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In high energy collisions saturation and multiple collisions are most eas-
ily accounted for in transverse coordinate space, while analyses in momen-
tum space have been more suitable for calculating properties of exclusive
final states. In this paper I describe an extension of Mueller’s dipole cascade
model, which attempts to combine the good features of both these descrip-
tions. Besides saturation it also includes effects of correlations and fluctua-
tions, which have been difficult to account for in previous approaches. The
model reproduces successfully total, elastic, and diffractive cross-sections
in pp collisions and DIS, and a description of final states will be ready soon.

PACS numbers: 12.38.–t, 13.60.Hb, 13.85.–t

1. Introduction

In this paper I want to discuss some results related to saturation and
multiple collisions obtained in collaboration with Avsar, Flensburg, and
Lönnblad [1, 2]. In high energy pp collisions the minijet cross-section is
much larger than the total cross-section. This implies that each event con-
tains on average more than one minijet pair, and multiple subcollisions are
an essential feature of high energy hadronic reactions. A formulation in
transverse coordinate space and the eikonal approximation are particularly
suited for a treatment of these features, and has been successfully applied to
γ∗p collisions, both for total and diffractive scattering cross-sections [3, 4].
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The application of the eikonal formalism is, however, mainly applicable
for inclusive observables, and a description of exclusive final states is more
easy in momentum space. At present the most successful model for high
energy pp collisions is the Pythia model by Sjöstrand and coworkers [5],
which has been extensively tuned to Tevatron data by Field [6].

There are, however, a set of problems connected to these tunes. How
does the partonic final state hadronize? A fit to data needs strong colour
reconnections, for which we have a poor theoretical understanding. Also
it is difficult to properly include effects of correlations and fluctuations in
momentum space cascades.

In this paper I want to discuss a new approach based on Mueller’s dipole
cascade model, which is an attempt to combine the good features of formu-
lations in transverse coordinate space and in momentum space.

2. Minimum bias and underlying events

In collinear factorization the inclusive parton scattering cross-section di-
verges like dσ̂/dp2

⊥
∼ 1/p4

⊥
for small p⊥. An estimate of the integrated

jet cross-section above a cut p⊥,min is shown in Fig. 1 for pp scattering at
14 TeV. We here see that for p⊥,min < 5 GeV the integrated jet cross-section
exceeds the total cross-section, which implies that an average collision must
have several hard subcollisions.
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Fig. 1. Integrated jet cross-section above a cut p⊥,min at 14 TeV, from Ref. [7].
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Multiple collisions have also been directly observed in collider experi-
ments. Thus four-jet events with pairwise back-to-back jets have been seen
by AFS at the ISR, by UA2 at the CERN Spp̄S collider, and by CDF at the
Tevatron. At the Tevatron the most clear signal is observed in the analysis
of 3 jets + a prompt photon [8].

It was early suggested that the increase in the pp cross-section is driven
by minijet production, and that minimum bias events are dominated by
(semi)hard parton subcollisions [9]. This is also an essential assumption
in the Pythia model. This model is also based on collinear factorization,
which implies that a cutoff is needed for the singularity at small p⊥. This
is motivated by the fact that hadrons are colour neutral, and therefore the
Coulomb potential must be screened for large impact parameters or small p⊥.
Fits to collider data give a cutoff at around 2 GeV, slowly increasing at higher
energies. (A similar cutoff is also obtained naturally in the k⊥-factorization
formalism [10]. In the dipole cascade model the transverse momentum k⊥ of
a colliding gluon is related to the dipole size in transverse coordinate space,
and therefore also to the screening length.)

For the more recent version of Pythia this cutoff gives typically 2–3
interactions per event at the Tevatron, and 4–5 at the LHC. An impor-
tant feature is also that the subcollisions are correlated. Central collisions
have many interactions, while peripheral collisions have few. In the ex-
perimental analyses this is described in terms of an effective cross-section
σeff . The cross-section σDPS for the simultaneous hard reactions A and B
(with A 6= B) is written as σDPS = σAσB/σeff . If the interactions A and B
were uncorrelated we would have σeff equal to the inelastic nondiffractive
cross-section (∼ 50 mb at the Tevatron). Instead the experimental results
give the much smaller result σeff ≈ 15 mb, which thus corresponds to a very
strong enhancement.

