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1. Introduction

The interpretation of experimental data for multi-particle final states at
the Large Hadron Collider will rely both on perturbative calculations for
multi-leg scattering amplitudes and on realistic event simulation by parton-
shower Monte Carlo generators.

Owing to the complex kinematics involving multiple hard scales and the
large phase-space opening up at very high energies, high-multiplicity events
are potentially sensitive to effects of QCD initial-state radiation that depend
on the finite transverse-momentum tail of partonic matrix elements and
distributions. These effects are not included in the branching algorithms
of standard shower Monte Carlo event generators, based on collinear jet
evolution. On the other hand, they are taken into account only partially
in perturbative fixed-order calculations, order-by-order through higher-loop
contributions. Such effects are present to all orders in αs and can become
logarithmically enhanced at high energy.

The phenomenological significance of finite-k⊥ corrections to parton
showers is largely associated with effects of coherence of multiple gluon
emission for small parton momentum fractions. This article focuses on the
formulation of these effects in a manner suitable for Monte Carlo calcula-
tions, by using coherent-branching methods based on unintegrated parton
distributions and matrix elements.
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We start in Sec. 2 by briefly reviewing the main principles of parton-
branching approaches. In Sec. 3 we discuss current progress in the theory of
unintegrated pdfs. In Sec. 4 we consider jet physics applications.

2. Multi-parton emission by parton branching methods

Given a full high-energy pp collision event, consisting of a hard scatter,
parton showering, hadronization and soft underlying process (Fig. 1), we
will concentrate on the part — hard event and showering — that can be
understood by perturbative treatment. The main focus of this section is on
the description of multi-parton emission by branching methods.

pp

Fig. 1. A high-energy pp collision event.

2.1. Collinear approximation

Branching algorithms in standard shower Monte Carlo generators [1]
are based on collinear evolution of the jets developing, both “forwards” and
“backwards”, from the hard event. The branching probability is given in
terms of splitting functions P and form factors ∆ (Fig. 2) as

dP =

∫
dq2

q2

∫
dz αS

(
q2
)
P (z)∆

(
q2, q20

)
. (1)

The theoretical basis for the branching approach is the factorizability of
universal splitting functions in QCD cross-sections in the collinear limit [2,3],
which justifies the probabilistic picture.

Besides small-angle, incoherent parton emission, shower generators (or
more precisely some of them, see e.g. discussions in [4, 5]) also take into
account further radiative contributions, associated with emission of soft glu-
ons. These contributions are essential for realistic phenomenology [4,5]. To
incorporate them in a probabilistic framework, one appeals to properties of
coherence of color charge radiation.
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Fig. 2. Parton branching in terms of splitting probabilities and form factors.

2.2. Soft gluon coherence

Recall [2, 6, 7] that soft-gluon emission amplitudes factorize in terms of
eikonal currents [8, 9]

Ja
µ =

n∑

i=1

Qa
i

piµ

pi · q
, (2)

where pi are the emitters’ momenta, q is the soft momentum, and the color
charge operators Qa

i are associated with the emission of gluon a fromparton i.
In general, interferences are expected to contribute to the radiative terms
relating the (n + 1)-parton process to the n-parton process,

dσn+1 = dσn
d3q

(q0)3

∑

i,j

Qi · Qjwij , wij =
(q0)2 pi · pj

(pi · q)(pj · q)
. (3)

Nevertheless, a probabilistic branching-like picture can be recovered [10–12]
by exploiting soft-gluon coherence.

