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In this talk we discuss the problem of kinematic effects in the develop-
ment of the gluon cascade at high energies. The modification to the original
dipole kernel for the dipole evolution at small x is proposed which accom-
modates important kinematical corrections. The techniques presented in
this talk utilize the perturbation theory on the light-front. Using these tech-
niques we construct recurrence relations for the wave-functions of gluons
with arbitrary number of gluon components and with exact kinematics. In
some special cases the recurrence relations can be solved exactly. By com-
bining similar techniques for the fragmentation amplitudes one can derive
the Parke–Taylor scattering amplitudes.

PACS numbers: 12.38.Bx, 12.38.Cy

1. Introduction

The limit of high energies is one of the most intriguing aspects of strong
interactions. The hadron scattering amplitude in this regime is governed
by the exchange of the Pomeron, an object with quantum numbers of the
vacuum. In Quantum Chromodynamics this t-channel exchange can be com-
puted in perturbation theory and is given by the BFKL singularity [1], which
corresponds to a compound state of two reggeized gluons. The kernel of the
resulting equation is currently known up to the next-to-leading logarithmic
approximation [2, 3] and leads to the power growth of the scattering cross
section with the center-of-mass energy

√
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An alternative derivation of this equation was constructed from the
s-channel point of view [4] in the light-front perturbation theory. In the lat-
ter approach an incoming particle, onium (a heavy quark–antiquark pair),
develops a light-front wave-function which consists of many soft gluons.
Here, soft means that the longitudinal components of the emitted gluons
are much smaller than those of the parent gluons, while the transverse mo-
menta are unrestricted. These emissions can be resummed by the equation
analogous to the BFKL equation: the dipole evolution equation [4]. In the
leading logarithmic approximation, the kernel eigenvalues of both equations
are identical. The next-to-leading approximation was computed recently [5]
and the kernel eigenvalue agrees with the t-channel computation [2,3] up to
a numerical constant.

Apart from the running coupling constant one major source of the next-
to-leading order corrections are the kinematical effects. They can be effec-
tively resummed by imposing kinematical constraints [6,7] onto the momenta
of emitted gluons in the cascade.

In this paper we discuss the problem of the kinematical effects in the
development of the onium and gluon wave-functions in the light-front per-
turbation theory [8, 9]. By including corrections in the energy denomina-
tors, the modified version of the dipole kernel is derived which is expressed
in terms of the Bessel functions of the second kind. The diffusion pattern
in the transverse coordinates is strongly suppressed due to the exponential
nature of the modified kernel. The light-front formulation is also very con-
venient for the description of the wave-functions with exact kinematics. The
recurrence relations for the wave-functions have a particularly simple form
and can be explicitly solved when the incoming gluon is on-shell and for the
case of the helicity-conserving splittings. These techniques can be also ex-
tended to the computation of the fragmentation amplitudes. By considering
the scattering of the evolved wave function onto the gluon target, one can
derive the MHV amplitudes on the light-front.

The outline of the paper is the following. In the next section we recall the
basics of the light-front formulation. In Sec. 3 we consider the development
of the onium wave function at high energy and show how it can be improved
by including the kinematical effects coming from the energy denominators.
In Sec. 4 we derive the recurrence relations for the wave-functions with exact
kinematics and with arbitrary number of gluon components. The resummed
expressions for the wave-functions and fragmentation functions are given
there. In Sec. 5 we sketch the derivation of the Parke–Taylor amplitudes in
the light-front formulation.
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2. Light-front formulation

The front form for the relativistic dynamics of particles was first intro-
duced by Dirac [10]. He pointed out that this form might be particularly
useful because the Hamiltonian does not have the square root, and there-
fore the negative energies might be eliminated. Later on, the front-form
appeared in the connection with the current algebra [11]. The characteristic
feature of the light-front perturbation theory is the simplified structure of
the vacuum [12]. The hadron viewed in the infinite momentum frame can
be described as a nearly static collection of partons whose internal motions
are slowed down due to the time dilation effect [13].

The infinite momentum frame can be most easily formulated as the
change of the variables [8, 9] from the coordinates

(t, x, y, z) ,

to
(τ, x, y,Z) ,

where

τ =
t+ z√

2
and Z =

t− z√
2
.

The variable τ is the light-front time.
Of particular interest is the structure of the Poincare group in the new

frame. One finds that
Pµ =

(

η, P 1, P 2,H
)

,

with

η =
P 0 + P 3

√
2

, H =
P 0 − P 3

√
2

.

