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We investigate the infrared singularity structure of Feynman diagrams
entering the next-to-leading-order (NLO) DGLAP kernel (non-singlet). We
examine cancellations between diagrams for two gluon emission contribut-
ing to NLO kernels. We observe the crucial role of colour coherence effects
in cancellations of infra-red singularities. Numerical calculations are ex-
plained using analytical formulas for the singular contributions.

PACS numbers: 12.38.–t, 12.38.Bx, 12.38.Cy

1. Introduction

This study is part of the effort with the aim of constructing fully-exclusive
(unintegrated) kernels for DGLAP [1] evolution in QCD at the complete
NLO level. More details on this project can be found in Ref. [2]. Let us only
mention that construction of the exclusive NLO DGLAP kernels in Ref. [2] is
done following Curci–Furmanski–Petronzio (CFP) scheme [3] and we adopt
this scheme also in our study. In short the CFP scheme uses axial gauge
and dimensional regularisation (MS) and generalises collinear factorization
developed in Ref. [4]. The two particle-irreducible (2PI) evolution kernels K0

M = C0(1 + K0 + K2
0 + ...) = C0Γ0 (1)

are contracted with the coefficient functions C0, which are infra-red finite.
All infra-red collinear divergences are encapsulated in Γ0, which denotes the
sum over kernels K0. The DGLAP NLO kernel is then extracted according
to the scheme [3] as a single pole in Γ0. More details can be found in Ref. [3]
and in Ref. [2] of these proceedings.
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As it is well known individual Feynman diagrams are not gauge-invariant
and sizeable cancellations occur among them. In particular some graphs
contributing to NLO DGLAP kernels may contain artificial infra-red singu-
larities, which cancel in a bigger subset of diagrams and do not appear in
the final results. Our aim is to analyse in detail such cancellations at the
level of the exclusive distributions, before the phase space integration, for
the diagrams contributing to NLO DGLAP kernels in the CFP scheme.

We shall analyse singular infra-red structure of the Feynman diagrams
depicted in Fig. 1. They describe emission of two gluons off a quark and enter
into calculation of the non-singlet NLO kernel. Diagrams of Fig. 1(a)–1(c)
are bremsstrahlung type diagrams, including interference in Fig. 1(c). Their
C2

F part is the same as in the corresponding case of QED, hence we shall
sometimes call them “abelian”. The other diagrams of Fig. 1 include produc-
tion of the gluon pair, see Fig. 1(f), and its interference with the previous
bremsstrahlung diagrams, Figs. 1(d) and 1(e). Because of the presence of
the triple-gluon vertex they are diagrams of the genuine non-abelian origin.
Moreover, since the crossed-ladder diagram of Fig. 1(c) carries colour factor
equal to C2

F − 1
2CFCA, it contributes to both “abelian” and “non-abelian”

part of NLO kernel.
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Fig. 1. Two gluon Feynman diagrams contributing to non-singlet NLO kernels.

Let us now introduce notation. The two gluon phase-space is parame-
terized using Sudakov variables:

ki = αip + α−

i n + ki⊥ , i = 1, 2 ,

k = k1 + k2 , q = p − k , (2)

with p being the four-momentum of the incoming quark and n a light-
cone vector. Four-vectors k1 and k2 denote four-momenta of the emitted
gluons, with their transverse parts being k1⊥ and k2⊥ respectively, and
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k2 = (k1 + k2)
2 being their effective mass. The sum of αi is fixed

α1 + α2 = 1 − x . (3)

We shall examine the distributions of two gluons in the soft limit:

{

α1 → 0 ,
α2 → 1 − x ,

or

{

α1 → 1 − x ,
α2 → 0 .

