by either working with the original differential equation or
transforming it into an ordinary differential equation that does not contain
first-order derivatives. It has been shown that these approaches provide ex-
actly the same solutions as those based on Adomian’s decomposition tech-
niques that make use of either a different differential operator that overcomes
the singularity at x = 0, or a new dependent variable, and Liao’s homotopy
analysis technique. Series solutions to the Lane–Emden equation have also
been obtained by working directly on the original differential equation or
transforming it into a simpler one.

Yousefi [29] presented a numerical method for solving the Lane–Emden
equation as singular initial value problems. Using integral operator and con-
vert Lane–Emden equations to integral equations and then applying Legen-
dre wavelet approximations. He presented Legendre wavelet properties at
first. Then utilized these properties together with the Gaussian integra-
tion method to reduce the integral equations to the solution of algebraic
equations.

In [30], Chowdhury et al. presented a reliable algorithm based on the
homotopy-perturbation method (HPM) to solve singular IVPs of time-inde-
pendent equations. They obtained the approximate and/or exact analytical
solutions of the generalized Emden–Fowler type equations. This method is
a coupling of the perturbation method and the homotopy method. The HPM
is a novel and effective method which can solve various nonlinear equations.
The main feature of the HPM is that it deforms a difficult problem into
a set of problems which are easier to solve. In this work, HPM yields solu-
tions in convergent series forms with easily computable terms.

Aslanov [31] introduced a further development in the Adomian decom-
position method to overcome the difficulty at the singular point of non-
homogeneous, linear and non-linear Lane–Emden-like equations, and con-
structed a recurrence relation for the components of the approximate solu-
tion and investigated the convergence conditions for the Emden–Fowler type
of equations. He improved the previous results on the convergence radius of
the series solution.
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Recently, Dehghan and Shakeri [32] applied an exponential transforma-
tion to the Lane–Emden equation to overcome the difficulty of a singular
point at x = 0, and then solved the resulting nonsingular problem by the
variational iteration method.

Bataineh et al. [33] presented a reliable algorithm based on HAM to
obtain the exact and/or approximate analytical solutions of the singular
IVPs of the Emden–Fowler type.

The HAM, first proposed by Liao in his Ph.D. dissertation [21], is
a promising method for linear and non-linear problems. HAM contains
an auxiliary parameter ~ which provides us with a simple way to adjust
and control the convergence region and the rate of convergence of the se-
ries solution. In this paper, we aim to employ the pseudospectral method
to a singular form of Lane–Emden type initial value problem and an ordi-
nary differential equation that describes the unsteady flow of gas through
a semi-infinite porous medium directly.

One of the most accurate analytical solutions are found to Lane–Emden
equation of arbitrary index n, by Seidov [34], he used Picard type iteration
scheme and rational Padé approximants.

1.2. Unsteady gas equation

In the study of the unsteady flow of a gas through a semi-infinite porous
medium [35,36] initially filled with gas at a uniform pressure p0 ≥ 0, at time
t = 0, the pressure at the outflow face is suddenly reduced from p0 to p1 ≥ 0
(p1 = 0 is the case of diffusion into a vacuum) and is, thereafter, maintained
at this lower pressure. The unsteady isothermal flow of gas is described by
a nonlinear partial differential equation. The nonlinear partial differential
equation that describes the unsteady flow of gas through a semi-infinite
porous medium has been derived by Muskat [37] in the form

∇2
(

P 2
)

=
2Φµ

k

∂P

∂t
, (4)

where P is the pressure within porous medium, Φ the porosity, µ the vis-
cosity, k the permeability, and t the time. New variables were introduced
by Kidder [35] and Davis [38] to transform the nonlinear partial differential
equation (4) to the nonlinear ordinary differential equation. The nonlin-
ear ordinary differential equation due to Kidder [35] given by (unsteady gas
equation)

y′′ + 2xy′/(1 − αy)1/2 = 0 , x > 0 , 0 < α < 1 . (5)

The typical boundary conditions imposed by the physical properties are

y(0) = 1 , y(∞) = 0 . (6)



1754 K. Parand, A. Taghavi, M. Shahini

A substantial amount of numerical and analytical work has been invested
so far [35, 39] on this model. The main reason of this interest is that the
approximation can be used for many engineering purposes. As stated before,
the problem (5) was handled by Kidder [35] where a perturbation technique
is carried out to include terms of the second order. Recently, Wazwaz [40]
has applied the modified decomposition method for solving this nonlinear
equation. The base of his approach is modification of the Adomian decom-
position method. The diagonal Padé approximations are effectively used in
the analysis to capture the essential behavior of y(x) and to determine the
initial slope y′(0).