The above four generators together with the following combinations

B1 =
K1 + J2√

2
, B2 =

K2 − J1√
2

and J3 (where Ki = Mi0, Mij = εijkJk) have particular interesting com-
mutation relations. One can show that the commutation relations are the
same as the ones among the symmetry operators of the two-dimensional
non-relativistic quantum mechanics. The identification is the following

η → mass,

H → Hamiltonian,

PT = (P 1, P 2) → momentum,

J3 → angular momentum,

B1, B2 → Galilean boosts in x and y directions.
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The set of the generators η, PT, J3, B1, B2 leaves the planes τ = const. in-
variant. Therefore, these operators are called kinematical generators. To
illustrate the isomorphism with the Galilean group one can consider the free
particle for which the mass shell condition holds

m2 = PµPµ = 2ηH − P 2
T .

Solving for H one gets

H =
P 2

T +m2

2η

which is exactly of the non-relativistic form with identifications given above.
The term m2/2η can be interpreted as the internal binding energy of the
particle.

Much of the simplifications arising in the light-front formulation of quan-
tum field theory is related to this isomorphism. The other remaining gen-
erators rotate the direction of the infinite momentum axis. They commute
with the Hamiltonian and with each other and are called the dynamical
generators.

2.1. QFT in the infinite momentum frame

Given definitions of the infinite momentum frame given above, one can
formulate the quantum field theory in such frame [8, 9]. The basics of this
formulation is to decompose any given covariant Feynman graph into a sum
of non-covariant graphs which are ordered in the light-front time τ . A major
simplification occurs in the infinite momentum frame, as some of the dia-
grams vanish. For example, the order of g2 diagram for 2 → 2 scattering in
the scalar φ3 theory with an exchange in the s-channel can be decomposed
into two diagrams shown in Fig. 1. It can be shown [12] that the right dia-
gram vanishes. This happens essentially due to the fact that η (light-front
‘mass’) is conserved at each vertex and is positive definite.

The rules of the light-front perturbation theory can be summarized as
follows:

1. Draw all possible Feynman graphs for the process in consideration.

2. Decompose each diagram into a set of τ -ordered graphs.

3. For each line assign the momentum kµ. Variables η, kT are conserved

at each vertex. The light-front energy is given by k− =
k2
T
+m2

2η .

4. In the case of theory with spin, one needs to assign a spinor u(k, λ)
for each fermion, and a polarization vector εµ for the gluon (photon)
line.
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Fig. 1. The 2 → 2 process in the φ3 theory, decomposed into two different time

ordered diagrams. Left: diagram which is left in the infinite momentum frame.

Right: vacuum graph which vanishes in this frame.

5. Include appropriate vertices see for example [8] in the case of QED
or [14] in the case of QCD.

6. For each intermediate state include the energy denominator

1

K− − ∑

i k
−
i

,

where K− is the total light-front energy for the initial state and
∑

i k
−
i

is the sum over the energies of the intermediate states.

7. Include the factor θ(η)
η for each intermediate line and finally integrate

∫

d2kT

∫

dη for each independent momentum. Sum over helicities, time
orderings and diagrams.

For the purpose of the subsequent discussion, let us focus on the energy
denominator, point 6. It is easy to see that this denominator ties together
the momenta of all the particles in a given intermediate state. In the case
of a cascade with many gluons, this leads to rather complex expressions for
the amplitudes. We will see in the next section that much of the simplifi-
cation in the high energy limit comes from the approximations done to the
energy denominators. To be precise, in the high energy limit one leaves the
dominant energy in the denominator, which leads to the decoupling of this
factor from the rest of the amplitude. As a consequence, this enables to
write down closed evolution equation which iteratively generates subsequent
splittings.
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3. Dipole evolution kernel with kinematical effects

3.1. Dipole wave-function in the leading logarithmic approximation

We recall the original derivation of the dipole wave function at small x
with soft gluons which was first developed by Mueller [4] using the techniques
of the light-front perturbation theory. One introduces the heavy onium wave
function which consists of the quark–antiquark pair

Ψ (0)(z1, k1) , where z1 = k+
1 /P

+ . (1)

The initial momentum of the onium is P , the quark has four-momentum
k1 = (k+

1 , k
−
1 , k1) and the antiquark has momentum P−k1. In the transverse

coordinate space the onium wave-function reads

Φ(0)(z1, x01) =

∫

d2k1

(2π)2
eik1·x01 Ψ (0) (z1, k1) , (2)

where x01 is the 2-dim. vector denoting the size of the dipole 01 in the trans-
verse coordinate space. Such representation was shown to be very convenient
for the purpose of studying the high energy limit [4]. This is because in this
limit the longitudinal and transverse components of the momenta decouple.

