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QCD FACTORIZATION AT FIXED Q2(1 − x)∗ ∗∗
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Amplitudes of hard exclusive processes such as γ∗(Q2)N → γY , where
Y = N (DVCS) or any other state with a limited mass (M2

Y ≪ Q2),
factorize into a hard subprocess amplitude and a target (transition) GPD.
The corresponding inclusive cross-section, summed over all states Y of
a given (limited) mass, is then given by the discontinuity of a forward
multiparton distribution. An application to the Drell–Yan process π+N →
γ∗(xF, Q

2) + Y allows to explain the observed longitudinal polarization of
the virtual photon at high xF.

PACS numbers: 12.38.Bx, 13.88.+e

1. The inclusive–exclusive connection

The optical theorem expresses the cross-section of deep inelastic lepton
scattering eN → eX as a discontinuity of the forward γ∗(q)N(p) amplitude.
In the Bjorken (Bj) limit where the photon virtuality −q2 = Q2 → ∞ at fixed
xB = Q2/2p·q this amplitude factorizes into the γ∗(q)q(xBp) → γ∗(q)q(xBp)
hard subprocess amplitude and a target parton distribution (PDF, Fig. 1(a)).

The factorization property can be readily understood intuitively. The
invariant mass MX of the inclusive system grows with Q,

M2
X = (p+ q)2 = m2

N +
1

xB
(1 − xB)Q2 → ∞ in the Bj limit. (1)

The virtual photon transfers its large momentum to the struck quark which
hadronizes nearly independently of the target spectators. Factorization does
not hold at low hadronic mass MX (i.e., for xB → 1) due to coherence effects
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Fig. 1. The discontinuity of the forward γ∗N → γ∗N amplitude (a) equals the DIS

cross-section (b). The PDF is real, hence the discontinuity is obtained by cutting

only the struck quark (dashed line). Analogously, the sum over Y of the squares

of the γ∗N → γY amplitudes (c) is given by the discontinuity of the forward

multiparton distribution (d).

between the struck quark and the spectators. The optical theorem itself is
exact and may be applied even for X = N (xB = 1), in which case the
discontinuity of the forward γ∗N → γ∗N amplitude measures the square
of the elastic form factor in Fig. 1(b). Intriguing similarities — Bloom–
Gilman duality [2] — are nevertheless observed between the nucleon elastic
and transition form factors on the one hand and the factorized, high M2

X
DIS cross-section on the other. This may contain clues to the dynamics of
the exclusive form factors [3].

Instead of the discontinuity of the forward γ∗N → γ∗N amplitude we
may consider the non-forward γ∗N → γY amplitude measured in Deeply
Virtual Compton Scattering (DVCS). As indicated in Fig. 1(c) this am-
plitude factorizes similarly to DIS in the Bj limit. The large momentum
imparted to the struck quark is carried away by the final photon and the
quark then fuses with the target spectators into a low-mass system Y , of-
ten taken to be the nucleon itself (Y = N). The soft target dynamics is
described by a Generalized Parton Distribution (GPD) [4] which is real and
in the forward limit reduces to the PDF of Fig. 1(a). An integral over x
of the GPD gives the elastic (or transition, N → Y ) nucleon form factors.
These form factors could not be obtained from the PDF of Fig. 1(a) since
DIS factorization breaks down at fixed MX , i.e., for xB → 1 with (1−xB)Q2

fixed.
The GPD factorization shown in Fig. 1(c) works in the Bj limit for any

final state Y whose mass is small compared to the total CM energy given
in (1), M2

Y ≪ M2
X . MY is kinematically constrained by the momentum k



QCD Factorization at Fixed Q2(1 − x) 2121

carried away by the real photon. We may parametrize the external momenta
using p = (p+, p−,p⊥) notation (p± = p0 ± p3) as

q = (−Q,Q,0⊥) ,

p =

(

Q

xB
,
m2

NxB

Q
,0⊥

)

,

k =

(

k2
⊥

xFQ
, xFQ, k⊥

)

, (2)

where k⊥ ≪ Q is the transverse momentum of the final photon and the
Feynman xF = k−/q−. This gives

M2
Y = (p+ q − k)2 =

1 − xB

xB
(1 − xF)Q2

[

1 + O
(

1

Q2

)]

(3)

GPD factorization works at any fixed MY , i.e., keeping (1 − xF)Q2 fixed.
We may then use completeness in the system Y to relate the inclusive DVCS
process γ∗N → γY to the discontinuity of the forward multiparton distri-
bution (MPD) shown in Fig. 1(d).