Although the Pythia model has been tuned to fit most of the CDF
data on minimum bias and underlying events, there are a number of open
questions:

How does a many-parton system hadronize in an event with multiple
hard subcollisions? The result expected in the string hadronization model is
illustrated in Fig. 2. In a hard gluon–gluon subcollision the outgoing gluons
will be colour-connected to the projectile and target remnants, as shown in
Fig. 2(a). Initial state radiation may give extra gluon “kinks”, which are
ordered in rapidity. A second hard scattering would naively be expected to
give two new strings connected to the remnants as in Fig. 2(b). As a result
this would give almost doubled multiplicity. This is not in agreement with
data. In the successful fits [6] it is instead assumed that the gluons are colour
reconnected, so that the total string length becomes as short as possible,
see Fig. 2(c). This colour reconnection implies that a minimum number of
hadrons share the transverse momentum of the partons.
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Fig. 2. (a) In a hard gluon–gluon subcollision the outgoing gluons will be colour-

connected to the projectile and target remnants. Initial state radiation may give

extra gluon kinks, which are ordered in rapidity. (b) A second hard scattering

would naively be expected to give two new strings connected to the remnants.

(c) In the fits to data the gluons are colour reconnected, so that the total string

length becomes as short as possible.

In most analysis, including Pythia, it is assumed that the impact pa-
rameter and momentum distributions of the interacting partons factorize.
In a dipole cascade model strong non-factorizing correlations are expected
between impact parameter, momentum, and multiplicity of the colliding
partons in a proton. Besides such correlations, also the expected large fluc-
tuations in multiplicity and impact parameter distributions are more difficult
to include in a momentum space formalism.

3. Eikonal formalism

A formalism in transverse coordinate space is very suitable for describing
rescattering and multiple collisions. In a process where a particle undergoes
successive interactions with transverse momenta k⊥i, the resulting trans-
verse momentum k⊥ =

∑

k⊥i is given by a convolution of the different
interactions. As the Fourier transform of a convolution is given by a simple
product, we see that in impact parameter space the multiple interactions
are described by a product of the S-matrix elements for the individual in-
teractions:

S(b) = S1(b)S2(b)S3(b) . (1)

Thus for Si = e−ηi(b) we find S = e−
P

ηi .

3.1. Weizsäcker–Williams method of virtual quanta

A Coulomb field which is boosted is contracted to a flat pancake, with
a dominantly transverse electric field

E⊥ ∼ g
r

r2
, (2)
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and an orthogonal transverse magnetic field with the same magnitude. Here
r is the (two-dimensional) distance between the position of the central charge
and the point of observation (see Fig. 3). The pulse will be very short in
time, and can be approximated by a δ-function:

I(t) ∼ E⊥B⊥ ∼ g2 1

r2
δ(t) . (3)

The frequency distribution is given by the Fourier transform of I(t), which is
a constant. Thus the distribution of photons, or gluons, seen by an observer
at point r is given by

dn ∼ g2 d2r

r2

dω

ω
∼ g2 d2q⊥

q2
⊥

dω

ω
. (4)
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Fig. 3. A Coulomb field in a boosted frame is compressed to a flat pancake.

Inside a proton there is a very complicated colour field. We may however
imagine that within some distance r0 from a colour charge it is approximately
a Coulomb field, while for larger distances the charge is screened by other
charges. If r0 is around 0.1 fm this would give an effective cutoff for hard
subcollisions with p⊥min ≈ 10 fm−1 ≈ 2 GeV, as obtained in the fits to
experimental data.

A bremsstrahlung gluon from this field will change the colour of the
initial charge. If e.g. the initial charge is a red quark, it may emit a red–
antiblue gluon and change its colour to blue. The result is that the initial
red Coulomb field now terminates at the gluon charge, and a blue–antiblue
dipole field is formed between the quark and the gluon. The emission of
softer gluons now get two separate contributions, one from the modified
Coulomb field and one from the new colour dipole between the quark and
the gluon. The repeated emission of more gluons results in a cascade, as
discussed in the next section.
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3.2. The Mueller dipole model

A dipole cascade model in transverse coordinate space was developed
by Mueller in a series of papers [11]. We study an initial colour neutral
quark–antiquark system. The colour dipole field gets two contributions of
the form in Eq. (2), as shown in Fig. 4(a). Adding these with opposite signs
the resulting transverse colour-electric field E⊥ is given by

E2
⊥ ∼ g2 R2

r2
1r

2
2

, (5)

where R is the size of the parent dipole, and r1 and r2 are the distances
from the point r to the two charges (see Fig. 4(a)). As discussed above this
implies that the probability to emit a gluon in the point r becomes

dP

dy
= ᾱ

d2r

2π

R2

r2
1 r2

2

. (6)

If the initial charges were e.g. red and antired, the emitted gluon may be
red–antiblue, changing the initially red charge to blue. Therefore such an
emission implies that the dipole is split in two connected dipoles, one blue–
antiblue and one red–antired. These can then also split repeatedly in a dipole
cascade, as shown in Fig. 4(b). In Ref. [11] it is demonstrated that this
cascade reproduces the LL BFKL evolution.
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Fig. 4. (a) The transverse colour-electric field in a colour dipole. (b) Gluon emis-

sion splits the dipole into two dipoles. Repeated emissions give a cascade, which

produces a chain of dipoles.

