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TRANSVERSE HYDRODYNAMICS

IN RELATIVISTIC HEAVY-ION COLLISIONS∗
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General features of the formalism describing hydrodynamic evolution of
transversally thermalized matter possibly produced at the very early stages
of ultra-relativistic heavy-ion collisions are presented. Thermodynamical
consistency of the model is emphasized. The covariant formulas for the
moments of the phase-space distribution function are derived. The simple
model for the transition from purely transverse to standard perfect-fluid
hydrodynamics is proposed.

PACS numbers: 25.75.–q, 25.75.Dw, 25.75.Ld

1. Introduction

It is commonly accepted that the evolution of the hot and dense matter
created in heavy-ion collisions at the RHIC energies can be reasonably well
described in the framework of the relativistic hydrodynamics of a perfect
fluid [1–10]. Nevertheless, the standard hydrodynamic approach, assum-
ing three dimensional (3D) thermalization of the system, encounters severe
problems concerning initial conditions. The main issue in this respect is to
explain the very early thermalization time of the created system, which is
required by the standard hydrodynamic models to describe the elliptic flow
coefficient and the particle transverse-momentum spectra.

Recently a possible solution of this puzzle has been proposed by Bialas
et al. in [11]. In this approach one assumes that at the very early stages
the hydrodynamic description applies only to transverse degrees of freedom,
where the thermalization is quite easy to achieve, while in the longitudi-
nal direction the motion is reduced to simple parton free streaming. The
thermalized, two-dimensional (2D) objects corresponding to the group of
particles moving with the same rapidity are called (transverse) clusters.
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Originally, the idea of the purely transverse thermalization of matter cre-
ated in heavy-ion collisions was introduced by Heinz and Wong [12,13], with
the conclusion that such a model cannot describe the RHIC data. However,
the new formulation of this concept in Refs. [11,14] showed that the idea of
the purely transverse thermalization may be consistent with the experimen-
tal results.

In this paper we concentrate on the discussion of the formal aspects of
the transverse-hydrodynamics model, which were first studied in [15]. In
particular, we extent formal results obtained in [11, 14] by including the
effects of finite parton masses and quantum statistics.

2. Hydrodynamical equations

The relativistic hydrodynamic equations of the perfect fluid valid for
transversally thermalized matter follow from the energy-momentum conser-
vation law, ∂µT µν = 0, with the energy-momentum tensor of the form

T µν =
n0

τ
[(ε2 + P2)UµUν − P2 (gµν + V µV ν) ] . (1)

Here τ =
√

t2 − z2 is the longitudinal proper time and n0 describes the
density of clusters in rapidity.

Since clusters are 2D objects, whose thermodynamic properties should
be described by the proper 2D thermodynamic variables, we introduce the
quantities ε2, P2, n2 and s2 which denote the 2D energy density, pressure,
particle density, and entropy density, respectively. The essential feature of
our treatment is that those variables satisfy the standard thermodynamic
identities. In our considerations the number of particles is not conserved,
hence, throughout the paper we restrict ourselves to the case of vanishing
chemical potential, µ = 0. In this case we have

ε2 + P2 = Ts2 (2)

and
dε2 = Tds2 , dP2 = s2dT , (3)

where T stands for the temperature.
The definition of the energy-momentum tensor (1) includes also the two

mutually orthogonal four-vectors Uµ and V µ. The timelike four-vector Uµ,
defined by the equation

Uµ = (u0 cosh η, ux, uy, u0 sinh η) , (4)

describes the four-velocity of the fluid element and may be obtained from
the four-vector uµ =

(

u0, ~u⊥, 0
)

= u0 (1, vx, vy, 0) by performing the Lorentz
boost along the z axis with the spacetime rapidity
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η =
1

2
ln

t + z

t − z
. (5)

The quantity uµ is the normalized to unity four-velocity of the fluid el-

ement in the rest frame of the cluster and u0 ≡ γ =
(

1 − v2
)− 1

2 is the
Lorentz gamma factor, determined by the hydrodynamic transverse flow
v = (v2

x + v2
y)

