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We apply the absorptive boundary prescription to include saturation
effects in the CCFM evolution equation. We are in particular interested
in saturation effects in exclusive processes which can be studied using the
Monte Carlo event generator CASCADE. We calculate the cross section for
three-jet production and the distribution of charged hadrons.
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1. Introduction

At the dawn of LHC it is desirable to have tools which could be safely
used to evolve colliding protons to any point of available in collision phase
space. It is also desirable to have a formulation within the Monte Carlo
framework because this allows to study complete events. At present, there
are two main approaches within perturbative QCD which can be applied to
describe the evolution of the parton densities: collinear factorisation with
integrated parton densities and the DGLAP evolution equations and kT

factorisation with an unintegrated gluon density and the BFKL evolution
equation [1]. These two approaches resume different perturbative series and
are valid in different kinematic regimes of the longitudinal momentum frac-
tion carried by the partons. However, they tend to merge at higher orders
meaning that one is a source of subleading corrections for the other. The
economic way to combine information from both of them is to use the CCFM
approach [2] which interpolates between the DGLAP and BFKL approaches
and which has the advantage of being applicable to Monte Carlo simulations
of final states. However, if one wants to study physics at largest energies
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available at LHC one has to go beyond DGLAP, CCFM or BFKL because
all these equations were derived in an approximation of dilute partonic sys-
tem where partons do not overlap or, to put it differently, do not recombine.
Because of this, those equations cannot be safely extrapolated towards high
energies, as this is in a conflict with unitarity requirements. To account for
dense partonic systems one has to introduce a mechanism which allows par-
tons to recombine. There are various ways to approach this problem [3], here
we are interested in the one which can be directly formulated within the kT

factorisation approach [4]. In this approach, one can formulate a momen-
tum space version [5] of the Balitsky–Kovchegov equation [6] which sums
up a large part of important terms for saturation and which is a nonlinear
extension of the BFKL equation. As it is a nonlinear equation it is quite
cumbersome, but one can avoid complications coming from nonlinearity by
applying absorptive boundary conditions [7], which mimics the nonlinear
term in the BK equation. Here, in order to have a description of exclusive
processes and to account for saturation effects, we use the CCFM evolution
equation together with an absorptive boundary [8] (see also [9] for a similar
approach) implemented in the CASCADE Monte Carlo event generator [10].

Th outline of this presentation is the following. In Sec. 2 we show a de-
scription of F2 data using the CCFM equation. In Sec. 3 we describe a way to
incorporate saturation effects. Finally, in Sec. 4 we show results for angular
distribution of three jets and the distribution of charged particles.

2. CCFM evolution equation and F2

The CCFM evolution equation is a linear evolution equation which sums
up a cascade of gluons under the assumption that gluons are strongly ordered
in an angle of emission. This can be schematically written as:

xA(x, k2

T, q2) = xA0(x, k2

T, q2) + K ⊗ xA(x, k2

T, q2) ,

where x is the longitudinal momentum fraction of the proton carried by the
gluon, kT is its transverse momentum and q is a factorisation scale. The
initial gluon distribution equals:

xA0(x, kT, µ2) = NxBg(1 − x)4 exp
[

(k − µ)2/σ2
]

,

where the parameters above are to be determined by a fit to data. At
present, we keep parameters µ and σ fixed and fit N and Bg. Using the kT

factorisation theorem, the gluon density coming from the CCFM equation
can be applied to calculate F2 and compare it with measurements. In the
kT factorisation approach the observables are calculated via the convolution
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Fig. 1. F2 description of HERA data with CCFM evolution equation.

of an off-shell hard matrix element with the gluon density. The appropriate
formula for F2 reads in schematic form:

F2

(

x,Q2
)

= Φ
(

x, k2

T , q2(Q2)
)

⊗ xA
(

x, k2

T , q2
(

Q2
))

,

where the convolution symbol stands for the integration over longitudinal
and transversal momenta. From Fig. 1 we see agreement with F2 measure-
ments. We should however note that for processes in the forward region at
the LHC we will probe the gluon density at smaller x than at HERA and
unitarity corrections could be visible.

