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TRAVELING WAVES AND IMPACT-PARAMETER
CORRELATIONS IN HIGH ENERGY QCD∗
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We report on a numerical check of one of the main assumptions that
underly the recent conjecture that high-energy scattering may be a reaction-
diffusion like process in the universality class of the FKPP equation, namely
the fact that the QCD evolution is local in impact-parameter space.
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1. Introduction

Over the last few years, it has been argued [1,2] that high-energy scatter-
ing in QCD at fixed impact parameter is a peculiar reaction-diffusion process
(For a review, see Ref. [3]). The evolution equation of the scattering ampli-
tudes with the energy of the reaction in this regime has been conjectured to
be in the universality class of the stochastic Fisher–Kolmogorov–Petrovsky–
Piscounov equation (sFKPP). The latter is a stochastic nonlinear partial
differential equation with one “space” variable and one “time” variable, which
can be mapped to the logarithm of the relevant transverse momentum (or
transverse size) scale and the rapidity, respectively.

One of the important points on which the conjecture relies is that the
QCD evolution is local in impact parameter space in such a way that evolu-
tion at each impact parameter may indeed be described by a one-dimensional
equation like the sFKPP equation. There are general arguments to support
this assumption (they will be summarized below). However, these arguments
are rather crude, and in particular, the effect of fluctuations is completely
neglected. So far, more precise insight has not been achieved analytically.
In the work of Ref. [4], on which we shall report here, we have checked nu-
merically that this assumption is justified in a toy model which we think
possesses the main characteristics of QCD.

∗ Presented at the Cracow Epiphany Conference on Hadron Interactions at the Dawn

of the LHC, Cracow, Poland, January 5–7, 2009.

(2033)



2034 S. Munier

We first give the analytical arguments for the decoupling of the differ-
ent impact parameters, then we introduce the toy model, and finally, we
comment on our numerical results.

2. General picture and arguments for the decoupling

Let us consider the scattering of two mesons each of them made of a
quark–antiquark pair (This process is a gedanken experiment that could
model for example γ∗–γ∗ scattering or deep inelastic e–p scattering). One
may view the energy evolution of this process in the following way. The
center-of-mass energy is increased by boosting one of the mesons to a higher
rapidity. A fast meson appears not as a bare qq̄ pair, but as a collection
of many partons (essentially gluons). The building up of the latter may be
represented in the QCD color dipole model [5]. In this model, the increase
of the rapidity of the initial qq̄ pair, that forms a color dipole, results in a
probability that a gluon be emitted by this system, which in the large number
of color limit, is equivalent to the splitting of the initial dipole to two new
dipoles. The splitting process goes on with the new dipoles as the rapidity is
increased, each of them evolving independently, until the maximum rapidity
is reached. The splitting rate of a dipole whose endpoints have transverse
coordinates (x0, x1) into two dipoles (x0, x2) and (x1, x2) as the result of
a gluon emission at position x2 reads [5]

dP

d(ᾱy)
(x01 → x02, x12) =

|x0 − x1|
2

|x0 − x2|2|x1 − x2|2
d2x2

2π
. (1)

When the density of dipoles at a given impact parameter becomes so high
that the scattering amplitude T (r) of a dipole of size r with this system,
roughly proportional to the local number of dipoles of sizes of the order
of r (the proportionality factor goes like α2

s ), reaches its unitarity limit, this
splitting process slows down: this stage is called saturation, and its precise
mechanism has not been fully clarified in QCD yet.

Thanks to the features of the solutions to the sFKPP equation, it was
shown in Refs. [1,2] that the scattering amplitude has the form of a traveling
wave which moves towards larger values of log(1/r2) when the rapidity is
increased (see Fig. 1). For each value of the rapidity y, the position of
the traveling wave is characterized by the value 1/Qs(y) of r for which the
amplitude reaches some predefined number, say 0.5.