The next step in this construction is to take into account the emission
of a soft (small x) gluon with momentum k2 from the onium.
The following assumptions were made:

• The emitted gluon is longitudinally soft: k+
2 ≪ k+

1 .

• The coupling of the gluon to the quark (antiquark) is eikonal.

• Since the gluon is longitudinally soft, the energy denominator for the
graphs with two quarks and with one gluon emission was dominated
by the gluon energy

D1 ∼ 1

k−2
.

Putting all these assumptions together, one arrives at the formula for
the wave function with one emitted soft gluon

Ψ (1) (z1, k1; z2, k2) = 2gta
ε2 · k2

k2
2

[

Ψ (0) (z1, k1) − Ψ (0) (z1, k1 + k2)
]

, (3)

where the gluon longitudinal momentum fraction is defined as z2 =k+
2/P

+, ta

is the color matrix in the fundamental representation, and ε2 is the polariza-
tion vector for the gluon. The Fourier transform to the transverse coordinate
space is

Φ(1) (z1, x01; z2, x02) = − igt
a

π

(

x20

x2
20

− x21

x2
21

)

· ε2 Φ(0) (z1, x01) , (4)
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where x2
ij ≡ x2

ij. We see the advantage of using the coordinate space repre-

sentation because the soft gluons factorize in (4). The modulus squared of
the one gluon wave function has then explicitly the form

∣

∣

∣
Φ(1)

∣

∣

∣

2
(z1, x01) =

z1
∫

z0

dz2
z2

∫

d2x02

2π

x2
01

x2
02 x

2
12

∣

∣

∣
Φ(0) (z1, x01)

∣

∣

∣

2
. (5)

In this form it is particularly transparent that in the soft gluon limit the
transverse and longitudinal degrees of freedom decouple. The wave function
with one soft gluon is just the wave function without any soft gluons times
the branching probability which reads

αsNc

π

d2x02 x
2
01

x2
02 x

2
12

. (6)

This is the dipole splitting kernel in the leading logarithmic approximation
in x which governs the dipole evolution equation [4].

3.2. Modified energy denominators in the dipole evolution

In deriving (3), and consequently (6), one uses crucial assumption about
the strong ordering in the light-front energies of the partons

k−2 ≫ k−1 . (7)

If we consider more gluon emissions, then the above ordering is equivalent
to the multi-Regge kinematics. This enables to make the approximations
as described above and factorize the soft gluon contribution. However, for
the consistency of the calculations we should keep the inequality (7) (where

k−1 =
k2
1

2k+

1

, k−2 =
k2
2

2k+

2

) exact. To be precise we should take

k2
2

k+
2

>
k2

1

k+
1

, (8)

with k+
1 > k+

2 .
If there are more gluon emissions we will have

. . .
k2

i4

k+
i4

>
k2

i3

k+
i3

>
k2

i2

k+
i2

>
k2

i1

k+
i1

, (9)

and
. . . < k+

i4
< k+

i3
< k+

i2
< k+

i1
,



2050 A. Staśto

where the indices i1, . . . , i4 enumerate subsequent emissions along one branch
of the gluon cascade. As a result of the ordering (8) the region in the
transverse momenta k2

2 for the gluon emission is limited

Θ
(

k2
2 − k2

1

)

+Θ
(

k2
1 − k2

2

)

Θ

(

k2
2 − k2

1

k+
2

k+
1

)

. (10)

This means that there is a constraint which restricts the transverse momenta
of the daughter gluon (labeled 2). It is given by the step function Θ(k2

2 −
k2

1
k+

2

k+

1

). The constraint (8), (10) means that the momenta of the emitted

gluons (those with k2) are cutoff in the infrared.
It is evident that the kinematical constraint on the transverse momenta

emerges in the light-front perturbation theory from more exact treatment
of the energy denominators in the graphs. In the t-channel formulation
of the BFKL Pomeron, the analogous consistency constraint arises when
one takes into account the fact that virtualities of the exchanged gluons
are dominated by the transverse parts. This leads to the constraint on the
transverse momenta of the emitted gluons [6, 7].