When two such cascades collide as in Fig. 5, two dipoles (i and j with end-
points (r1, r2) and (r3, r4), respectively) may interact via gluon exchange.
Adding coherently the exchange between charge or anticharge in both dipoles
gives the interaction probability

fij =
α2

s

8
ln2

(

(r1 − r3)
2(r2 − r4)

2

(r1 − r4)2(r2 − r3)2

)

. (7)
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As the exchanged gluon carries colour, the dipole chains are reconnected,
as also indicated in Fig. 5. The result is two dipole chains connecting the
remnants of the projectile and the target systems, as also illustrated in Fig. 2.
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Fig. 5. A symbolic picture of a γ∗γ∗ collision in y − r⊥-space. When two colliding

dipoles interact via gluon exchange the colors are reconnected forming dipole chains

stretched between the remnants of the colliding systems.

It is also possible that several pairs (i, j) interact. In the eikonal approx-
imation the total, diffractive, and elastic cross-sections are given by







σtot ∼ d2b 2〈(1 − e−
P

fij )〉 ,

σdiff ∼ d2b 〈(1 − e−
P

fij )2〉 (incl. elastic) ,

σel ∼ d2b (〈1 − e−
P

fij 〉)2 .

(8)

We note that as the parentheses always are smaller than unity, unitarity
is always satisfied. We also note that diffractive excitation, which is given
by the difference between the second and third lines in Eq. (8), is directly
determined by the fluctuations in the cascade evolution.

A schematic picture of a collision between two evolved dipole cascades is
shown in Fig. 6. In this example there are in the cms (indicated by a dashed
line) three separate subcollisions. These also correspond to the exchange of
three pomerons. They result in two closed loops formed by chains of colour
dipoles, in addition to the two dipole chains which connect the projectile
and target remnants. Fig. 6 also contains a dipole loop (denoted A) inside
the evolution of the left system, before it collides. Such loops are, however,
not included in Mueller’s model, which only accounts for loops cut in the
specific Lorentz frame used for the calculation. This implies that this model
is not Lorentz frame independent.
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Fig. 6. A schematic picture of a collision between two evolved dipole cascades. In

the cms (indicated by a dashed line) there are three separate subcollisions. There

is also a dipole loop (marked A) within the left system, caused by a “dipole swing”.

The parts of the evolutions marked B and C do not interact, and should be treated

as virtual.

3.3. Problems

Although Mueller’s cascade model, and also e.g. the Balitsky–Kovchegov
evolution equation, reproduce LL BFKL evolution and satisfies the unitarity
constraints, they have a set of problems:

• LL BFKL is not good enough. NLL corrections are very large.

• Non-linear effects in the evolution are not included.

• Massless gluon exchange implies a violation of Froissart’s bound.

• It is difficult to include fluctuations and correlations; the BK equation
represents a mean field approximation.

• They can only describe inclusive features, and not the production of
exclusive final states.

• Analytic calculations are mainly applicable at extreme energies, well
beyond what can be reached experimentally.

3.4. Monte Carlo simulations

Non-leading effects, e.g. effects of energy conservation and a running
coupling, are often easier included in Monte Carlo simulations. A simulation
of Muller’s cascade model has been presented by Salam [12]. However, as the
dipole splitting diverges for small dipole sizes, r, (see Eq. (6)) this simulation
is hampered by numerical difficulties. It is noticed that the fluctuations in
the number of dipoles is very large, which causes serious problems.
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4. A new approach

In Refs. [1,2] we describe a modification of Mueller’s cascade model with
the following features:

• It includes essential NLL BFKL effects.

• It includes non-linear effects in the evolution.

• It includes essential correlations and fluctuations.

• It can also describe exclusive final states.

The model is also implemented in a Monte Carlo simulation program.
Here the NLL effects significantly reduce the production of small dipoles,
and thereby also the associated numerical difficulties with very large dipole
multiplicities are avoided. Confinement corrections are also included, but
this is numerically less important than NLL and non-linear effects.