2. Rational Chebyshev functions

This section is devoted to introducing rational Chebyshev functions and
expressing some basic properties of them. At the end, we applied rational
Chebyshev approximation to solve Lane–Emden and unsteady gas equations.

Rational Chebyshev functions denoted by Rn(x) are generated from well-
known Chebyshev polynomials by using the algebraic mapping φ(x) = (x−
L)/(x + L) [41–43]

Rn(x) = Tn (φ(x)) , (7)

where L is a constant parameter and Tn(y) is the Chebyshev polynomial of
degree n.

The constant parameter L sets the length scale of the mapping. Boyd
[44–47] offered guidelines for optimizing the map parameter L where L > 0.

Numerical results deponed smoothly on constant parameter L, and there-
fore are not very sensitive to L, so the error varies very slowly with L around
the minimum. A little trial and error is usually sufficient to find a value that
is nearly optimum. In general, there is no way to avoid a small amount of
trial and error in choosing L when solving problems on an unbounded do-
main. Experience and the asymptotic approximations of Boyd [46] can help,
but some experimentation is always necessary as he explains in his book [44].

Using properties of Chebyshev polynomials, we have

Rn(x) =

⌊n

2
⌋

∑

i=0

(−1)i2n−2i

(

n − i

i

)(

x − L

x + L

)n−2i

−
⌊n−1

2
⌋

∑

i=0

(−1)i2n−2i−1

(

n − i − 1

i

)(

x − L

x + L

)n−2i

. (8)

Other properties of rational Chebyshev functions and a complete discus-
sion on approximating functions by rational Chebyshev functions are given
in [42, 43].
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2.1. Rational Chebyshev functions approximation

Let
RN = span

{

R0, R1, ..., RN

}

. (9)

We define PN : L2
w(Λ) → RN by

PNu(x) =

N
∑

k=0

akRk(x) . (10)

To obtain the order of convergence of rational Chebyshev approximation,
we define the space

Hr
w,A(Λ) = {v : v is measurable and ‖v‖r,w,A < ∞} , (11)

where the norm is induced by

‖v‖r,w,A =

(

r
∑

k=0

∥

∥

∥

∥

(x + 1)
r

2
+k dk

dxk
v

∥

∥

∥

∥

2

w

) 1

2

, (12)

and A is the Sturm–Liouville operator as follows:

Av(x) = −w−1(x)
d

dx

(

w−1(x)
d

dx
v(x)

)

. (13)

w(x) is the weight function and w(x) =
√

L/(
√

x(x + L)). We have the
following theorem for the convergence:

Theorem 1. For any v ∈ Hr
w,A(Λ) and r ≥ 0,

‖PNv − v‖w ≤ cN−r‖v‖r,w,A . (14)

Proof 1. A complete proof is given by Guo et al. [42].
This theorem shows that the rational Chebyshev approximation has ex-

ponential convergence.

2.2. Solving Lane–Emden equation by rational Chebyshev functions

In the first step of our analysis, we apply PN operator on the function
y(x) as follows:

PNy(x) =

N
∑

k=0

akRk(x) . (15)
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Then, we construct the residual function by substituting y(x) by PNy(x) in
the Lane–Emden equation:

Res(x) =
d2

dx2
PNy(x) +

2

x

d

dx
PNy(x) + (PNy(x))m . (16)

The equations for obtaining the coefficients aks come from equalizing Res(x)
to zero at rational Chebyshev–Gauss–Radau points plus two boundary con-
ditions:

Res(xj) = 0 , j = 1, 2, . . . , N − 1 , (17)

PNy(0) = 1 , (18)

d

dx
PNy(x)

∣

∣

∣

x=0
= 0 . (19)

Solving the set of equations we have the approximating function PNy(x).

2.3. Solving unsteady gas equation by rational Chebyshev functions

Solving unsteady gas equation is the same as solving Lane–Emden equa-
tion. So the residual function is

Res(x) =
d2

dx2
PNy(x) +

2x

(1 − αy)1/2

d

dx
PNy(x) , (20)

and the set of equations for obtaining the coefficients aks are as follows:

Res(xj) = 0 , j = 1, 2, . . . , N − 1 , (21)

PNy(0) = 1 , (22)

lim
x→∞

PNy(x) = 0 . (23)

3. Modified generalized Laguerre functions

The Laguerre approximation has been widely used for numerical solu-
tions of differential equations on infinite intervals. Lα

n(x) (generalized La-
guerre polynomial) is the nth eigenfunction of the Sturm–Liouville prob-
lem [48,49]:

x
d2

dx2
Lα

n(x) + (α + 1 − x)
d

dx
Lα

n(x) + nLα
n(x) = 0 ,

x ∈ I = [0,∞) , n = 0, 1, 2, .... .