One can include this constraint into the dipole evolution at small x. Let
us take the more exact version of the energy denominator which includes
the energy of the parent emitter

1

k−1 + k−2
.

With this modification the formula (3) for the dipole wave function in mo-
mentum space with one gluon becomes

Ψ (1) (z1, k1; z2, k2)=2gta
ε2 · k2

k2
2 + k2

1
k+

2

k+

1

[

Ψ (0) (z1, k1)−Ψ (0) (z1, k1+k2)
]

. (11)

We still keep the vertex to be eikonal and the only modifications are in the
energy denominator. Let us define the auxiliary scale

Q
2 ≡ k2

1

k+
2

k+
1

= k2
1 z , z =

z2
z1
, (12)

and perform the two-dimensional Fourier transform of (11) to the coordinate
space

Φ(1) (z1, x01; z2, x02) = 2gta
∫

d2k1

(2π)2
d2k2

(2π)2
eik1·x01+ik2·x02

×
[

Ψ (0)(z1, k1)−Ψ (0)(z1, k1+k2)
] ε2 · k2

k2
2 +Q

2 .(13)
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If one insists that the recoil of the parent emitter is very small one arrives
at the following (approximated) result for the wave function with one gluon
emission

2gta Φ(0) (z, x01)
i

2π
Q01K1

(

Q01 x02

) ε2 · x02

x02
, (14)

where now

Q
2
01 ≡ 1

x2
01

k+
2

k+
1

.

Here K1 is the Bessel function of the second kind. Expression (14) is an
amplitude for one gluon emission in the coordinate space improved by taking
into account the next, subleading term in the energy denominator. This
expression obviously reduces to the original LL dipole formula, compare (4).
One needs to expand the Bessel function K1 for the small values of the
argument

Q01K1

(

Q01 x02

)

≃ 1

x02
, for

x02

x01

√
z → 0 . (15)

Expression (14) becomes in this limit

2gta Φ(0) (x01, z)
i

2π

ε2 · x02

x2
02

, (16)

which is the original LL formula [4] as expected. Therefore, Eq. (14) im-
proves the original formula (16).

Finally, one can construct the improved dipole kernel by adding the
contribution from both graphs and squaring them. This gives

d2x2

(

Q01K1

(

Q01x02

) ε2 · x02

x02
−Q01K1

(

Q01x12

) ε2 · x12

x12

)2

. (17)

We will refer to it as the quasilocal case because in this approximation we
only keep terms in the energy denominators which refer to the daughter and
the parent dipole, without any other dipoles in the cascade. It is straightfor-
ward to verify that expression (17) simplifies to expression (6) when z → 0.
The kernel (17) is very similar in form to the one with the massive gluon,
which also can be expressed in terms of the K1 functions. Here, however
the argument of the Bessel functions depends on Q01, and consequently on
the longitudinal momentum z. The transverse and longitudinal momenta
are not separated any more, even though we can still use a single, closed
integral equation for the evolution of the dipole amplitude in the rapidity.
In the LL approximation, the evolution depended only on the previous step
in rapidity, with the branching that was independent of the rapidity or x.
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The modified kernel (17) contains branchings which depend explicitly on
the longitudinal variable, and therefore on all the steps in the evolution in
rapidity. This is a qualitative difference as this means that there is now
a ‘memory’ in the evolution of the system of dipoles. The probability of the
emission of next dipoles depends on the evolution variable (‘time’) z.

3.3. Diffusion in impact parameter space

As is clear from the form of the modified kernel (17), the corrections from
the energy denominators imply large modifications of the diffusion properties
in the impact parameter space. The modified Bessel functions exponentially
suppress the production of large size dipoles above a z-dependent character-
istic size

Q
2
01K

2
1

(

Q01x02

)

≃ π

2

Q01

x02
e−2x02Q01 ,

x02

x01

√
z → ∞ .

The effective cut-off size, proportional to x01/
√
z, grows with decreasing z.

This cutoff on the dipole size is analogous to the coherence effect in the
cascade of the gluon emissions [15]. The maximal opening angle prevents
the gluons from being emitted into a certain kinematic regime. Here, the
effect is to prevent the emission of very large dipoles. As a result, diffusion in
the impact parameter space is very much suppressed. We note however, that
we do not expect the Froissart bound to be satisfied. This can only happen
if there is a finite mass gap in the theory which will limit the range of the
interactions. This can be phenomenologically achieved by the substitution

Q
2
01 → Q

2
01 +m2 .