1/2.
The special role played by the longitudinal direction in the transverse

hydrodynamics, as the direction of the free streaming of the clusters, entails
the appearance of the additional spacelike four-vector V µ, which is defined
by the equation

V µ = (sinh η, 0, 0, cosh η) . (6)

In the rest frame of the cluster, where η = 0, one finds V µ = (0, 0, 0, 1). The
straightforward calculation of the components of the energy-momentum ten-
sor in the rest frame of the fluid element (where in addition to the condition
η = 0 we have also ~u⊥ = 0) yields the diagonal form

T µν =
n0

τ









ε2 0 0 0
0 P2 0 0
0 0 P2 0
0 0 0 0









. (7)

Vanishing of the T 33 component describing the longitudinal pressure is a di-
rect consequence of the appearance of the term V µV ν in (1) and it indicates
that there is no momentum transport across the cluster, which also means
that there is no interaction between the clusters. Furthermore, as compared
to the standard hydrodynamics, the lack of the longitudinal pressure effects
in a more rapid transverse expansion of the matter, since all the energy
accumulated in the clusters at the very beginning of the collision has to
be used for transverse acceleration only. Of course, it is expected that such
a situation cannot last long since the collisions between partons tend to ther-
malize the system also in the longitudinal direction. Hence, within at most
few fermis after the collision, the transition from transverse to standard 3D
hydrodynamics is expected.

One may check by the direct calculation that the energy-momentum
conservation law leads to the entropy conservation law

Uν∂µT µν = T∂µSµ = 0 , (8)

whose structure is similar to that known from the standard hydrodynamics.
In Eq. (8) we introduced the entropy current which is given by the expression

Sµ =
n0

τ
s2U

µ . (9)
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Equation (8) agrees with our expectations, since the evolution in the cluster
is entropy conserving and the longitudinal expansion of clusters is just free
streaming, which cannot produce entropy. In other words, the assumption
that the considered system is a simple superposition of the 2D expanding
perfect fluids implies directly the adiabaticity of the flow.

Similarly to the standard hydrodynamics we can incorporate Eq. (8) into
the energy-momentum conservation law to derive the relativistic analog of
the Euler equation

Uµ∂µ(TUν) = ∂νT + V νV µ∂µT . (10)

In comparison with the standard hydrodynamics, an additional term propor-
tional to V µV ν is present in Eq. (10). By performing projections of Eq. (10)
on the four-vectors Uµ and V ν we check that Eq. (10) contains only two
independent equations. Altogether with Eq. (8) we have a system of three
independent equations for four unknown functions

s2 (τ, ~x⊥) , T (τ, ~x⊥) , ux (τ, ~x⊥) , uy (τ, ~x⊥) . (11)

Hence, as in the standard hydrodynamics, we need to add the equation of
state connecting s2 and T to solve the system of hydrodynamic equations.
The reduction of the number of independent equations from three to two
is expected, because the evolution along the z axis is fixed and only the
transverse evolution needs to be determined.

Our hydrodynamic equations can be further rewritten in a different form
which is more convenient for numerical calculations. In this case we use
standard cylindrical coordinates, i.e., we introduce the distance from the

beam axis r=
√

r2
x + r2

y and the azimuthal angle φ = tan−1(ry/rx), where

~x⊥ = (rx, ry). We also introduce the parameterization of the fluid velocity
in the form

vx = v cos(α + φ) , vy = v sin(α + φ) . (12)

The dynamically changing angle α describes deviations of the flow from the
radial direction. Thus, it specifies the asymmetry of the flow present in the
most common non-central collisions.