Let us start with a single dipole at rest, and bring it gradually to a higher
rapidity. As was just explained, during this process, the dipole may be re-
placed by two new dipoles, which themselves may split, and so on, eventu-
ally producing a chain of dipoles. Figure 2 pictures one realization of such
a chain.
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Fig. 1. [From Ref. [2]] Sketch of the scattering amplitude T of a dipole of size r

off a frozen partonic configuration. The small lines on the axis denote the dipoles
ordered by their logarithmic sizes. Up to fluctuations, T looks like a wave front.
Inset: Scattering amplitude of a dipole of size r off a dipole of fixed size ri as a
function of log(1/r2), for a central collision.
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Fig. 2. [From Ref. [3]] One realization of the dipole chain obtained after QCD evo-
lution over some rapidity interval. The initial quark and antiquark have positions
x0 and x1, respectively. In the final chain, the points represent gluons and the
straight lines that join them materialize the color dipoles. The regions 1 and 2 are
supposed to decorrelate after the stage pictured in this figure.
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According to Eq. (1), splittings to smaller-size dipoles are favored, and
thus, one expects that the sizes of the dipoles get smaller on the average, and
that in turn, the successive splittings become more local. The dipoles around
region 1 and those around region 2 should have an independent evolution
beyond the stage pictured in Fig. 2: further splittings will not mix in impact
parameter space, and thus, the traveling waves around these regions should
be uncorrelated. For a dipole in region 1 of size r to migrate to region 2,
it should first split into a dipole whose size is of the order of the distance
∆b between regions 1 and 2. (We assume in this discussion that the dipoles
in region 2 relevant to the propagation of the local traveling waves, that is,
those which are in the bulk of the wave front, also have sizes of the order
of r.) Roughly speaking, the rate of such splittings may be estimated from
the dipole splitting probability (1): it is of order ᾱ(r2/(∆b)2)2, while the
rate of splittings of the same dipole into a dipole of similar size in region 1
is of the order of ᾱ. Thus the first process is strongly suppressed as soon
as regions 1 and 2 are more distant than a few units of r. Note that for
∆b ≥ 1/Qs, saturation may further reduce the emission of the first, large
dipole, leading to an even stronger suppression of the estimated rate.

There is a second case that we should worry about. What could also
happen is that some larger dipole has, by chance, one of its endpoints tuned
to the vicinity of the coordinate one is looking at (at a distance which is at
most |∆r| ≪ 1/Qs(y)), and easily produces a large number of dipoles there.
In this case, the position of the traveling wave at that impact parameter
would suddenly jump. If such events were frequent enough, then they would
modify the average wave velocity and thus the one-dimensional picture. We
may give a rough estimate of the rate at which dipoles of size smaller than
∆r are produced. Assuming local uniformity for the distribution of the
emitting dipoles, the rate (per unit of ᾱy) of such events can be written

∫

r0>∆r

d2r0

r2
0

∫

ε<∆r

d2ε n(r0)

(

ε

r0

)2 1

2π

r2
0

ε2(r0 − ε)2
, (2)

where we integrate over large dipoles of size r0 > ∆r (n(r0) is their num-
ber density) emitting smaller dipoles (of size ε < ∆r) with a probability
d2ε r2

0/(2πε2(r0 − ε)2). The factor (ε/r0)
2 accounts for the fact that one

endpoint of the dipole of size r0 has to be in a given region of size ε in order
to emit the dipoles at the right impact parameter. To estimate this expres-
sion, we first use n(r0) = T (r0)/α

2
s and use for T the simplified expression

T (r0) = Θ(r0 − 1/Qs) + (r2
0Q

2
s )

γc Θ(1/Qs − r0)

which splits the front into a saturated region (r0 > 1/Qs) and a tail with
geometric scaling (r0 < 1/Qs). Using r0 − ε ≈ r0 in the emission kernel, the
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integration is then easily performed and one finds a rate whose dominant
term is

π

2α2
s

((∆r)2Q2
s )

γc

1 − γc
. (3)

For (∆r)2 ≪ (α2
s )

1/γc/Q2
s , that is, ahead of the bulk of the front, this term

is parametrically less than 1 and is in fact of the order of the probability to
find an object in this region that contributes to the normal evolution of the
front [6]. Hence there is no extra contribution due to the fact that there are
many dipoles around at different impact parameters.