At the single-emission level, this can be described simply as a property
of azimuthal averages of the radiation function wij in (3). To this end use
the identity

(
q0
)2 pi · pj

pi · q pj · q
≡ ζij

ζiqζjq

=
1

2

(
ζij
ζiqζjq

− 1

ζjq
+

1

ζiq

)
+

1

2

(
ζij

ζiqζjq − 1
ζiq

+ 1
ζjq

)
, (4)

in Eq. (3), where for each momentum pair we have set

ζnk ≡ pn · pk

p0
np

0
k

m→0≃ 1 − cos θnk , (5)
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and take the azimuthal average for each of the two terms in the second line
of Eq. (4) separately. This gives

〈 ζij
ζiqζjq

〉
=

1

ζiq
Θ(ζij − ζiq) +

1

ζjq
Θ(ζij − ζjq) . (6)

Eq. (6) is the sum of a term for emission from parton i and a term for
emission from parton j, each with the new constraint that no radiation is
emitted at angles larger than the angle between the two emitters (Fig. 3). For
suitably averaged distributions, the net effect of interferences is effectively
to cancel the radiation outside the angular region between the directions of
the emitters, leaving a quasiclassical-looking formula.

i

j

Fig. 3. Emission cones around the directions of the emitters.

The main point is that an extension of this mechanism iterates to multi-
ple emissions. The next simplest case is depicted in Fig. 4 with production
of two soft gluons, of momenta q1 and q2, from a fast parton of momentum p
(Fig. 4(a)). Suppose q02 ≪ q01, and consider the currents for radiating q1
from p, and q2 from p and q1,

J
µa1

1 = Qa1

p

pµ

p · q1
, J

µa2

2 = Qa2

p

pµ

p · q2
+ Qa2

q1

qµ
1

q1 · q2
. (7)

By evaluating the action of the charge operators on the parton states, the
gluon emission amplitude for the transition of the fast-parton state is

Ma1a2

ki = g2
s 〈a1k|J2 · ε2|a′ i′〉 〈i′|J1 · ε1|i〉

= g2
s

p · ε1
p · q1

(
p · ε2
p · q2

ta2ta1 +
q1 · ε2
q1 · q2

[ta1 , ta2 ]

)

ki

. (8)

We can distinguish two angular regions for the softest gluon q2 in Eq. (8).
(i) When q2 is at small angle from p (q1), then the first (second) term
dominates the quantity in the brackets in Eq. (8), and the amplitude can
be seen as the sequential emission of q1 from p and of q2 from p (q1). This
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Fig. 4. (a) Two gluon emission from a fast quark; (b) coherence of soft gluon

emission at large angle.

corresponds to the standard bremsstrahlung picture based on radiation cones
centered around p and q1. (ii) When q2 is at large angle, θpq2

≫ θpq1
, then

the directions of p and q1 can be identified and the two emission amplitudes
act coherently to give

Ma1a2 ≃ g2
s

p · ε1
p · q1

p · ε2
p · q2

ta1ta2 , (9)

which can be seen as the sequential emission of q2 from p and of q1 from p.
This is pictured in Fig. 4(b). The reversed order of the emissions compared
to case (i) comes from the color algebra and reflects the fact that the radiated
gluon sees the total color charge of the emitting jet.

Fig. 4(b) illustrates that the contributions of different emitters combine
so as to give an effective contribution in which the emissions are ordered in
angle. Angular ordering thus replaces energy ordering: in the right hand
side of Fig. 4(b) the gluon emitted first is no longer the hardest.

The phenomenological relevance of these contributions has been empha-
sized over the years by extensive collider data studies. An example based
on recent Tevatron data for pp̄ jet fragmentation is shown in Fig. 5 [1].
Quantitative effects of color coherence are illustrated by comparing theory
predictions with and without coherence against di-jet Tevatron data and
earlier e+e− and ep data.

2.3. Spacelike jet at high energies

The arguments used in the previous subsection take into account, through
the currents (2), (3), soft vector emission from external lines in parton scat-
tering amplitudes, and are fully appropriate for scattering problems charac-
terized by a single hard scale [2]. In processes with multiple hard scales, on



2144 F. Hautmann

Mjj=82 GeV Mjj=105 GeV Mjj=140 GeV

Mjj=183 GeV Mjj=229 GeV Mjj=293 GeV

Mjj=378 GeV Mjj=488 GeV Mjj=628 GeV

x=log(  )_
x

1

1
d

N d
x

N e
ve

n
t 

CDF Preliminary

q (GeV/c2)

Pe
ak

 p
os

iti
on

 x o
=l

n(
1/

x o
)