With the help of the variables introduced above, and using thermody-
namic identities only, we obtain the explicit form of the hydrodynamic equa-
tions

∂

∂τ
(rs2u0) +

∂

∂r
(rs2u0v cos α) +

∂

∂φ
(s2u0v sinα) = 0 ,

∂

∂τ
(rTu0v) + r cos α

∂

∂r
(Tu0) + sin α

∂

∂φ
(Tu0) = 0 ,
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Tu2
0v

(

dα

dτ
+

v sin α

r

)

− sin α
∂T

∂r
+

cos α

r

∂T

∂φ
= 0 . (13)

The quantity d/dτ is the total time derivative

d

dτ
=

∂

∂τ
+ v cos α

∂

∂r
+

v sinα

r

∂

∂φ
. (14)

It turns out that the parameter n0, treated as a constant so far, may be an
arbitrary function of the spacetime rapidity η. We can show this feature by
multiplying the original energy-momentum tensor T µν

n0=1 by n0 = n0 (η) and
incorporating it into the energy-momentum conservation laws

∂µ

[

n0 (η) T µν
n0=1

]

= 0 . (15)

Since the tensor T µν
n0=1 is conserved, Eq. (15) is reduced to the equation

T µν
n0=1 ∂µn0 (η) = 0 , (16)

which, as the straightforward calculation shows, is always fufilled. This fea-
ture indicates that our model does not have to be necessarily boost invariant,
see Fig. 1. In fact, a closer analysis shows that different initial conditions
can be applied to different clusters (placed at different values of η). This
is so because the clusters do not interact and evolve independently of each
other.

Fig. 1. Rapidity dependence of the cluster density n0.

Although the full 3D thermalization of the system at the very beginning
of the evolution is hard to achieve, as the system expands the thermalization
in the longitudinal direction seems to be inevitable. Such situation requires
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the transition from the transverse hydrodynamics to standard hydrodynam-
ics. Probably, the simplest description of such a transition is achieved with
the assumption that it has a sudden character. In this case the transition
may be realized by assuming the so called Landau matching conditions at
the transition point

T µνUν = T µν
3DUν . (17)

In Eq. (17) we used the energy-momentum tensor of the perfect fluid valid
for standard hydrodynamics

T µν
3D = (ε + P )UµUν − Pgµν . (18)

In Eq. (18) the energy density ε and pressure P are 3D thermodynamic
quantities. Eq. (17), with the appropriate tensors used, may be reduced to
the local conservation of the energy and momentum (at the transition point)

n0

τ
ε2U

µ = εUµ . (19)

It must be supplemented by the assumption of the entropy production as-
sociated with 2D → 3D transition,

n0

τ
s2 < s , (20)

where we introduced the 3D entropy density s.
We note that the 2D → 3D transition has been recently addressed in

the framework of the dissipative hydrodynamics in [16, 17]. In this frame-
work the transition is naturally associated with the entropy production. On
the other hand, the 2D → 3D transition was also studied in Refs. [18, 19]
in the framework of the entropy-conserving anisotropic hydrodynamics and
magnetohydrodynamics, respectively. Moreover, the Landau matching con-
ditions similar to those advocated above were also used recently to model
a transition from the early 3D parton free streaming to 3D perfect-fluid
hydrodynamics in Ref. [20].

3. Thermodynamics of two-dimenssional systems

Thermodynamic variables used in the transverse hydrodynamics are ob-
tained directly from the potential Ω defined for 2D systems of non-inter-
acting bosons (upper signs) or fermions (lower signs)

Ω(T, V2, µ) = ±νgTV2

∫

d2p⊥
(2π)2

ln
(

1 ∓ e(µ−m⊥)/T
)

. (21)
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The particles move in the transverse plane whose area is V2, and their energy

is εp = m⊥ =
√

m2 + p2
x + p2

y. The factor νg denotes internal degrees of

freedom. In the case of gluons νg = 16. Using Eq. (21) we can define particle
density n2 = N2/V2, pressure P2, entropy density s2 = S2/V2, and energy
density ε2 = E2/V2 by using the standard thermodynamic definitions:

N2 = −
(

∂Ω

∂µ

)

V2,T

, (22)

P2 = −
(

∂Ω

∂V2

)

T,µ

= −
Ω

V2
, (23)

S2 = −
(

∂Ω

∂T

)

µ,V2

, (24)

and the relation
E2 + P2V2 = TS2 + µ N2 . (25)