(4)

We shall also use the “eikonal minus variables” vi of the emitted gluons
defined as

vi =
ki⊥√
αi

. (5)

The kernel is then extracted according to the scheme [3] as a single pole
in Γ0:

Γ1 =
C

2ε

(α

π

)2
∫

dΨδ(1−x−α1−α2)Θ(Q−max{v1, v2})ρ(α1, α2, v1, v2, x) ,(6)

where C is the colour factor and the function ρ represents contribution
from each Feynman diagram (trace and kinematics). We shall also use the
dimensionless “eikonal phase-space” defined as follows:

dΨ =
dα1

α1

dv1

v1
dφ1

dα2

α2

dv2

v2
dφ2 . (7)

The two-gluon phase space is cut from below by means of geometrical regula-
tor δ, namely the factors 1/αi are regulated by principal value prescription:
1
αi

→ αi

α2

i
+δ2

. The closing of the phase space from above is ensured by the Θ

function1. For the gluon pair mass we shall also use technical cut k2 > κ.
In the numerical exercises we shall typically integrate (6) over the azimuthal
angles φi of the gluons, while concentrating on the dependence on vi and
αi. Also, because of the constraint in Eq. (3), if we say that we examine the
distribution in α1/α2 it really means that we use α1/(1−x−α1). Also, due
to a simple dimensional argument one of the variables vi can be always fac-
tored out from ρ function and the essential dependence of the distributions
in variables vi can be reduced to the dependence on the ratio y = v1/v2 only.

1 The choice of the variable in Θ function closing the phase space from above can be
different. We use max{v1, v2} or max{a1, a2} which is different from CFP choice
q2 = −(p − k1 − k2)

2.
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2. IR cancellations among bremsstrahlung diagrams

In the first part we analyse “QED-like” bremsstrahlung diagrams of
Fig. 1(a)–1(c). We shall first show infrared cancellations among these dia-
grams in the Monte Carlo exercise and later on analyse the same cancella-
tions analytically.

In the following numerical exercises we keep variable x fixed and equal
0.3. This will ensure that at least one gluon is relatively hard.

The distributions

f(αi, vi) =

∫

dφ1dφ2δ(1 − x − α1 − α2)δ (Q − max{v1, v2}) ρ(αi, vi) (8)

are plotted on Sudakov plane parametrized using variables log(α1/α2) and
log(v1/v2), see Eq. (5) for definition of vi.

Plots in Fig. 2 show contributions from the two ladder diagrams. They
are obtained using Monte Carlo program FOAM [5]. As we see, their contri-
butions appear to be strongly ordered in virtuality variables vi of the emitted
gluons, see for instance the left part of Fig. 2. The interference diagram is
shown in the upper right plot of Fig. 3. It contributes in the region of the
phase-space where both bremsstrahlung diagrams are comparable, which is
exactly the line of equal virtualities v1 = v2. The crossed-ladder interference
diagram has a singly-logarithmic singularity along the same line v1 = v2.
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Fig. 2. Two double gluon emission ladders.

Fig. 3 represents both contributions: from symmetrised and crossed lad-
der (upper plots) together with their sum (lower plot). The singly-loga-
rithmic structure, visible on the upper-left plot, disappears completely. The
dominant contribution is an infinite “plateau”, with a long “valley” along
the line α1 ≃ α2, This is not an internal infra-red singularity, however, but
a leading-log structure. The ladder diagram is not 2PI, but quadratic in
the leading-order kernel and, therefore, requires a soft counterterm to can-
cel this doubly-logarithmic plateau, see [2]. This counterterm is necessary
to construct the NLO kernel and its construction is justified by the CFP
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scheme. We do not introduce it in this paper, as our aim is to present the
universality of gauge cancellations. Therefore we often refer to: “contribu-
tion to the NLO kernel” rather than a kernel itself, having in mind that this
is not a complete NLO kernel in a strict sense. Despite this dominant LO
contribution, in the Fig. 3 one sees no structure in the soft Sudakov limit (4).
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Fig. 3. Symmetrised bremsstrahlung diagram (left), crossed-ladder diagram (right)

and their sum (down).

Results of the above numerical exercise can be also understood analyt-
ically. Contributions from diagrams in Figs. 1(a)–1(c) in the soft limit are
proportional to simple expressions shown in Table I. Two columns in this ta-
ble refer to two possible different Sudakov limits, with either first or second
gluon being soft.