The CCFM equation predicts that the gluon density behaves like:

A(x, k2, µ2) ∼ x−β

for small x with β > 0. This power like behaviour is in conflict with unitarity
bounds. As it has been already stated, the way to introduce a part of the
unitarity corrections is to introduce nonlinear terms to the BFKL or CCFM
evolution equation. The nonlinearity gives rise to the so called energy depen-
dent saturation scale below which the gluon density is suppressed. Following
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Fig. 2. (Up) F2 calculated using CCFM with saturation compared to CCFM and

to the data. (Down) Comparison of gluon density obtained from CCFM with

saturation to gluon density from CCFM as a function of k2

T
for x = 10−5, x = 10−6.
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an idea of Mueller and Triantafyllopoulos, we model the saturation effects
by introducing an absorptive boundary which mimics the nonlinear term.
In the original approach it was required that the BFKL amplitude should
be equal to unity for a certain combination of k2

T
and x. Here we introduce

the energy dependent cutoff on transverse gluon momenta which acts as an
absorptive boundary and slows down the rate of growth of the gluon den-
sity. As a prescription for the cutoff we use the GBW [11] saturation scale
ksat = k0(x0/x)λ/2 with parameters x0, k0, λ to be determined by a fit. We
are aware of the fact that this approach has obvious limitations since the
saturation line is not impact parameter dependent and is not affected by the
evolution. However, it provides an energy dependent cutoff which is easy to
be implemented in a Monte Carlo program, and therefore, we consider it as
a reasonable starting point for future investigations.

We applied our prescription to calculate the F2 structure function and
we obtained good descriptions of HERA data, both in scenario with and
without saturation, see Fig. 2. However, the gluon densities which are used
in the calculation of the F2 structure function have very different shape and
they may have impact on exclusive observables even in HERA range.

3. Impact of saturation on exclusive observables

Using the gluon density determined by a fit to F2 data we may now
go on to investigate the impact of saturation on exclusive observables. As
a first exclusive observable we choose the differential cross section for three
jet events in DIS [12]. Here we are interested in the dependence of the
cross section on the azimuthal angle ∆φ between the two hardest jets. This
calculation is motivated by the fact that the produced hard jets are directly
sensitive to the momentum of the incoming gluon and therefore are sensitive
to the gluon kT spectrum. In the results we see a clear difference between
the approach which includes saturation and the one which does not include
it. The description with saturation is closer to the data, suggesting the need
for saturation effects. Another observable we choose is the pT spectrum of
produced charged particles in DIS [13]. We compare our calculation with
a calculation based on the CCFM and on DGLAP evolution equations. In
Fig. 3 we see that the CCFM with saturation describes data better then
the other approaches. CCFM overestimates the cross-section for very low
x data while DGLAP underestimates it. This is easy to explain since in
CCFM one can get large contributions from larger momenta in the chain
due to the lack of ordering in kT while in DGLAP large kT’s in the chain are
suppressed. On the other hand, CCFM with saturation becomes ordered for
small x both in kT and rapidity, and therefore it interpolates between them.
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Fig. 3. (Up) Differential cross section for three jet event from CCFM with satu-

ration boundary (solid lines) and from CCFM without saturation (dotted lines).

The ratio shows the theory prediction minus the data divided by the data (down).

Distribution of charged hadrons calculated within CCFM without saturation (con-

tinuous lines), CCFM with saturation (dashed lines) and DGLAP (dotted lines).
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4. Conclusions

In this contribution we studied saturation effects in exclusive observ-
ables using a Monte Carlo event generator. Including saturation effects we
obtained a reasonably good description of DIS data for the ∆φ distribution
of jets and pT spectrum of produced charged hadrons, see Fig. 3. We com-
pared the predictions with saturation to ones which do not include it. We
clearly see that the approach based on saturation gives a better description
of the considered observables.
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