In this way one will get an amplitude which has exponential tails in impact
parameter and this will lead to a behavior consistent with the Froissart
bound [16] (modulo normalization).

4. Gluon cascades with exact kinematics

4.1. Light-front wave functions

The improved dipole kernel derived in the previous section contains only
a part of the corrections due to the kinematics. One can show that the
light-front perturbation techniques enable to compute the wave function
of the gluon with arbitrary number of components while keeping both the
denominators and the vertices exact. In the case when the gluon is on-shell
one can resum the wave function and arrive at the closed expression.
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Here, we consider a gluon with four momentum P , and the color index
a, that develops a virtual fluctuation into states containing n gluons with
momenta (k1, . . . kn) and color indices (a1, a2, . . . , an), correspondingly. For
the initial gluon with virtuality −Q2 and a vanishing transverse momentum
one has in the light-front variables,

Pµ =

(

P+,− Q2

2P+
, 0

)

,

with P± = 1√
2
(P 0 ± P 3). After n− 1 splittings the wave function contains

n gluons in the final state. These n gluons have the corresponding momenta
k1, . . . , kn. Each of this momenta has components kµ

i = (ziP
+, k−i , ki),

with zi being the fraction of the initial P+ momentum which is carried by
the gluon labeled by i and ki being the transverse component of the gluon
momentum. The rules of the light-front perturbation theory [9, 12] require
to evaluate the energy denominators for each of the intermediate states. For
the last intermediate state with n gluons the corresponding energy denomi-
nator reads

Dn =P−−
n

∑

i=1

k−i = − 1

2P+

(

Q2+
k2

1

z1
+
k2

2

z2
+ . . . +

k2
n

zn

)

= − 1

2P+
Dn , (18)

where we have used

k−i =
k2

i

2ziP+
,

and introduced the auxiliary notation for the (rescaled) denominator Dn.
In what follows, we shall focus on the color ordered multi-gluon am-

plitudes, that is the amplitudes decomposed in the basis of color tensors,
T a1a2...an = tr (ta1ta2 . . . tan) , where a1, a2, . . . , an are the color indices of
the gluons.

4.2. Recursion relations

Using the techniques of the light-front perturbation theory it is straight-
forward to derive the recurrence relations for the wave functions with differ-
ent number of the gluon components. We focus on components of the wave
function in which all the gluons have positive helicities. In the light-cone
gauge, η ·A = 0, with vector η = (0, 1, 0), the polarization four-vector of the
gluon with four-momentum k is

ε(±) = ε
(±)
⊥ +

ε(±) · k
η · k η , (19)
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where ε
(±)
⊥ = (0, 0, ε(±)), and the transverse vector is defined by ε(±) =

∓ 1√
2
(1,±i). For the same-helicity cascade it will be sufficient to take into

account only one projection of the three gluon vertex (the four gluon vertex
does not contribute in this case).

When one helicity, say λ1 = −1, is different than the others λ2 = λ3 =+1,
the vertex takes the following form in the light-front variables,

Ṽ a1a2a3

−++ (k1, k2, k3) = g fa1a2a3 z1 ε
(−) ·

(

k2

z2
− k3

z3

)

, (20)

where the δ-functions related to the conservation of the transverse and lon-
gitudinal ‘+’ components of the momentum are implicit. Here fa1a2a3 is
the structure constant for the SU(Nc) color group. For the case of inter-
est, of the (+ → ++) transition, the amplitude is described by Eq. (20)
with z1 being the fraction of the + component of the momentum of the
incoming gluon.The dependence of the vertex on the transverse momenta of
the daughter gluons is given by the variable

v23 ≡
(

k2

z2
− k3

z3

)

. (21)

This variable has a simple interpretation on the light-front: it is the rela-
tive transverse light-front velocity of the two gluons. Interestingly enough,
the same variable is present when we consider the change of the energy de-
nominator due to the splitting. In a general situation, when the gluon with
momentum k1 belongs to a virtual gluon cascade, the energy denominator
before the splitting of gluon 1 can be written as

Dn = Dn/1 +
k2

1

z1
, (22)

where Dn/1 = Q2 +
∑

i>1
k2

i

zi
does not contain the energy of gluon 1. After

the gluon splits into two gluons with momenta k2 and k3 we have

Dn+1 = Dn/1 +
k2

2

z2
+
k2

3

z3
. (23)

In the light-front perturbation theory the transverse and the + components
of the longitudinal momenta are conserved in each vertex. Therefore, we
have that k1 = k2 + k3 and z1 = z2 + z3. Using this fact, one can express
the change of the energy denominator as

Dn+1 −Dn = ξ23 v
2
23 , (24)
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where ξ23 ≡ z2z3

z2+z3
. We see here that the change in the denominator is in

the form of (twice) the kinetic energy with ξ23 being the reduced light-front
mass for particles 2 and 3.