CDF Mjj=80-630 GeV/c2, cone 0.47
CDF Mjj=80-630 GeV/c2, cone 0.36
CDF Mjj=80-630 GeV/c2, cone 0.28

e+e- and e+p Data

x

x
N

CDF Preliminary

Qeff = 256   13  MeV +

MLLA Fit:

Fr
ag

m
en

ta
tio

n 
w

ith
ou

t c
ol

or
 c

oh
er

en
ce

Leading Log A
pproxim

atio
n

(CDF Data only)

Mjj sinq (GeV/c2)
Pe

ak
 p

os
iti

on
 x o

=l
n(

1/
x o

)

CDF Mjj=80-630 GeV/c2, cone 0.47
CDF Mjj=80-630 GeV/c2, cone 0.36
CDF Mjj=80-630 GeV/c2, cone 0.28

e+e- and e+p Data

_

Fig. 5. Comparison [1] of predictions including soft-gluon coherence with jet frag-

mentation data at the Tevatron.

the other hand, emissions in the parton branching that are not collinearly
ordered become non-negligible. Coherence sets in from emissions due to in-
ternal lines in the branching decay chain, involving space-like partons (Fig. 6)
possibly carrying small longitudinal momentum fractions. As the phase-
space opens up for multi-scale hard events at LHC energies, it becomes
increasingly relevant to investigate such effects.

p
��
��
��

��
��
��

Fig. 6. Spacelike jet evolution.

Soft-gluon recursion relations and corresponding factorization formulas
in the high-energy kinematics can be given in terms of real and virtual soft-
gluon currents [13–17]

|M (n+1)(k, p)|2 =

{[
M (n)(k + q, p)

]† [
J (R)

]2
M (n)(k + q, p)

−
[
M (n)(k, p)

]† [
J (V)

]2
M (n)(k, p)

}
, (10)
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but the structure of these relations is more complex than in the case of soft
emissions from external lines. More precisely, the currents depend on the
transverse momentum transmitted down the decay chain, and virtual pro-
cesses are not simply represented by incorporating Sudakov form factors in
the branching [13]. Factorization holds in terms of partonic distributions
and matrix elements unintegrated in both longitudinal and transverse mo-
menta [14].

The resulting branching equations differ from the structure in Eq. (1):
the branching probability is k⊥-dependent, and part of the virtual correc-
tions are associated to the (unintegrated) splitting functions. Schematically
one has, using the recursion relation (10),

G(x, k⊥, µ) = G0(x, k⊥, µ) +

∫
dz

z

∫
dq2

q2
Θ(µ− zq)

×∆(µ, zq)P(z, q, k⊥)G
(x
z
, k⊥ + (1 − z)q, q

)
, (11)

where G is the unintegrated gluon distribution, ∆ is the form factor, and
P is the unintegrated splitting function (Fig. 7). In this picture P depends
on transverse momenta and includes part of the virtual corrections, in such
a way as to avoid double counting with the Sudakov form factor ∆, while
reconstructing color coherence not only at large x but also at small x [18] in
the angular region (Fig. 7)

α

x
> α1 > α , (12)

where the angles α for the partons radiated from the initial-state shower
are taken with respect to the initial beam jet direction, and increase with
increasing off-shellness.

α 1

α
p

xp

P

P P
+ + ...,

Fig. 7. (Left) Coherent radiation in the space-like parton shower for x≪ 1; (right)

the unintegrated splitting function P , including small-x virtual corrections.

From the standpoint of higher-order corrections, the effects of region (12)
are potentially enhanced by terms

αk
s lnk+m

√
s

p⊥
, (13)
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where
√
s is the total center-of-mass energy and p⊥ is the jet transverse

momentum. In inclusive processes, coherence leads to strong cancellations
between reals and virtuals so that terms with m ≥ 1 in Eq. (13) drop
out [19, 20]. As a result, for instance, the anomalous dimensions γij for the
evolution of the space-like jet receive at most single-logarithmic corrections
at high energy [20, 21],

γij(αs, ω) =
αs

ωp
cij0

[
1 +

∞∑

n=1

cijn

(αs

ω

)n
+ O

(
αs

(αs

ω

)n−1
)]

, (14)

where ω is the Mellin moment conjugate to ln
√
s, p is the leading-order

power (dependent on the channel), and cij are perturbative coefficients. For
exclusive jet distributions such cancellations are not present and one may
expect stronger enhancements.

