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Common beliefs about unitarity are not reliable, and we do not know
how to apply DGLAP evolution at small x. Together with the big discrep-
ancy between the measurements of the total cross-section at the Tevatron,
a consequence is that the cross-section at the LHC could be anywhere be-
tween 90 and 160 mb.

PACS numbers: 11.55.Jy, 13.60.Hb, 13.85.Dz, 13.85.Lg

1. Introduction

The LHC will probe physics under extreme conditions. This means that
past physical intuition may be unreliable, and models that depend on intu-
ition may break down. Therefore it is important to ask which of our current
beliefs have a sound theoretical basis, and which are just based on folklore.

I will concentrate on two topics where our fundamental understanding is
particularly uncertain:

• unitarity,

• DGLAP evolution at small x.

I will show that our lack of understanding of these has serious consequences
for what is probably the first thing that will be measured at the LHC, the
total cross-section. The best estimate has a huge error:

σLHC = 125 ± 35 mb . (1.1)

My understanding of most of the material that I review here derives
from my work over the years with Sandy Donnachie. Further details may
be found in our book [1].
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2. Unitarity

For an elastic hadron-scattering amplitude, the unitarity equation reads

* i
2

+ inelastic terms

or
Im aℓ(s) = |aℓ(s)|2 + inelasticterms (2.1)

so that the partial-wave amplitude obeys

|aℓ(s)| < 1 . (2.2)

A well-known consequence of (2.2) is the Froissart–Lukaszuk–Martin
bound [2, 3]:

σTOT(s) <
π

m2
π

log2

(

s

s0

)

. (2.3)

At LHC energies, for reasonable values of the unknown scale s0, this gives
a bound of several barns, and so it is not a useful constraint.

A more useful bound is that of Pumplin [4]:

σELASTIC < 1
2 σTOTAL . (2.4)

The exchange of a single pomeron exchange IP gives

σTOTAL ∼ sε , ε ≈ 0.08 ,

and
dσ

dt

ELASTIC∣

∣

∣

t=0
∼ s2ε (2.5)

which clearly causes this bound to be violated at large enough s. The remedy
is to sum single-IP , double-IP , . . . exchanges:
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...

However, even though we started trying to learn how to do this more than
40 years ago, we still do not know how.

The best we can do, although it is certainly wrong [1], is to use an eikonal
formalism. Write the amplitude as a 2-dimensional Fourier integral

A
(

s,−q2
)

= 4

∫

d2b e−iq.bÃ
(

s, b2
)

. (2.6)



Fundamental Problems with Hadronic and Leptonic Interactions 1969

Define χ(s, b) = − log(1 + 2iÃ/s) so that

Ã(s, b2) = 1
2 is

(

1 − e−χ(s,b)
)

. (2.7)

Then the bound (2.2) on the partial-wave amplitude may be shown to be
equivalent to

Re χ(s, b) ≥ 0 (2.8)

which is easy to impose. If we expand the exponential in (2.7) in powers
of χ we have

A(s,−q2) = 2is

∫

d2b e−iq.b
(

1 − e−χ(s,b)
)

= 2is

∫

d2b e−iq.b

(

χ − χ2

2!
+

χ3

3!
. . .

)

. (2.9)

So far, the equations are certainly correct. But we do not know what
to take for χ(s, b). An obvious choice is to approximate it by single-IP
exchange. Although we do not know how to calculate double-IP exchange,
we do know something about its general structure, and the second term
in (2.9) has the right structure. Similarly, the third term has the right
structure to represent triple-IP exchange, and so on. Nevertheless, this is
wrong, for various reasons [1]. One one is that double-IP exchange obviously
depends on two-quark correlations in the proton wave function, which are
absent in this procedure.

There has been a lot of talk about the consequences of unitarity for pro-
cesses with leptons or photons in the initial state; for example it is believed
to lead to what is known as saturation. It is important to understand that
basic theory alone does not allow one to conclude anything, without feeding
in extra assumptions. That is, there may well be no unitarity bound on
F2(x,Q2). The reason is that the analogue of (2.1) for γ∗p scattering

* i
2

+ inelastic terms

is not true. This is the case even for γp scattering: for all we know, the γp
total cross-section could continue to increase indefinitely with increasing
energy.