The generalized Laguerre polynomials are defined with the following recur-
rence formula:

Lα
0 (x) = 1 , Lα

1 (x) = 1 + α − x ,
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nLα
n(x) = (2n − 1 + α − x)Lα

n−1(x) − (n + α − 1)Lα
n−2(x) ,

these are orthogonal polynomials for the weight function wα = xαe−x. We
define Modified generalized Laguerre functions (which we denote MGLF) φj

as follows:

φj(x) = exp(−x/(2L))L1
j (x/L) , L > 0 . (24)

This system is an orthogonal basis [50, 51] with weight function w(x) = x
L

and orthogonality property:

〈φn, φm〉wL
=

(

Γ (n + 2)

L2n!

)

δnm ,

where δnm is the Kronecker function.

3.1. Function approximation with Laguerre functions

A function f(x) defined over the interval I = [0,∞) can be expanded as

f(x) =
∞
∑

i=0

aiφi(x) , (25)

where

ai =
〈f, φi〉w
〈φi, φi〉w

. (26)

If the infinite series in Eq. (25) is truncated with N terms, then it can be
written as

f(x) ≃
N−1
∑

i=0

aiφi(x) = AT φ(x) , (27)

with

A = [a0, a1, a2, . . . , aN−1]
T , (28)

φ(x) = [φ0(x), φ1(x), . . . , φN−1(x)]T . (29)

3.2. Modified generalized Laguerre functions collocation method

Laguerre–Gauss–Radau points and generalized Laguerre–Gauss-type in-
terpolation were introduced by [52–54].

Let

RN = span
{

1, x, . . . , x2N−1
}

,
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we choose the collocation points relative to the zeroes of the functions

pj(x) = φj(x) − ((j + 1)/j)φj−1(x) . (30)

Let w(x) = x
L and xj , j = 0, 1 . . . , N − 1, be the N MGLF-Radau points.

The relation between MGLF orthogonal systems and MGLF integrations is
as follows [55]:

+∞
∫

0

f(x)w(x)dx =

N−1
∑

j=0

f(xj)wj +

(

Γ (N + 2)

(N)!(2N)!

)

f2N (ξ)eξ ,

where 0 < ξ < ∞ and wj = xjΓ (N + 2)/(L(N + 1)![(N + 1)φN+1(xj)]
2),

j = 0, 1, 2, . . . , N − 1. In particular, the second term on the right-hand side
vanishes when f(x) is a polynomial of degree at most 2N − 1. We define

INu(x) =

N
∑

j=0

ajφj(x) , (31)

such that INu(xj) = u(xj), j = 0, . . . , N − 1. INu is the orthogonal projec-
tion of u upon RN with respect to the discrete inner product and discrete
norm as:

〈u, v〉w,N =
N−1
∑

j=0

u(xj)v(xj)wj ,

‖ u ‖w,N = 〈u, u〉1/2

w,N ,

thus for the MGLF Gauss–Radau interpolation we have

〈INu, v〉w,N = 〈u, v〉w,N , ∀u.v ∈ RN .

3.3. Solving Lane–Emden equation with modified generalized

Laguerre functions

To apply scaled Laguerre collocation method to the standard Lane–
Emden Equation introduced in Eq. (1) and Eq. (2) with boundary conditions
Eq. (3), at first we expand y(x), as follows:

INy(x) =
N
∑

j=0

ajφj(x) . (32)
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To find the unknown coefficients aj’s, we substitute the truncated series
into the Eq. (1) with g(y) introduced in Eq. (2) and boundary conditions in
Eq. (3). So we have

x
N
∑

j=0

ajφ
′′
j (x) + 2

N
∑

j=0

ajφ
′
j(x) + x





N
∑

j=0

ajφj(x)





m

= 0 , (33)

N
∑

j=0

ajφj(0) = 1 ,

N
∑

j=0

ajφ
′
j(0) = 0 . (34)

By replacing x in Eq. (33) with the N −1 collocation points which are roots
of functions d

dxLα
N , we have N − 1 equations that generates a set of N + 1

nonlinear equations with boundary equations in Eq. (3).
Table I shows the comparison of the first zero of y, between Padé

approximation used by [7] and rational Chebyshev pseudospectral method
(i.e. RCM) and modified generalized Laguerre functions method
(i.e. MGLFM) for m = 3/2, 2, 3, 4.

TABLE I

The comparison of the first zero of y, between [7] and the present methods for
m = 3/2, 2, 3, 4.

m N MGLFM RCM Bender Exact value

3/2 6 3.65637555 3.65987637 — 3.65375373
2 6 4.35251508 4.35280120 4.3603 4.35287460
3 6 6.89658947 6.89201052 7.0521 6.89684862
4 6 14.9715138 14.9715334 17.967 14.9715463

Tables II and III show the approximations of y(x) for standard Lane–
Emden with m = 3/2, 4 obtained respectively by the methods proposed in
this paper, and those obtained by Horedt [56].