4.1. NLL effects

The NLL corrections to BFKL evolution have three major sources [13]:

• The running coupling. This is relatively easily included in a MC sim-
ulation process.

• Non-singular terms in the splitting function. These terms suppress
large z-values in the individual branchings, and prevent the daughter
from being faster than her recoiling parent. Most of this effect is taken
care of by including energy-momentum conservation in the evolution.

• Projectile-target symmetry. This is also called energy scale terms, and
is essentially equivalent to the so called consistency constraint. This
effect is taken into account by conservation of both positive and neg-
ative lightcone momentum components, p+ and p−.

The treatment of these effects includes effects beyond NLL, in a way sim-
ilar to the treatment by Salam in Ref. [13]. Thus the power λeff , determining
the growth for small x, is not negative for large values of αs.

4.2. Non-linear effects and saturation

As mentioned above, dipole loops within the evolution, as indicated by
the letter A in Fig. 6, are not included in Mueller’s cascade model or in
the JIMWLK or BK equations. Like for dipole scattering the probability
for such loops is given by αs, and therefore formally colour suppressed com-
pared to dipole splitting, which is proportional to ᾱ = Ncαs/π. These loops
are therefore related to the probability that two dipoles have the same colour.
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Two dipoles with the same colour form a quadrupole. Such a field may be
better approximated by two dipoles formed by the closest colour–anticolour
charges. This corresponds to a recoupling of the colour dipole chains, as
indicated in Fig. 7. We call this process a dipole “swing”. Although this
mechanism does not give an explicitly frame independent result, MC simu-
lations show that it is a very good approximation (see also Fig. 8 below). We
note that in this formulation the number of dipoles is not reduced. The sat-
uration effect is obtained because the swing favours the formation of smaller
dipoles, which have a smaller cross-section. Thus in an evolution in momen-
tum space the swing would not correspond to an absorption of gluons below
the saturation line k2

⊥
= Q2

s (x); it would rather correspond to lifting the
gluons to higher k⊥ above this line.

b

a
c d

Fig. 7. Schematic picture of a dipole swing. If the two dipoles a and b have the

same color, they can be replaced by the dipoles c and d. The result is a closed loop

formed within an individual dipole cascade.

4.3. Confinement

The exchange of massless gluons gives an interaction of infinite range,
which eventually will violate Froissart’s bound. This long range interac-
tion is suppressed by introducing an effective gluon mass. Thus the gluon
propagator 1/k2

⊥
is replaced by 1/(k2

⊥
+ m2). This implies that the ex-

pression for the transverse electric field in Eq. (2) should be replaced by
r/(rrmax)K1(r/rmax), and in the interaction probability in Eq. (7) the log-
arithms ln(1/r) are replaced by K0(rmax/r). Here rmax = 1/m and K1 and
K0 are modified Bessel functions. For small values of r the expressions are
unchanged, but when r becomes larger than rmax they become exponentially
suppressed.

4.4. Exclusive final states

As the size of a dipole is also associated with (the inverse of) its trans-
verse momentum, the event depicted in Fig. 6 can also be interpreted as
an exclusive final state with definite parton momenta. It is true that tak-
ing the Fourier transform is not exactly the same as replacing r by r/r2.
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Therefore, when there is a conflict, what we really are generating is per-
haps not r with the approximation k⊥ ≈ 1/r, but rather generating k⊥ with
r ≈ 1/k⊥. There are also some other problems which have to be solved. In
the evolution of a particle with a high value for the lightcone momentum,
p+, but very little p−, the gluons in the cascade will accumulate a large
deficit of p−, which has to be “payed back” when it collides with a target
having a large p− but small p+. Dipole chains like the ones indicated by B
and C in Fig. 6, which do not interact, can not come on shell and have to
be treated as virtual. Thus only gluons which are connected to daughters
involved in the collisions should be included in the initial state radiation.

An important feature is that all dipoles are connected in chains, which
implies strong non-trivial correlations [14]. A toy model calculation by
Corke [15] shows that such correlations can have a big effect on the need for
colour reconnections in the final state.

The full calculation of the final state properties is not yet implemented
in the MC, but will be ready in the near future.

5. Applications

For the results presented in this section we have used a simple model for
the proton wave function, in form of three dipoles in an equilateral trian-
gle. For larger Q2 the wavefunction for a virtual photon is determined by
perturbation theory, but for smaller Q2 it is necessary to include a nonper-
turbative component representing the soft hadronic part of the photon. For
more details see Ref. [2].