The common denominator 1
(1+xy)2 is the (rescaled) square of the virtual

quark propagator 1
q4 = 1

((p−k1−k2)2)2
after emitting two gluons. Other factors

come from γ-traces2. The last row is the sum of the three, see also the lower
plot in Fig. 3. It is finite in the soft Sudakov limit, as the denominator
cancels out exactly with the spinorial part of the matrix element squared.

2 Only “C2

F” part of the crossed ladder is taken here, hence the colour coefficient is
shown explicitly. Other unimportant factors are omitted.
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TABLE I

Contributions from ladders in the Sudakov limit (up to a constant factor).

α1 → 0 α2 → 0

Br1
  1

  2

C2
F

(1+x2)
(1+xy)2 C2

F
(1+x2)
(y+x)2 x2

Br2

  1

  2

C2
F

(1+x2)
(1+xy)2 x2y2 C2

F
(1+x2)
(y+x)2 y2

Bx 2C2
F

(1+x2)
(1+xy)2 xy 2C2

F
(1+x2)
(y+x)2 xy

SUM C2
F

(

1 + x2
)

C2
F

(

1 + x2
)

In the above warm-up exercise we have examined in a fine detail how
in the NLO kernel calculations, in the axial gauge, quantum interference
cancellations work in practice. In fact they were exactly the same as in
QED in axial gauge. Let us now turn to the genuine non-abelian gauge
cancellations of the same kind.

3. IR cancellations among genuine non-abelian contributions

In this section we will discuss contributions proportional to CFCA from
the diagrams (c)–(f) of Fig. 1. They are of the genuine non-abelian character,
as certified by the presence of CA. It is interesting to see how they all
“communicate” in the soft Sudakov limit defined below.

We shall start with the overview of the IR cancellations in analytical
form and next we shall illustrate them with 2-dimensional plots coming
from Monte Carlo numerical exercises. In the following we find useful to
use rapidity-related variables ai in order to parametrise phase-space of two
gluons:

ai =
ki⊥

αi

, dΨ =
dα1

α1

da1

a1
dφ1

dα2

α2

da2

a2
dφ2 . (9)

The angular dependence enters only through the relative angle between k1⊥

and k2⊥ namely φ12, the remaining angle can be integrated out since nothing
depends on it.

By the soft Sudakov limit we understand that
{

αi → 0 ,
ki⊥ → 0 ,

(10)

while ai is finite. The Sudakov plane in the plots will be parametrised using
variables log(α1/α2) and log(a1/a2).
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3.1. General structure of the IR non-abelian cancellations

In Table II we summarize the IR cancellations of the non-abelian origin
between the two real gluon diagrams contributions to NLO kernel in analyt-
ical form. Formulas in Table II are the leading divergences extracted from
two real gluon distriburions in a maximally simplified form. Functions Fi

are relatively mild and defined as follows:

F1 =
α2

α1

1

u2
F0 , F2 =

α1

α2
u2F0 ,

√

F0 =

√
α1α2u

α1(1−α2)u2+α2(1−α1)+2α1α2u cos φ12
=

√
α1α2a1a2

q2
, (11)

where u = a1/a2. Moreover, we define a2 = 1 + u2 − 2u cos φ12, which
is up to the α1α2a

2
2 factor, the effective mass of the gluon pair squared

k2 = (k1 + k2)
2. Function F0 is proportional to rescaled square of the

propagator 1/q4, which is regular in the soft limit.
The pattern of the IR cancellations in Table II is manifest.

TABLE II

Cancellations of the non-abelian contributions from various diagrams due to gauge
invariance (colour coherence). Singular part for each diagram is shown in analytical
form. Factors Fi are relatively mild, see text for their definition.