TABLE II

The comparison of y(x) for present methods and solutions of Horedt [56] for
m = 3/2.

Error Error Solutions
x MGLFM (MGLFM) RCM (RCM) of Horedt

0.00 1.0000000000 0.0000000000 1.0000000000 0.0000000000 1.0000000000
0.10 0.9971426000 0.0011920000 0.9964563409 0.0018782591 0.9983346000
0.50 0.9590036100 0.0001002900 0.9537462726 0.0053576274 0.9591039000
1.00 0.8435829000 0.0015869000 0.8434562598 0.0017135402 0.8451698000
3.00 0.1587468000 0.0001108000 0.1589386000 0.0000810000 0.1588576000
3.60 0.0112354500 0.0001444600 0.0111649900 0.0000710000 0.0110909900



1760 K. Parand, A. Taghavi, M. Shahini

TABLE III

The comparison of y(x) for present methods and solutions of Horedt [56] for m = 4.

Error Error Solutions
x MGLFM (MGLFM) RCM (RCM) of Horedt

0.0 1.0000000000 0.0000000000 1.0000000000 0.0000000000 1.0000000000
0.1 0.9983130000 0.0000237000 0.9983163409 0.0000203591 0.9983367000
0.2 0.9938112140 0.0004250140 0.9937462726 0.0003600726 0.9933862000
0.5 0.9609840230 0.0006731230 0.9610174048 0.0007065048 0.9603109000
1.0 0.8602647800 0.0005490200 0.8606462598 0.0001675402 0.8608138000
10.0 0.0607033550 0.0010306150 0.0701785255 0.0105057855 0.0596727400
14.0 0.0091557100 0.0008251830 0.0100712416 0.0017407146 0.0083305270
14.9 0.0005981000 0.0000216811 0.0006992396 0.0001228207 0.0005764189

3.4. Solving unsteady gas equation with modified generalized

Laguerre functions

Solving this equation (5) is the same as solving the Lane–Emden equa-
tion. Let

Res(x) =
d2

dx2

N
∑

j=0

ajφj(x) +
2x

(1 − α
∑N

j=0
ajφj)1/2

d

dx

N
∑

j=0

ajφj(x) , (35)

and the set of equations for obtaining the coefficients aks are as follows:

Res(xj) = 0 , j = 1, 2, . . . , N − 1 , (36)

N
∑

j=0

ajφj(0) = 1 , (37)

it is clear that limx→∞
∑N

j=0
ajφj(x) = 0. It seems that MGLF has solutions

like Wazwaz method [40] with Padé [3,3] and RCM has solutions like the
perturbation method used by [35].

Table IV shows the comparison of the y′(0), obtained by MGLFM and
RCM for N = 6, 7 and Padé approximation used by [40].

TABLE IV

The comparison of initial slope y′(0) for α = 0.5.

N MGLFM RCM Padé [2,2] Padé [3,3]

6 −1.36417503 −1.10805718 −1.37317809 −1.02552970
7 −1.38213483 −1.26259357 −1.37317809 −1.02552970
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Table V shows the approximations of y(x) for standard unsteady gas
with α = 0.5 obtained by the methods proposed in this paper for N = 7, the
perturbation method used by [35], and Padé approximation by Wazwaz [40].

TABLE V

The values of y(x) for α = 0.5, for x = 0.1 to 1.0.

x MGLFM RCM Perturbation Padé [2,2] Padé [3,3]

0.1 0.89035366 0.88042558 0.88165883 0.86330606 0.89791670
0.3 0.70810133 0.66402932 0.65653800 0.60330541 0.70411297
0.5 0.53394788 0.46068185 0.46136503 0.37616039 0.53705338
0.7 0.40743340 0.30320332 0.30559765 0.18968434 0.40624260
0.9 0.31070888 0.19666414 0.19046237 0.04323673 0.31799666
1.0 0.28306464 0.15835106 0.15876898 0.01646751 0.29002550

4. Conclusions

The fundamental goal of this paper was to construct an approximation
to the solution of some well known nonlinear ordinary differential equations
which model many phenomena in mathematical physics and astrophysics.
A set of orthogonal functions were proposed to provide an effective but
simple way to improve the convergence of the solution by pseudospectral
method. We solved Lane–Emden with this method, the findings showed
that the present solutions with MGLFM and RCM were highly accurate.

We also used pseudospectral method to solve unsteady gas equation. It
seems that MGLFM has solutions like Wazwaz method [40] with Padé [3,3],
and RCM has solutions like the perturbation method used by [35].
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