3. DGLAP evolution at small x

Claims by experimentalists and theorists to be able to extract parton
densities with high accuracy from data, for use at the LHC, must be regarded
with caution. This is because we do not know how to handle DGLAP
evolution at small x.
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The singlet DGLAP equation is:

∂

∂t
u

(

x,Q2
)

=

1
∫

x

dzP
(

z, αs

(

Q2
))

u
(

x/z,Q2
)

,

u
(

x,Q2
)

=

(

q
(

x,Q2
)

g
(

x,Q2
)

)

. (3.1)

The terms of the perturbation expansion of P (z, αs(Q
2)) diverge like 1/z at

z = 0. For small x the integration extends to small values of z and therefore
it is wrong to expand P (z, αs(Q

2)) in powers of αs.
A possible exception is when u(x,Q2) rises steeply with 1/x. To un-

derstand this, approximate u(x,Q2) in some range of x at some value of
Q2 by

u
(

x,Q2
)

∼ f
(

Q2
)

x−ε (3.2)

and insert this into the DGLAP equation (3.1). This gives

∂

∂t
log f

(

Q2
)

= P̃ (N = ε , αs

(

Q2
)

) −
x

∫

0

dzzεP
(

z, αs

(

Q2
))

(3.3)

with P̃ the Mellin transform of P . The last term ∼ xε and so is negligible
at small x if ε is some way above 0. A pole of P (z, αs(Q

2)) at z = 0 reflects

itself in a pole of P̃ (N,αs(Q
2) at N = 0. So if ε is some way above 0 we are

at some distance from this pole and then also it should be safe to expand the
first term in powers of αs. By doing so, and dropping the last term in (3.3),
we obtain a simple differential equation for f(Q2).

The simplest fit to F2 at small x is a combination of two powers of x,
hard-pomeron and soft-pomeron:

F2

(

x,Q2
)

= f0

(

Q2
)

x−ε0 + f1

(

Q2
)

x−ε1 ,

ε0 ≈ 0.4 , ε1 = 0.0808 . (3.4)

The fit has just 5 free parameters, including ε0. See figure 1.
Donnachie and I made this fit [5] purely phenomenogically, but we then

found [7] that its output for the coefficient function f0(Q
2) in (3.4) obeys

the DGLAP evolution differential equation to very high accuracy, both at
LO and at NLO. See figure 2. DGLAP evolution is supposed to be valid
only for large Q2 and we can see from the figure that this means at least 5
to 10 GeV2. It certainly does not make sense to use it down to 1 or 2 GeV2,
as is often done.
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Fig. 1. Simple fit (3.4) to data for F2(x, Q2) at small x.
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As I have explained, DGLAP evolution breaks down for the soft-pomeron
coefficient function f1(Q

2), as ε1 is too close to 0. The conventional approach
to DGLAP evolution, used by many theorists and experimentalists to extract
what are claimed to be highly accurate parton distributions, amounts to
ignoring this difficulty.

Our simple fit (3.4) applies only at small x, which is why figure 1 shows
data only for x < 10−3. If we want to extend it to larger values of x,
we should add in a Regge term x−εR with εR ≈ −1

2 , corresponding to f2

and a2 exchange. Also, the simple powers of x in (3.4) must be multiplied by
functions that go to 0 as x → 1. We do not know what these should be, so
Donnachie and I took [5] just the powers of (1−x) given by the dimensional
counting rules. This is certainly too simple to be correct but is better than
doing nothing. It is also astonishingly successful: see figure 3, which shows
also what the fit gives for the γp total cross-section. Compared with figure 1,
only 2 free parameters have been added, both for the Regge term.

4. Total cross-section at the LHC

Given that the data for F2(x,Q2) respond so well to a fit that includes
a hard pomeron, it is natural [6] to include such a term also in fits to pp and
p̄p scattering. That is, for each of σ(pp), σ(pp̄), σ(γp) include hard pomeron,
soft pomeron and Regge exchange:

σ = X0s
ε0 + X1s

ε1 + XRsεR . (4.1)

The result is shown in figure 4. In the left-hand figure, the lowest curve is the
hard-pomeron contribution. The right-hand figure shows the extrapolation
to LHC energy of the two fits, this new one and the old fit without a hard
pomeron term.

Notice the familiar and long-standing discrepancy between the E710 and
CDF measurements at the Tevatron. If the upper CDF measurement should
be correct, it surely is a sign that something new is beginning to become
important at Tevatron energy, with the consequence that the LHC cross-
section will be large. This observation does not depend on any particular
theoretical explanation of the data.

However, the large prediction for the LHC total cross-section when the
hard pomeron is included will lead some to worry about unitarity. Some
even worry about unitarity for the lower curve. Donnachie and I stressed
when we made the original DL fit [9] that the power ε1 ≈ 0.08 was an
effective power that already, to some extent, includes unitarity corrections;
nevertheless Alan Martin and collaborators believe [8] that this is not enough
to take account of unitarity and so predict that the LHC cross-section will
be about 90 mb.
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Fig. 3. The fit to F2 extended to larger values of x, and to real-photon data.

I have explained that nobody knows how to calculate the effects of uni-
tarity. I will now describe an attempt to do so, which should not be taken
at all seriously.
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Fig. 4. Fits to pp and p̄p total cross-sections.