Putting the vertex and the denominator together, we can formulate the
recursion relation for the wave function containing n number of gluons

Ψn(k1, . . . , ki, ki+1, . . . , kn) = g Si,i+1 Ψn−1(k1, . . . , ki i+1, . . . , kn) , (25)

where Ψn−1(k1, k2, . . . , ki i+1, . . . , kn) (with ki i+1 ≡ ki + ki+1) is the wave
function with (n− 1) gluons and the splitting operator is defined to be

Si,i+1 ≡ 1
√

ξi i+1

ε(−)vi i+1

Dn−1 + ξi i+1 v2
i i+1

=
1

√

ξi i+1

ε(−)vi i+1

Dn
.

Formula (25) is the recurrence prescription for obtaining the wave func-
tion with n virtual gluons from the wave function with n − 1 gluons. To
obtain the full recurrence formula one needs to sum over the different pos-
sibilities of the splittings which gives the following result

Ψn(k1, k2, . . . , kn) =
g

Dn

n−1
∑

i=1

ε(−)vi i+1
√

ξi i+1

Ψn−1(k1, . . . , ki i+1, . . . , kn) , (26)

where Dn is the denominator for the last intermediate state with n gluons.

4.3. Multi-gluon wave function for the initial on-shell gluon

It is interesting to consider the multi-gluon wave function that originates
from subsequent splittings of an on-shell incoming gluon with the + helic-
ity. One can also alternatively think about it as the incoming particle with

a large momentum P+ such that P− = − Q2

2P+ is very small, at least as com-
pared with the particles in the wave function. Again we consider only the
situation where the gluons have all + helicities. We will use the complex
representation of the transverse vectors: vij = ε(+) · vij , v

∗
ij = ε(−) · vij . It is

also useful to introduce the following notation,

v(i1i2...ip)(j1j2...jq) =
ki1 + ki2 + . . . + kip

zi1 + zi2 + . . .+ zip
− kj1 + kj2 + . . .+ kjq

zj1 + zj2 + . . .+ zjq

, (27)

ξ(i1i2...ip)(j1j2...jq) =
(zi1 + zi2 + . . . + zip)(zj1 + zj2 + . . .+ zjq

)

zi1 + zi2 + . . .+ zip + zj1 + zj2 + . . . + zjq

, (28)

with ki ≡ ε(+) · ki. The variable v(i1i2...ip)(j1j2...jq) has the interpretation of
the relative velocity of two groups of particles with momenta k(i1...ip) and
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k(j1+1...jq). The variable ξ(i1i2...ip)(j1j2...jq) is the reduced light-front mass for
this system. The incoming state has the wave function,

Ψ1(1) = 1 , (29)

where the global momentum conservation δ-functions are assumed implicitly.
In the following discussion we will consider color ordering in the amplitudes,
therefore we will suppress color degrees of freedom. In general, for the color-
ordered amplitude, the gluon splitting acts on the wave function as derived
in Eq. (26) (for on-shell initial state)

−Dn+1 Ψn+1(1, 2, . . . , n+ 1)

= g
v∗12√
ξ12

Ψn(12, 3, . . . , n + 1) + g
v∗23√
ξ23

Ψn(1, 23, . . . , n+ 1) + . . .

. . . + g
v∗n n+1

√

ξn n+1

Ψn(1, 2, . . . , n n+ 1) , (30)

with Dn+1 = k2
1/z1 + k2

2/z2 + . . . + k2
n+1/zn+1. We have introduced the

notation Ψn(1, . . . , i−1 i, . . . , n+1) where i−1 i means that it is the gluon
with the momentum ki−1 i = ki−1 + ki.

It turns out that the recurrence relation can be solved exactly, and one
obtains the following closed expression for the wave function for the same
helicity configurations

Ψn(1, 2, . . . , n)

= (−1)n−1gn−1 1√
z1z2 . . . zn

1

ξ(12...n−1)n ξ(12...n−2)(n−1 n) . . . ξ1(2...n)

× 1

v(12...n−1)n v(12...n−2)(n−1 n) . . . v1(2...n)
. (31)

The resummed form (31) looks relatively simple. Its dependence on trans-
verse momenta of gluons has been factorized into reciprocals of velocities
v(12...p)(p...n) with the splitting index p which takes all possible positions
from p = 2 to p = n− 1.