2. The BB limit

The method illustrated above for DVCS may be applied to many other
processes. We were motivated [1] particularly by the data on the Drell–
Yan reaction π+N → γ∗Y , which may be viewed as a time reversed version
of DVCS, with the real photon replaced by the pion. A dramatic change
in the polarization of the virtual photon, from transverse to longitudinal,
was observed [5] at high xF. According to an early analysis by Berger and
Brodsky [6] this signals the emergence of a dynamics in which both valence
quarks of the pion scatter coherently, transferring nearly all their momentum
(xF → 1) and helicity (λ = 0) to the virtual photon. Thus we refer to the
limit considered here as the

BB limit : Q2 → ∞ at fixed Q2(1 − x) . (4)

Here xmay refer either to the momentum fraction xF of a particle in the final
state (such as the real photon in DVCS) or to a parton momentum fraction
in a hadron (such as a valence quark in the pion of the Drell–Yan process)
and Q is the hard scale (a large virtuality or transverse momentum).

The life-time of a hadron Fock state is inversely proportional to ∆E, the
energy difference between the hadron and its Fock state. At high hadron
momentum p,

2p∆E ≃ m2
h −

∑

i

p2
i⊥ +m2

i

xi
, (5)
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where the xi are the momentum fractions and pi⊥ the transverse momenta
of the partons in the Fock state. In the BB limit (4) a parton with x → 1
and p2

⊥ ∼ Q2 thus contributes to ∆E similarly as the partons carrying
1 − x ∼ Λ2

QCD/Q
2 and p2

⊥ ∼ Λ2
QCD. Hence soft interactions of the partons

with low x are coherent with, and influence, the hard interactions of the
large x parton.

A good example of such coherence is provided by DIS itself, viewed in the
“target rest frame” (q+ ≃ 2ν). The Light-Front (LF) time (x+) development
is sketched in Fig. 2. The virtual photon splits asymmetrically into a quark
pair, γ∗ → q(z)+ q̄(1−z), with the quark carrying nearly all the momentum
(k+

q ≃ 2ν) while the antiquark momentum k+
q̄ = 2ν(1 − z) ∼ ΛQCD is fixed

as ν → ∞. Since ν ∝ Q2 the qq̄ Fock state of the virtual photon illustrates
the BB limit (4). In light-cone gauge (A− = 0) only the q̄ scatters (softly)
in the target, which sets the quark on-shell and thus “causes” the hard DIS
interaction. The hard γ∗ and soft q̄ interactions are coherent due to their
commensurate lifetimes: x+

q̄ ∼ 1/k−q̄ and x+
γ∗ ∼ 2ν/Q2 = 1/mxB are both

finite. In the usual “handbag” picture of DIS the antiquark in Fig. 2 is viewed
as the target quark which is struck by the γ∗, and its soft target interactions
are part of the bound state dynamics.

q
q+ ! 2" k+! 2"

1

k ! #QCD$

q
_

γ
∗(Q2)

k2 finite

Fig. 2. Light-Front time x+ development of DIS when the virtual photon momen-

tum is along the positive z-axis. The photon fluctuates into an asymmetric qq̄

pair where the quark carries nearly all the momentum whereas the antiquark has

finite momentum in the target rest frame even as q+ → ∞. Soft scattering of the

antiquark in the target (indicated by the vertical gluons) triggers the hard DIS

process.

3. Drell–Yan in the BB limit

The dynamics of π+N → γ∗(xF) + Y for

xF =
q−

k−
→ 1 (6)

as discussed by Berger and Brodsky [6] is shown in Fig. 3(a). The virtualities
of the annihilating q̄ and the exchanged g are of O

(

Q2
)

, hence the hard
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subprocess involves both quarks in the pion. This makes a longitudinal
polarization of the photon possible, in contrast to the transverse polarization
resulting from the qq̄ → γ∗ process with quarks of low virtuality.
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Fig. 3. (a) For the photon to carry nearly all the momentum of the pion (xF → 1)

the momentum zk carried by the quark q is transferred to the antiquark q̄ via gluon

g exchange, with both the g and the q̄ acquiring virtualities of O
(

Q2
)

. (b) The

gluon emission leaves the quark with a finite momentum ℓ−1 = k−(1 − xF) in the

target rest frame. The interactions of the quark within the target are coherent with

the hard subprocess and described by a target (transition) GPD, which involves an

integral over ℓ−1 and ℓ1⊥.