Consider pp and p̄p elastic scattering. At existing energies, soft pomeron
exchange dominates and its contribution has been known for nearly 40 years:

dσ

dt
=

[3β1F1(t)]
4

4π

(

α′

1s
)2(ε1+α′

1
t) . (4.2)

Here F1(t) is the elastic form factor of the proton and β1 and ε1 are known
from σTOT. As long ago as 1973, my then student Jaroskiewicz [10] found
that data fix the only free parameter α′

1 to be 0.25 GeV−2. This is done
by using very-small-t data at some energy: see figure 5(a). Then the for-
mula (4.2) fits the data out to rather larger values of t at that energy, as is
seen in figure 5(b). Because F1(t) is raised to the 4-th power the fit is rather
sensitive to it. I do not understand why the proton’s electromagnetic form
factor should be appropriate, since pomeron exchange has the opposite C
parity from photon exchange.
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As is well known, at small t pp elastic scattering displays shrinkage:
dσ/dt becomes steeper as the energy increases. The rate of shrinkage is
determined by the value of α′

1, and 0.25 GeV−2 describes the data very well
at all the different energies that have been measured [1].

At large values of |t|, greater than about 3 GeV2, the data take on
a different character. They are described very well by

dσ

dt
= 0.09 t−8 (4.3)

and are independent of energy. See figure 6. The form (4.3) is what is
obtained from the triple-gluon-exchange mechanism of figure 7. This raises
an interesting question [11]: what if one replaces each gluon with a hard
pomeron? This might provide a mechanism which, while it is too small to
be seen at existing energies, grows rapidly with energy and is large at LHC
energy. That is, dσ/dt at the LHC might be large at large t.
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Fig. 6. Large-t data for pp elastic scattering at various energies, with the fit (4.3).

Fig. 7. Triple-gluon exchange.
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At energies corresponding to the data plotted in figures 5 and 6, pp elas-
tic scattering data display a striking dip structure at values of t in between
those of the two figures. See figure 8. It is not easy to generate a dip: the
real and imaginary parts of the amplitude must be very small at the same
t, which requires something of an accident. It needs at least three contribu-
tions: probably IP , IPIP and ggg. However, the third of these three terms
has the opposite C parity from the first two, which led us to predict [12]
that p̄p scattering should not have a dip. As the figure shows, this was later
confirmed. An exchange such as ggg which has negative C parity is known
as odderon exchange; it is a mystery why odderon exchange has not been
detected at smaller values of t.
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Fig. 8. pp and p̄p elastic scattering data. The left hand figure is for pp and the
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and the upper points are p̄p, the lower pp.

The fit shown in figure 5 to elastic scattering at relatively low energy
remains good at very small t as the energy is increased but becomes less
good at larger values of t. Figure 9 shows data for p̄p elastic scattering from
the two Tevatron experiments. The curve corresponds to the exchange of
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Fig. 9. p̄p elastic scattering data from the Tevatron; the curve corresponds to the

exchange of single hard and soft pomerons.
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a single soft pomeron plus that of a single hard pomeron. I have explained
that we do not know how to calculate the exchange of two pomerons, but
we know enough about its general features to know that including this will
pull dσ/dt down at larger t. As a very crude model that includes the two-
pomeron exchanges IP0IP0, IP1IP1 and IP0IP1 (where again the subscripts 0
and 1 denote the hard and soft pomerons), I calculated the b-space amplitude
for the sum of the IP0 and IP1 exchanges, and squared it to simulate the sum
of the IPIP exchanges:

Ã(s, b) = 2is
(

χ(s, b) − λ[χ(s, b)]2
)

. (4.4)

I chose the value of λ to cancel the imaginary part of the amplitude so
as to get the dips in pp scattering at the right value of t, and added in ggg
exchange. The large-t form (6) of the latter needs to be modified at smaller t
so that it does not diverge, and one does not know how to do this, but I
guessed a form with a single parameter which I chose so as the optimise the
fit to the dip structure. My best fit to the data is shown in figure 10.
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Fig. 10. pp and p̄p elastic scattering data at various with fit IP + IPIP + ggg.

The result for the total cross-section at the LHC is that including the
two-pomeron exchanges pulls the prediction down from 160 to 125 mb: see
figure 11. The lower curve in the figure corresponds to single soft pomeron
exchange only. So, since my attempt to include the double exchanges is
surely very crude, I have to conclude that the LHC total cross-section could
be anywhere between 100 and 160 mb. Remember, though, that it might be
even smaller [8].
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Fig. 11. Extrapolations to LHC energy of fits to the total cross-section. The upper

curve corresponds to the fits to the amplitude shown in figure 10, including IPIP

exchanges, while the lower curve omits any hard-pomeron contribution.

5. Summary

• σLHC = 125± 35 mb.

• We do not know how usefully to impose unitarity — eikonal-type mod-
els are surely too simple.

• Unitarity does not constrain lepton or photon-induced cross-sections.

• We still cannot calculate IPIP exchange — even after more than 45
years.

• There are severe mathematical problems with DGLAP at small x.

• DGLAP cannot be used below Q2 = 5 GeV2.

• Regge fits to F2(x,Q2) are the simplest — and probably the most
correct.

• Elastic scattering at the LHC at large t may be surprisingly large.

• If the CDF Tevatron cross-section is correct, something dramatic must
happen — independently of any theory!
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