Simple analytic formulas may be obtained for massless fermions and
bosons

n2 =
νgπT 2

24
, ε2 =

3νgζ(3)T 3

4π
(fermions) , (26)

n2 =
νgπT 2

12
, ε2 =

νgζ(3)T 3

π
(bosons) . (27)

Here ζ is the Riemann zeta function. For the two statistics we also find
that sound velocity cs is constant and much higher than in the standard 3D
hydrodynamics, namely

P2 =
1

2
ε2 , c2

s =
∂P2

∂ε2
=

1

2
. (28)

In the case of the Boltzmann statistics, the analytic expressions can be
derived also for finite masses

n2 =
νgT

2π
(m + T )e−m/T , (29)

P2 =
νgT

2

2π
(m + T )e−m/T , (30)

s2 =
νg

2π

[

m2 + 3mT + 3T 2
]

e−m/T , (31)

ε2 =
νgT

2π

[

T 2 + (m + T )2
]

e−m/T . (32)
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For the classical statistics and massive particles the sound velocity is given
by the formula

c2
s =

T (m2 + 3mT + 3T 2)

m3 + 3m2T + 6mT 2 + 6T 3
. (33)

In the limit m → 0 Eqs. (29)–(33) are reduced to those given first in Ref. [11].

4. Phase-space distribution function and its moments

Our formalism is based on the covariant form of the phase-space distri-
bution function that is factorized into the longitudinal and transverse part,

F = f‖ g . (34)

The structure of the transverse part, describing the hydrodynamic evolution
of a single cluster, comes from the assumption of the local equilibrium

g (pµUµ) =
1

epµUµ/T ∓ 1
, (35)

where
pµUµ = m⊥u0 cosh(y − η) − ~p⊥ · ~u⊥ . (36)

The longitudinal part follows from the assumption about the free streaming
of particles

f‖ = n0
δ(y − η)

m⊥τ
=

n0

τ
δ (pµVµ) , (37)

and realizes the condition y = η by using the Dirac delta function. By
joining together Eqs. (35) and (37) we obtain the covariant formula

F =
n0

τ
δ (p · V ) g (p · U) . (38)

Having the explicit form of the phase-space distribution function (38) at
our disposal we can calculate its moments, i.e., the particle current Nµ, the
energy-momentum tensor T µν , and the entropy current Sµ, defined by the
momentum integrals

Nµ =
n0νg

(2π)2τ

∫

d3p

p0
pµδ(p · V )g(p · U) , (39)

T µν =
n0νg

(2π)2τ

∫

d3p

p0
pµpνδ(p · V )g(p · U) , (40)

Sµ = −
n0νg

(2π)2τ

∫

d3p

p0
pµ δ(p · V )g(p · U) [ ln[g(p · U)] − 1 ] . (41)
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The structure of Eqs. (39)–(41) follows from the Lorentz structure of the dis-
tribution function. Having in mind its scalar character, we find the following
decompositions in terms of the four-vectors Uµ and V µ,

Nµ = aV µ + bUµ, (42)

T µν = a ′UµUν + b ′gµν + c ′V µV ν +
d ′

2
(UµV ν + UνV µ) , (43)

Sµ = a ′′V µ + b ′′Uµ , (44)

where in addition the metric tensor gµν = diag (+1,−1,−1,−1) has been
used. Since all the coefficients in Eqs. (42)–(44) are scalar quantities, they
can be calculated in the rest frame of the fluid by performing the proper
projections of Eqs. (42)–(44) on the four-vectors Uµ and V µ. One can check
that after simple algebra we obtain Eqs. (1) and (9).

5. Summary

In this paper we have discussed the general formalism of transverse
hydrodynamics. The thermodynamic consistency of the model has been
demonstrated in the straightforward calculations using only thermodynamic
identities. The hydrodynamical equations have been derived and written
in the form useful for numerical calculations. The explicit form of the mo-
ments of the phase-space distribution function has been obtained with the
method based on the covariant tensor decomposition. The transition to the
three-dimensional hydrodynamics has been proposed that uses the Landau
matching conditions. With the appropriate implementation of the transi-
tion in the numerical code we hope to successfully describe the physical
observables measured at RHIC.
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