As in the Bj limit we take q2 = Q2 → ∞ with fixed

xB =
q+

p+
=

Q2

2q · p =
Q2

s
, (7)

where we used (6) to set q− ≃ k−. The inclusive mass

M2
Y = (k + p− q)2 ≃ (1 − xB)

[

s(1 − xF) +m2
N

]

− q2⊥ (8)

being fixed in the BB limit (4) the momentum k−(1 − xF) of the “stopped”
quark in the pion must be finite in the target rest frame. This quark remains
coherent with the hard subprocess and its soft target interactions cannot be
ignored, in analogy to the antiquark in the DIS process of Fig. 2. Thus we
arrive at Fig. 3(b), which represents the amplitude for a specific stateY .
(The inclusive DY cross-section will be obtained below by squaring this
amplitude and summing over Y .)

As the pion momentum in the target rest frame k− → ∞ and the relative
transverse momentum k⊥ of its quark constituents stays limited we may
approximate the valence quark momenta as

k1 = (0+, zk−,k⊥) ,

k2 = (0+, (1 − z)k−,−k⊥) . (9)
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The gluon g(q1) which transfers the u-quark momentum onto the d̄ is highly
virtual,

q21 ≃ −zk−ℓ+1 → −∞ , (10)

which means that the pion Fock state is transversally compact and described
by the pion distribution amplitude φπ(z). Similarly

q22 ≃ −k−ℓ+1 → −∞ ,

q−1 ≃ zq−2 ≃ zk− → ∞ . (11)

Hence the target vertices ū(y1) and d(y = 0) are separated by correspond-
ingly short distances

y1⊥ = O (1/Q) → 0 ,

y+
1 = O

(

1/k−
)

→ 0 . (12)

On the other hand, the coherence length along the light-cone remains finite,

y−1 = O
(

1/ℓ+1
)

. (13)

Noting that the hard subprocess in Fig. 3(b) is independent of ℓ−1,2 and
ℓ1,2⊥ we see that the target blob is described by a GPD, in analogy to the
DVCS case of Fig. 1(c) discussed above,

T (π+N → γ∗LY ) =
−ieg2 CF

2πQ
√

2Nc

∫

dxC(xB, x)

×
∫

dy−1 e
−iy−

1
l+
1

/2〈Y (p′)|ψ̄u(y1)γ
+γ5 ψd(0)|N(p)〉y+

1
=y1⊥=0 , (14)

where x = ℓ+1 /p
+. The matrix element corresponds to a “transition” (N→Y )

GPD and the hard subprocess gives at lowest order

C(xB, x) ≡
1

∫

0

dz φπ(z)

(

eu
1 − z

1

xB + x+ iε
+
ed
z

1

x− iε

)

. (15)

The virtual photon is dominantly longitudinal for any state Y (we recall
thatM2

Y ≪ s according to (8)). In the case of Y = N this is well-known from
the time-reversed process γ∗N → πN . The reason may more generally be
understood as a consequence of the conservation of Jz and the suppression
of Lz ∼ q⊥/Q due to the limited transverse momenta. In Fig. 4 the u-quark
in the pion is taken to have helicity +1

2 , hence Sz
u = −1

2 due to its large k−1
(as indicated in parenthesis, the u-quark is moving in the −z-direction).
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Fig. 4. The double (red) arrows indicate the spin directions of the particles. All

momenta are in the ±z-direction as shown in the parentheses. The u-quark prop-

agates into the GPD (not shown) while the d-quark propagates out of it.

After emitting the gluon the u-quark has reversed its direction (more pre-
cisely, the hard process depends only on ℓ+1 in Fig. 3(b)). Since its helicity is
conserved it now has Sz

u = +1
2 . The gluon takes up the difference, Sz

g = −1

since Lz
g = O (1/Q). The d̄ quark in the pion has Sz

d̄
= +1

2 since Sz
π = 0.

Helicity conservation then dictates that the target d-quark also has Sz = 1
2

(d̄ and d have opposite helicity and move in opposite directions). After ab-
sorbing the gluon the d̄ has Sz

d̄
= 1

2 − 1 = −1
2 , and the photon thus gets

Sz
γ∗ = −1

2 + 1
2 = 0, i.e., it is longitudinal. Since the d̄ quark virtuality is of

O
(

Q2
)

as it annihilates in the target its helicity and spin at that point are
not simply related.