Vg

2

1 CFCA(1 + x2)
[

u2

a2 F1 + 1
a2 F2

]

Yg1 1

2

CFCA(1 + x2)
[

u cos φ12−u2

a2 F1 + x α2

1−x
F0

]

Yg2 2

1

CFCA(1 + x2)
[

u cos φ12−1
a2 F2 + x α1

1−x
F0

]

Bx −CFCA(1 + x2) xF0

SUM CFCA(1 + x2) u cos φ12

a2 (F1 + F2)

The most evident singularity is associated with u/a2 factor, infinite when
the effective mass of the gluon pair is zero. In logarithmic variables this u/a2

divergence is seen as a thin infinite ridge along u = 1. It is a function of u
and φ12 only, strongly peaked at u = 1. In the gluonic vacuum polarization
diagram this singularity is dominant. This is, however, a collinear singu-
larity, not a soft one. It remains uncancelled but it is not relevant in our
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discussion of cancellation of soft singularities. We only mention it to under-
stand the full singularity structure of the diagrams of interest. In Yg1 and
Yg2 diagrams the u/a2 factor is present, too but the singularity is cancelled
out by the numerators.

The factors uF1 and F2/u are functions of both u and α1/α2. They
“soften” the sharp fall of u/a2 in the limits u → 0 and u → ∞. They are
non-zero in the soft Sudakov limit (10), giving rise to a doubly-logarithmic
IR divergence3. These terms are present in both Vg and Yg (Yg = Yg1 +
Yg2) diagrams, with opposite signs. This is checked and discussed below in
the context of numerical exercises.

In the last row of Table II the sum of all aforementioned contributions is
presented. The terms proportional to u2F1/a

2 and F2/a
2 cancel explicitly

among diagram with gluonic vacuum polarization and its interference with
bremsstrahlung. The remaining factor F1 + F2 is equal to 1 in the soft
Sudakov limit (10), leaving out u/a2 factor free from doubly-logarithmic
divergences.

Let us stress that this particular cancellation of the doubly logarithmic
Sudakov structure of the non-abelian origin in the two-gluon distribution in
QCD is usually referred to in the literature as the “colour coherence effect”,
see for instance Ref. [6].

The other IR divergence is caused by the presence of terms ∼ F0 in
diagrams Yg1, Yg2 and Bx, see again Table II. F0 is nonzero along a2

1/a
2
2 =

α1/α2, giving rise to a single-log singularity after phase space integration.
This has been discussed already in the case of bremsstrahlung diagrams.
Here, however, the analytical cancellation among Yg1, Yg2 and Bx, ensured
by α1 + α2 = 1 − x, occurs in the whole phase-space, not only in the soft
limit.

Finally, the only singularities that remain are associated with u/a2 term,
as discussed before in this section.

3.2. Numerical illustration of IR non-abelian cancellations

In Fig. 4 we show the distribution f(ai, αi) for two gluons (averaged
over the gluon azimuthal angles) for fixed x = 1 − α1 − α2 = 0.3, from
gluonic pair production graph (Vg) and its interference with bremsstrahlung
(Yg = Yg1 + Yg2), see also Table II. Contributions from all diagrams are
written explicitly in Table II. In the plots on Figs. 4–7 we omit their colour
coefficients. The gluonic pair production graph (Vg) has a strong peak along
the line of equal rapiditites a1 = a2 originating from u/a2 factor (off-shell
gluon propagator). In addition, this diagram features in the plot triangular

3 The doubly-logarithmic IR divergence after phase space integration is ∼ ln2 1

δ
, where

δ is cut-off variable, see Introduction.
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infinite plateau between the lines of equal rapiditites a1 = a2 and the line
of equal virtualities v1 = v2. It is exactly this triangular plateau which
upon integration leads to ln2(1/δ). Note, that in Figs. 4–7 we use variables
log(a1/a2), contrary to the previous section, where we had log(v1/v2). This
is why the line v1 = v2 is now diagonal in the plots.
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Fig. 4. Triple-gluon-vertex diagrams.