4.4. Light-front fragmentation functions

The same techniques can be used to compute the fragmentation am-
plitude for the gluon. The difference is that one needs to start with the
off-shell particle in the initial state and for the final state which consists of
the on-shell particles we will not have the energy denominator.
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We consider here the fragmentation of a single, off-shell gluon (labeled
by (12 . . . n)) into the final state of n on-shell gluons, 1, 2, . . . n. The n
final state gluons have transverse momenta k1, . . . , kn and the longitudinal
momentum fractions z1, . . . , zn. The initial gluon has transverse momentum
k(1...n) and the longitudinal fraction z(1...n) where we again used shortcut

notation k(1...n) =
∑n

j=1 kj and z(12...n) =
∑n

i=1 zi . We will denote the

fragmentation part of the amplitude for 1 to n gluons as T [(12 . . . n) →
1, 2, . . . , n].

Using the analogous techniques as described previously one arrives at
the following expression for the fragmentation of the single gluon

T [(12 . . . n) → 1, 2, . . . , n] = gn−1

(

z(12...n)

z1z2 . . . zn

)3/2 1

v12v23 . . . vn−1 n
. (32)

It is interesting to note that the form of the above amplitude for the frag-
mentation is dual to that of the gluon wave function with n-components.
To be more precise, the two expressions can be matched to each other upon
the exchange of vij with v(1...ip)(ip...n) (modulo factors which depend on the
longitudinal momenta).

5. Scattering amplitudes

Using the exact forms for the wave-functions and fragmentation ampli-
tudes it is possible to compute the multi-gluon scattering amplitude. Since
we have chosen the helicity conserving processes both in the wave-function
and in the fragmentation function, we are restricted to the specific helicity
configuration of the amplitude. The expressions derived previously enable
us to compute the 2 → n gluon scattering amplitude where the two initial
gluons are incoming with helicity + and the n outgoing gluons are also with
helicity +. By means of crossing this corresponds to the amplitude with all
outgoing gluons with (−,−,+, . . . ,+) helicity configuration.

The exact tree level amplitudes with an arbitrary number of the external
on-shell gluons are known. These are the Parke–Taylor amplitudes [17]
(see [18] for a comprehensive review) and can be recast in the following
form

Mn =
∑

{1,...,n}
Tr(ta1ta2 . . . tan) m(p1, ε1; p2, ε2; . . . ; pn, εn) , (33)

where a1, a2, . . . , an, p1, p2, . . . , pn and ε1, ε2, . . . , εn are the color indices,
momenta and helicities of n external gluons, respectively. The sum in (33)
is over the (n− 1)! non-cyclic permutations of the set {0, 1, . . . , n}.
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The kinematical parts of the amplitude, denoted by m(1, 2, . . . , n) ≡
m(p1, ε1; p2, ε2; . . . ; pn, εn), are color independent and gauge invariant. The
non-vanishing amplitude for the configuration (−,−,+, . . . ,+) at the tree
level is given by the formula

m(1−, 2−, 3+, . . . , n+) = ign−2 〈12〉4
〈12〉〈23〉 . . . 〈n−2 n−1〉〈n−1 n〉〈n1〉 , (34)

where 〈jk〉 are the spinor products defined below.
In order to compare the amplitudes obtained within the light-front per-

turbation theory formalism with the MHV amplitudes we need to consider
the scattering process of the evolved wave function onto the target. We
will simplify the problem by analyzing the case where the evolved projectile
gluon scatters on a single target gluon which is separated from the virtual
gluons in the projectile by a large rapidity interval. The exchange between
the projectile and the target will be treated in the high energy limit. In this
limit the interaction between the projectile and the target is mediated by
an instantaneous part of the gluon propagator in the light-cone gauge. We
restrict the kinematics of the exchange, but still, the internal structure of
the projectile gluon field is accurately represented. In principle, the applied
technique could also be used to evaluate the scattering amplitudes without
any kinematical restrictions, but an analysis of the completely general case
would be much more complicated.