A corresponding analysis (as well as analytic calculation) shows [1] that
the photon is transversely polarized in pN→γ∗Y . In this case theBj andBB
limits give the same photon polarization, making it more difficult to distin-
guish the limits experimentally. The data on nucleon induced DY [7] shows
the photon to be transversely polarized in the full measured range of xF.

4. The inclusive π+N → γ∗Y cross-section

The DY amplitudes (14) determine the inclusive cross-section as

σ(π+N → γ∗LY ) =
1

2s

∑

Y

∫

dq−d2q⊥

(2π)32q−

∣

∣T (π+N → γ∗LY )
∣

∣

2

× (2π)4δ4(k + p− q − p′) . (16)

The completeness sum

∑

Y

|Y 〉〈Y | ≡
∞
∑

n=0

∫ n
∏

i=1

d3pi

(2π)32Ei
|p1, . . . ,pn〉〈p1, . . . ,pn| = 1 (17)
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requires an unlimited sum over all momenta pi and thus also over the total
momentum p′ =

∑

i pi, which is constrained by the momentum-conserving
δ-functions in (16). Before employing the closure relation we need to remove
this explicit momentum constraint.

Integrating the inclusive cross-section over the transverse momentum
of the virtual photon eliminates the constraint on p′

⊥. The longitudinal

δ-functions may be expressed as Fourier integrals, and the p′±-dependent
phase incorporated in the matrix element using translation invariance:

∫

dy+
3 dy

−
3 〈N(p)|ψ̄d(0)γ

+γ5 ψu(y2)|Y (p′)〉eiy3·(k−q+p−p′)

=

∫

dy+
3 dy

−
3 〈N(p)|ψ̄d(y3)γ

+γ5 ψu(y2 + y3)|Y (p′)〉eiy3·(k−q) . (18)

The inclusive cross-section is now seen to involve the multiparton distribu-
tion shown in Fig. 5,

0 y1 y2 y3

u ud d

x+xB x´+xBx x´

MPDN(p) N(p)

+y3

Fig. 5. Pictorial representation of the forward multiparton distribution fdū/p(xB,

xM ;x, x′) given in (19).

fdū/p(xB, xM ;x, x′) =
1

4(4π)3

∫

dy−1 dy
−
2 dy

−
3 dy

+
3

× exp
{

1
2 i

[

−y−1 l+1 + y−2 l
+
1
′ − y−3 q

+ + y+
3 xMp

−
]}

×〈N(p)|ψ̄d(y3)γ
+γ5 ψu(y2+y3)ψ̄u(y1)γ

+γ5 ψd(0)|N(p)〉yi⊥=0; y+

1
=y+

2
=0, (19)

where x′ = ℓ′1
+/p+ and

xM =
k−(1 − xF)

p−
(20)

is the ‘−’ momentum fraction of the pion (carried by the stopped quark in
Fig. 3) which is transmitted into the inclusive system Y and determines its
mass,

M2
Y = m2

N (1 − xB)(1 + xM ) − q2
⊥ . (21)

The constraint MY ≥ mN implies

xB + q2
⊥/m

2
N

1 − xB
≤ xM ≤ ∞ . (22)
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In the BB limit MY and hence xM are finite, and so is the conjugate variable,
the LF time difference y+

3 between the amplitudes T and T †.
The target matrix element is evaluated at both y+

3 > 0 and y+
3 < 0 in the

MPD (19), and is thus not LF time ordered. However, for y+
3 < 0 the order of

the T and T † operators may be reversed by taking the hermitian conjugate of
the matrix element. Hence the MPD may be expressed as the discontinuity of
an LF time ordered matrix element, as expected from unitarity and indicated
in Fig. 1(d). In this respect it differs from the multiparton distributions
studied by Jaffe [8], which give higher twist corrections to hard processes in
the standard Bj limit. Those distributions are real, since all operators are
evaluated at equal LF time.

Including the hard subprocess amplitudes the π+N → γ∗Y cross-section
in the BB limit is

dσ(π+N → γ∗LY )

dM2
Y

=
2(eg2CF)2

Q2s2(1 − xB)Nc

∫

dx dx′C(xB, x)C
∗(xB, x

′)

× fdū/p(xB, xM ;x, x′) (23)

with C(xB, x) given in (15).