Very similar, but with opposite sign, doubly-logarithmic structure is
present in the left plot in Fig. 4 from the interference graphs Yg1+Yg2,
see also Table II. After adding the contributions from the above diagrams,
see Fig. 5, the doubly-logarithmic structure between the lines: a1 = a2 and
v1 = v2 disappears. What remains, is the single-log singularity, appearing
in a familiar shape along the diagonal line of v1 = v2 (barely visible in the
plots of Fig. 4) and collinear singularity represented here as an infinite ridge
along the line of equal rapiditites. The latter is associated with zero effective
mass of the gluon pair, k2.
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Fig. 5. Full cancellation of double-logs between the vacuum polarisation diagram

and bremsstrahlung-vacuum polarisation interference.
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The above cancellation is the well known “colour coherence effect”, see for
instance Ref. [6]. It reflects the fact that the gluonic pair production graph
(Vg) pretends that in the triangular region it is the harder gluon carrying
octet colour charge which is the “emitter”, with the emission strength ∼
CFCA. In reality, however, the emitter should be quark carrying triplet
colour charge, with the almost twice weaker emission strength ∼ C2

F. The
role of the interference diagram Yg1+Yg2 is to correct for that and we see this
to happen in the plot and in the formulas in Table II. One has to remember
that this part of the plot is already populated with the bremsstrahlung
diagrams of the previous section proportional to ∼ C2

F.

What still remains in Fig. 5 is a singly-logarithmic structure along the
diagonal line v1 = v2. Its presence is in principle allowed in the doubly-
logarithmic Sudakov approximation. A more subtle analysis of the soft limit
in QCD shows that it should also vanish and this phenomenon is often re-
ferred to as “eikonalisation”, see for instance Ref. [7, 8]. The job of bringing
back the proper soft limit of the two gluon distribution and eliminating re-
maining single-log structure is done by the crossed bremsstrahlung diagram
Bx (in fact its CFCA part), as it is shown in Figs. 6 and 7, see also Table II.

On right hand side of Fig. 6 the crossed-ladder diagram Bx is presented
again. On the left hand side of Fig. 6 we show the result of adding the triple-
gluon vertex diagrams (Vg+Yg1+Yg2). Both plots have a characteristic
single-log structure, seen as an infinite ridge along the diagonal line of equal
virtualities v1 = v2. However, Bx has opposite signs in its CFCA colour
coefficients. In Fig. 7 we see the result of adding all the above “ non-abelian”
diagrams. Bx enters with a minus sign. We see that the singly-logarithmic
structure ∼ CFCA disappears completely in the soft limit αi → 0. What
is still present in the picture is the dominant 1/k2 ∼ u/a2 gluon pair mass
singularity.
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Fig. 6. The previous plot (left) and bremsstrahlung diagram (right).
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Fig. 7. CFCA part of the sum (Vg+Yg − Bx).

The concluding plots are shown in Fig. 8. We presented there Feynman
diagrams entering the kernel, both ∼ C2

F and ∼ CFCA. In the left plot there
are solely amplitude-squared diagrams (Br1, Br2 and Vg) and in the right
plot all diagrams including interferences. We see explicitly the crucial role of
“colour coherence effects” (the interference diagrams) in the cancellation of
IR singularities. In the sum of all diagrams of interest we see that remaining
structure lies on top of the LO doubly-logarithmic plateau. The plateau does
not enter into the NLO kernel. It is cancelled by the counterterm required
by the kernel definition, as discussed in Section 2.
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Fig. 8. Infra-red cancellations among NLO non-singlet diagrams. Br1, Br2 and Vg

(left), Br1, Br2, Bx, Vg, Yg1 and Yg2 (right).

4. Conclusions

We examined the infra-red structure of the diagrams contributing to
NLO non-singlet kernel in the unintegrated form.



2108 M. Slawinska, A. Kusina

We have shown the mechanisms of gauge cancellations occurring among
different diagrams and the importance of “colour coherence effects” for this
cancellations.

These effects in soft Sudakov limit are examined/discussed in both ana-
lytical and numerical form.

We would like to thank Stanisław Jadach, Maciej Skrzypek and Boris
Ermolaev for many useful discussions during the preparation of this work.
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