For the derivation of the MHV amplitudes it is useful to note that the
variables vjk which we used to construct the wave functions are related to
the variables used in the framework of helicity amplitudes, see [18]. Namely,
for given pair of on-shell momenta ki and kj we have that

〈ij〉 =
√
zizj ε

(+) ·
(

ki

zi
−
kj

zj

)

, [ij] =
√
zizj ε

(−) ·
(

ki

zi
−
kj

zj

)

, (35)

where the symbols [ij], 〈ij〉 are the spinor products defined by

〈ij〉 = 〈i− |j+〉 , [ij] = 〈i+ |j−〉 , (36)

with the chiral projections of the spinors for massless particles

|i±〉 = ψ±(ki) = 1
2(1 ± γ5)ψ(ki) , 〈±i| = ψ±(ki) , (37)

for a given momentum ki. Combining (21) and (35) we obtain

〈 ij 〉 =
√
zizj ε

(+) · vij , [ ij ] =
√
zizj ε

(−) · vij , (38)

and the dependence on the transverse momenta in the light-front wave func-
tion can be expressed by 〈 ij 〉 and [ ij ].
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In order to derive the MHV amplitude in the high energy limit we con-
sider the process in which the incoming gluon, labeled by 0, develops into
a cascade of gluons 1, . . . , n and scatters on a target gluon a → b. For the
high energy case the dominant contributions are given by the instantaneous
exchange of the Coulomb gluon. The exchanged gluon can be attached to
any gluon in the cascade. The process in question is shown schematically in
Fig. 2.

0

a b

1

2

3

4

n

∆Y2

∆Y1

Fig. 2. The 2 → n+1 on-shell gluon amplitude in the high energy limit. The gluon 0

dissociates into the gluon cascade (indicated by a blob) which interacts via high

energy gluon (with a cross) with the gluon a → b. The large rapidity difference

∆Y1 ∼ ∆Y2 between the light-front cascade and the lower gluon is taken. The

arrows indicate the momentum flow: the gluons 0, a are incoming and 1, . . . , n, b

are outgoing. All the gluons have + helicity and it is conserved.

Therefore we include both initial and final state emissions. The gluons 0
and a are incoming with helicities +, and all gluons through the whole
cascade down to the final state, carry the positive helicity. Also, we need to
sum over all possible attachments of the exchanged gluon to the upper part
of the diagram, shown in Fig. 2.

This summation can be represented by means of the general formula

Ψ̃n(1, 2, . . . , n)

=

n
∑

m=1

∑

(1≤n1<n2<...<nm−1≤n)

Ψm((1 . . . n1)(n1+1 . . . n2) . . . (nm−1+1 . . . n))

×T [(1 . . . n1) → 1, . . . , n1] T [(n1 + 1 . . . n2) → n1 + 1, . . . , n2] . . .

. . . T [(nm−1 + 1 . . . n) → nm−1 + 1, . . . , n] . (39)

Here, Ψ̃n is the part of the amplitude which corresponds to the upper ‘blob’
in Fig. 2 with the momentum transfer given by k(1...n). Putting in the exact
expressions for the fragmentation amplitude T and the initial state wave
function Ψn one obtains the explicit closed formula for the Ψ̃n. The final
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result is the following general form for the Ψ̃n for an arbitrary number of
emitted gluons

Ψ̃n(1, 2, . . . n) = gn−1 k(1...n)

k1/z1

1√
z1z2 . . . zn

1

z1z2 . . . zn

1

v12v23 . . . vn−1 n
. (40)

Note that, v01 = −k1

z1
(as we have chosen the transverse momentum of

particle 0 to vanish k0 = 0 ).
We use the relations between the light-front velocities and the spinor

products defined above (38) to get

Ψ̃n(1, 2, . . . n) = gn−1 1√
z1z2 . . . zn

1√
zn

k(1...n)

〈01〉〈12〉〈23〉 . . . 〈n− 1n〉 . (41)

Putting the expression for the exchange of the Coulomb gluon in the high
energy limit we recover in light-front perturbation theory the amplitude for
2 → n+ 1 scattering

M(0; a → 1, . . . , n; b) ≃ gn+1 〈a0〉4
〈a0〉 〈01〉 〈12〉 〈n − 1n〉 〈nb〉〈ba〉 , (42)

which is equivalent to the MHV amplitude (34).

The results presented in this paper were obtained in the collaboration
with Leszek Motyka [19]. This work was supported in part by the Polish
Ministry of Education grant No. N202 249235. The support of the Alfred
P. Sloan foundation is gratefully acknowledged.
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