5. Reduction to incoherent jet production

We have considered the BB limit (4) of the DY process in which M2
Y

(8) is fixed as Q2 → ∞. There was no restriction on the magnitude of
M2

Y . According to (21) the momentum k−(1−xF) = xMp
− of the ‘stopped’

quark in Fig. 3 grows with M2
Y and can become large enough for the quark to

hadronize independently of the target spectators (Fig. 6), as in the standard
Bj limit. Thus for large M2

Y the MPD target matrix element (19) should
reduce to a standard target PDF. This may indeed be verified as follows.
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Fig. 6. In the secondary limit where the stopped u-quark momentum ℓ−1 (and hence

also MY ) is large, the quark hadronizes independently of the target spectators

(right). Squaring and summing the amplitudes turns the target matrix element

into a d-quark PDF as in (24).
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At large xMp
− the conjugate LF time vanishes, y+

3 → 0 in the MPD
expression (19). If we take the u-quark to be the stopped one as in Fig. 3,
ℓ−1 = xMp

− is large and ℓ+1 ∝ 1/xMp− → 0 in order that the u-quark remain
close to on-shell. The u-quark propagation becomes light-cone dominated
and the contraction of the fields ψu(y2 +y3)ψ̄u(y1) may be approximated by
the free propagator. We find [1]

fdū/p(xB, xM ;x, x′) → 1

4π
δ(x−x′) θ(x)fd/p(xB) , (ℓ−1 → ∞) . (24)

The expression for the DY cross-section in the BB limit at large MY is then
equivalent to the one obtained in [6],

dσ(π+N→γ∗LY )

dM2
Y

=
(eedg

2CF)2

Q2s2(1−xB)Nc

∫

dx

2πx
θ(x)

(
∫

dz

z
φπ(z)

)2

fd/p(xB) .

(25)

6. Summary

The BB limit (4), Q2 → ∞ at fixed (1 − xB)Q2, is not compatible with
factorization at leading twist in DIS, eN → eX. Coherence of the struck
quark with the target remnant cannot be neglected at finite MX as is evident
from the limiting case of xB = 1 (eN → eN). Nevertheless, the success of
Bloom–Gilman duality [2] indicates that both the Bj limit (MX → ∞) and
the BB limit (MX = MN∗ fixed) are relevant for eN → eN∗ (elastic and
transition form factors).

The BB limit is appropriate for describing factorization in hard exclusive
processes such as DVCS, γ∗N → γ(xF)Y , since a fixed mass MY implies
fixed (1 − xF)Q2 (cf. (8)). The coherence effects between the struck quark
(which stops in the target after emitting the photon) and the target remnants
are then described by the GPD.

We may use completeness in the system Y to relate the cross-section of
the inclusive DVCS process

∑

Y σ(γ∗N → γY ) to the discontinuity of a for-
ward multiparton distribution (Fig. 1(d)). This applies to many other hard
inclusive processes as well and offers novel opportunities to relate measurable
cross-sections to precisely defined target matrix elements.

We studied in detail the BB limit of the DY process πN → γ∗(xF)Y .
This offers a possibility to estimate how high xF needs to be (or equivalently,
how low the inclusive massMY ) for the BB limit to apply. In the Bj limit (xF

fixed, MY → ∞) the γ∗ is transversely polarized, whereas it is longitudinal
in the BB limit (xF → 1, MY fixed). For Q2 > 16 GeV2 the transition was
found [5] to start at xF

>
∼ 0.6, with the γ∗ being dominantly longitudinal at

xF = 0.9 (MY ≃ 7 GeV). In nucleon induced DY, NN → γ∗(xF) + Y , the
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γ∗ is predicted [1] to be transversely polarized in both the Bj and BB limits.
The available data [7] indeed shows no polarization change as a function
ofxF.

The large Single Spin Asymmetries (SSA) observed at high xF in p↑p→
π+Y [9] and pp→ Λ↑ +Y [10] suggest another application of BB dynamics
[11]. The SSA requires both helicity flip and a dynamic phase, both of
which are suppressed in hard subprocesses. In the BB limit the helicity flip
may occur in a soft interaction of a low-x parton which is coherent with the
hard process producing the hadron with high xF and p⊥. This may explain
the very large asymmetries observed as well as the puzzling fact that the
asymmetry appears not to decrease with p⊥, as expected in the standard
leading twist framework.

I am grateful to the organizers for their invitation to this meeting ded-
icated to the memory of Jan Kwieciński, a close friend and collaborator of
mine. The work described in this talk is based on my collaboration with
Matti Järvinen and Samu Kurki. Travel support by the Magnus Ehrnrooth
Foundation is gratefully acknowledged.
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