The arguments given here are based on estimates of average numbers
of dipoles, on typical configurations, and at this stage, we are not able to
account analytically for the possible fluctuations. The latter often play an
important role, so one should check more precisely locality of the evolution
in impact parameter.

A numerical check was recently achieved in the case of a toy model that
has an impact-parameter dependence in Ref. [4]. Let us briefly describe the
model.

3. A model incorporating an impact-parameter dependence

3.1. Parton splittings

In order to arrive at a model that is tractable numerically, we only keep
one transverse dimension instead of two in 3+1-dimensional QCD. However,
we cannot consider genuine 2+1-dimensional QCD because we do not wish
to give up the logarithmic collinear singularities at x2 = x0 and x2 = x1.
A splitting rate which complies with our requirements is:

dP

d(ᾱy)
=

1

4

|x01|

|x02||x12|
dx2 . (4)

We can further simplify this probability distribution by keeping only its
collinear and infrared asymptotics. If |x02| ≪ |x01| (or the symmetrical case
|x12| ≪ |x01|), the probability reduces to dx2/|x02| (dx2/|x12| respectively).
The result of the splitting is a small dipole (x0, x2) together with one close in
size to the parent. So for simplicity we will just add the small dipole to the
system and leave the parent unchanged. In the infrared region, a dipole of
size |x02| ≫ |x01| is emitted with a rate given by the large-|x02| limit of the
above probability. The probability laws (1), (4) imply that a second dipole
of similar size should be produced while the parent dipole disappears. To
retain a behaviour as close as possible to that in the collinear limit, we will
instead just generate a single large dipole and maintain the parent. To do
this consistently one must include a factor of two in the infrared splitting
rate, so as not to modify the average rate of production of large dipoles.



2038 S. Munier

In formulating our model precisely, let us focus first on the distribution
of the sizes of the participating dipoles. (The simplifying assumptions made
above enable one to choose the sizes and the impact parameters of the dipoles
successively). We call r the modulus of the emitted dipole, r0 the modulus
of its parent and Y = ᾱy. The splitting rate (4) reads in this simplified
model

dPr0→r

dY
= θ(r − r0)

r0dr

r2
+ θ(r0 − r)

dr

r
, (5)

and the original parent dipole is kept. Logarithmic variables are the relevant
ones here, so we introduce

ρ = log2

1

r
or r = 2−ρ . (6)

We can thus rewrite the dipole creation rate as

dPρ0→ρ

dY
= θ(ρ0 − ρ) 2ρ−ρ0 log 2 dρ + θ(ρ − ρ0) log 2 dρ . (7)

To further simplify the model, we discretize the dipole sizes in such a way
that ρ is now an integer. This amounts to restricting the dipole sizes to
negative integer powers of 2. The probability that a dipole at lattice site i
(i.e. a dipole of size 2−i) creates a new dipole at lattice site j is

dPi→j

dY
=

ρj+1
∫

ρj

dPρi→ρ

dY
=

{

log 2 j ≥ i

2j−i j < i
. (8)

The rates dPi±/dY for a dipole at lattice site i to split to any lattice site
j ≥ i or j < i, respectively, are then given by

dPi+

dY
=

imax−1
∑

j=i

dPi→j

dY
= log 2(imax − i) ,

dPi−

dY
=

i−1
∑

j=0

dPi→j

dY
= 1 − 2−i , (9)

where we have restricted the lattice to 0 ≤ i < imax, for obvious reasons
related to the numerical implementation.

Now we have to address the question of the impact parameter of the emit-
ted dipole. In QCD, the collinear dipoles are produced near the endpoints
of the parent dipoles. Let us take a parent of size r0 at impact parameter
b0. We set the emitted dipole (size r) at the impact parameter b such that

b = b0 ±
r0 ± r × s

2
, (10)
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where s has uniform probability between 0 and 1. It is introduced to obtain
a continuous distribution of the impact parameter unaffected by the discreti-
sation of r. This prescription is quite arbitrary in its details, but the latter
do not influence significantly the physical observables. Each of the two signs
that appear in the above expression is chosen to be either + or − with equal
weights. We apply the same prescription when the emitted dipole is larger
than its parent.