5.1. Total cross-sections

The total pp cross-section is shown in Fig. 8(a). We note that the one-
pomeron result, which neglects unitarity constraints, is about a factor four
too high at Tevatron energies. Also saturation effects inside the evolution,
simulated by the swing, have a significant effect, reducing the cross-section
by about 30%. We also see that including the swing makes the result ob-
tained in the rest frame of the target (long dashed line) very close to the
result in the cms (solid line), which shows that the result is almost Lorentz
frame independent.

The total γ∗p cross-section is presented in Fig. 8(b) against the Golec-
Biernat–Wüsthoff scaling parameter τ = Q2/Q2

s , where Q2
s = Q2

0(x0/x)λ

with Q0 = 1 GeV, x0 = 3 × 10−4, λ = 0.29 [3]. We note that our result, in
agreement with the data, satisfies geometric scaling both for small τ , where
the result is influenced by saturation, and for larger τ where saturation is
not essential.
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Fig. 8. Left: The model results for the total pp scattering cross-section. Results

are presented for evolution with and without the dipole swing mechanism. The

one pomeron result and the result obtained in a frame where one of the protons

is almost at rest is also shown. Right: γ∗p total cross-section compared to data

from H1 [16] and Zeus [17]. The result is plotted as a function of the GBW scaling

variable τ = Q2/Q2

s
(x).

5.2. Elastic and quasielastic cross-sections

Fig. 9 shows the elastic pp cross-section. As the real part of the amplitude
is neglected the diffractive dip is a real zero. The position of this dip can
be tuned at one energy, but the change to smaller t at higher energies is
a result of the evolution, which cannot be tuned.
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Fig. 9. The differential cross-section for pp elastic scattering, together with data

from UA4 [18] and CDF [19]. The figure also includes a prediction for the LHC.

Quasielastic γ∗p scattering is also well reproduced by the model, includ-
ing the dependence on Q2, W , and t. As two examples Fig. 10 shows the
Q2-dependence for DVCS and the W -dependence for γ∗p → ρp. For the lat-
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ter case two different ρ-meson wavefunctions were used, a boosted Gaussian
wavefunction [23] and the DGKP [24] wavefunction. Both models show sim-
ilar growth with W , but our normalization agrees better with the boosted
Gaussian wavefunction.
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Fig. 10. Left: The cross-section for γ∗p → γp for W = 82 GeV as function of

Q2, compared to data from H1 [20]. Right: The cross-section for γ∗p → ρp for
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5.3. Diffraction

As discussed above diffractive excitation is directly determined by the
fluctuations in the evolution. As an example, if we calculate the expression

∫

d2b

{〈

〈

1 − e−
P

fij

〉2

L

〉

R

−
〈

1 − e−
P

fij

〉2

LR

}

(9)

in a frame where the right-moving proton is evolved yR rapidity units, it
gives the cross-section for single diffractive excitation of this proton to masses
satisfying M2

X < M2
0 exp(yR), with M0 ∼ 1 GeV. Here L and R indicate av-

erages over left- and right-moving proton cascades respectively. The result
obtained when varying yR is shown in Fig. 11(a) compared with correspond-
ing results from the Tevatron.

We also note that as the fluctuations in the evolution are quite large, less
fluctuations are needed in the impact parameter profile. Thus this profile
is more gray, and less black and white, than in fits where the fluctuations
in the evolution are not taken into account. This is seen in Fig. 11(b),
which shows a comparison between our model and the result by Kowalski
and Teaney [26] for the scattering of a dipole against a proton. In the latter
analysis the fluctuations in the evolution are not included.
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are estimates from CDF data [25]. Right: The impact parameter profile for dipole–
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energies, Y = ln s = 9 and 11. Our results (solid and dashed lines) are compared

to those from the Kowalski–Teaney [26] model (dot-dashed and dotted lines).

6. Summary

• A new dipole formulation of high energy collisions in transverse coor-
dinate space is presented

• It has the following main ingredients:

– NLL corrections to BFKL

– non-linear effects: saturation and multiple subcollisions

– confinement effects

– includes momentum-impact parameter correlations

– simple proton and photon models

– MC implementation

• It gives a fair description of data for:

– total cross-sections for pp and γ∗p collisions

– (quasi-)elastic scattering in pp and γ∗p

– diffractive excitation

• To come soon: Generation of exclusive final states.

• Wanted: Better understanding of the connection to the t-channel pic-
ture of pomeron loops.
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