3.2. Scattering amplitude

We explained before that in QCD, the scattering amplitude of an ele-
mentary probe dipole of size ri = 2−i with a dipole in an evolved Fock state
is proportional to the number of objects which have a size of the same or-
der of magnitude and which sit in an area of radius of order ri around the
impact point of the probe dipole. Since in our case, the sizes are discrete,
the amplitude is just given, up to a factor, by the number of dipoles that
are exactly in the same bin of size as the probe, namely

T (i, b0) = α2
s × #{dipoles of size 2−i

at impact parameter b satisfying |b − b0| < ri/2}. (11)

3.3. Saturation

We now have to enforce unitarity, that is the condition

T (i, b) ≤ 1 (12)

for any i and b. This condition is expected to hold due to gluon saturation in
QCD. However, saturation is not included in the original dipole model. The
simplest choice is to veto splittings that would locally drive the amplitude to
values larger than 1. In practice, for each splitting that gives birth to a new
dipole of size i at impact parameter b, we compute T (i, b) and T (i, b±ri/2),
and throw away the produced dipole whenever one of these numbers gets
larger than one.

Given the definition of the amplitude T , this saturation rule implies that
there is a maximum number of objects in each bin of size and at each impact
parameter, which is equal to Nsat = 1/α2

s .

4. Numerical results

We take as an initial condition a number Nsat of dipoles of size 1 (i = 0),
uniformly distributed in impact parameter between −r0/2 and r0/2. The
impact parameters bj that are considered are, respectively, 0, 10−6, 10−4,
10−2 and 10−1.
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The number of events generated is typically 104, which allows one to
measure the average and variance of the position of the traveling waves to
a sufficient accuracy.

We have checked that at each impact parameter, we get traveling waves
whose average position 〈ρs〉 grows linearly with rapidity at a velocity less
than the expected mean-field velocity for this model (that is to say the
velocity that would be found in the same model without fluctuations). Nsat

was varied from 10 to 200.
Fig. 3 represents the correlations between the positions of the wave fronts

at different impact parameters, defined as

〈ρs(Y, b1)ρs(Y, b2)〉 − 〈ρs(Y, b1)〉〈ρs(Y, b2)〉 . (13)

We set Nsat to 25 in that figure, but we also repeated the analysis for different
values of Nsat between 10 and 200.

In Fig. 3, we see very clearly the successive decouplings of the different
impact parameters, from the most distant to the closest one, as rapidity
increases. Indeed, the correlation functions flatten after some given rapidity
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Fig. 3. [From Ref. [4]] Correlations of the positions of the traveling wave fronts.
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depending on the difference in the probed impact parameters, which means
that the evolutions decouple. This decoupling is expected as soon as the
traveling wave front reaches dipole sizes which are smaller than the distance
between the probed impact parameters, i.e. at Y such that |b2 − b1| ≈
1/Qs(Y ) = 2−ρs(Y ). From the data for ρs(Y ), we can estimate quantitatively
the values of the rapidities at which the traveling waves decouple between
the different impact parameters. (It is enough to invert the above formula
for the relevant values of b2 − b1). These rapidities are denoted by a cross
in Fig. 3 for the considered impact parameter differences. Our numerical
results for the correlations are nicely consistent with this estimate, since the
correlations start to saturate to a constant value precisely on the right of
each such cross.

We conclude that the different impact parameters indeed decouple, as
was expected from a naive analytical estimate. What is true for our toy
model should go over to full QCD, since we have included the main features
of QCD. When looking at the data more carefully however, it turns out
that the model with impact parameter does not reduce exactly to a one-
dimensional model of the sFKPP type. This is a point that would deserve
more work. We refer the reader to Ref. [4] for all details of our numerical
investigations.
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