The implementation of coherent effects associated with high-energy log-
arithms is, from the point of view of jet physics, the main motivation for
developing the formalism of unintegrated parton distributions and imple-
menting it in shower Monte Carlo. We discuss current work on general
aspects of u-pdfs in Sec. 3.

It is worth noting that in the case of small x a gauge-invariant u-pdf def-
inition can be given based on dominance of single gluon polarization at high
energy (Fig. 8) [14, 20], because in this case one can relate directly (up to
perturbative corrections) the cross-section for a physical process (e.g., pho-
toproduction of a heavy-quark pair) to an unintegrated gluon distribution,
much as one does for deep inelastic scattering in terms of ordinary (inte-
grated) parton distributions1. This enables one to treat arbitrarily large
transferred momenta (and in particular correctly predict QCD scaling viola-
tion at small x [20,26,27])2. This ultimately justifies the use of this approach
for high-p⊥ processes at the LHC (see e.g. Sec. 4 ahead).

A program to perform shower Monte Carlo evolution at unintegrated
level has recently been proposed [34], based on two-particle irreducible ker-
nels at the next-to-leading order. The method is based on the generalized
ladder expansion [35] first used in [36] for NLO computations of deep in-
elastic scattering, and then used to treat factorization in the high energy
region [20] and in the presence of heavy quark masses [37]. A study of
soft-gluon effects in the context of the approach [34] is presented in [38].

1 On the other hand, it is not obvious how to determine one such relation for general
kinematics [22–25]. More discussion of the general case is given in Sec. 3.

2 Explicit cross-checks versus perturbative calculations have been carried out up to
next-to-next-to-leading order [28]. This also points to the possible relevance for global
analyses of parton evolution [29–31]. See also [32,33] for recent studies especially in
connection with longitudinal structure function measurements.
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Fig. 8. Unintegrated gluon distribution defined by high energy factorization for

s≫M2 ≫ Λ2
QCD.

Other existing Monte Carlos based on u-pdfs [39–42] do not attempt to
go to NLO accuracy, nevertheless they contain important physics effects at
subleading level, see [29,43] for more discussion. Selected applications to jet
phenomenology are considered in Sec. 4.

3. Progress in operator approaches to unintegrated pdfs

Fully general factorization formulas for hard-scattering observables in
terms of unintegrated parton distributions are yet to be established, and will
have a considerably complex structure [24, 44]. A prototypical calculation
that illustrates certain main features was carried out in [45] for a specific
problem, the electromagnetic form factor of a quark. Although simpler than
general hard processes, this case is sufficient to illustrate the role of gauge-
invariant operator matrix elements associated with infrared subgraphs in
factorization formulas for physical cross-sections.

The technique proposed in [45] to identify these terms is based on gauge-
invariant infrared subtractions. Recent analyses of the form factor [46, 47]
emphasize the need for subtractions in the context of soft-collinear effec-
tive theory [48]. Subtractive techniques [45, 49] serve to treat overlapping
momentum regions in studies [50, 51] of transverse momentum dependent
factorization3. Relations between subtractive techniques in standard per-
turbative approaches and in soft-collinear effective theory are beginning to
be investigated, see for instance [57] and [58]4.

Recent analyses of unintegrated pdf matrix elements along these lines can
be found in [63–65] and [66,67]. Implications for parton-showering methods
are considered in [49, 68, 69].

In this section we recall basic aspects of operator matrix elements for
unintegrated pdfs and briefly discuss some of the ongoing developments.

3 Besides collider physics, relevant applications include low-energy cross-sections, e.g.

semi-inclusive leptoproduction [52–54] and exclusive processes [55,56].
4 See also SCET applications to shower algorithms [59], TMD pdfs [60], jet event

shapes [61], jets in a dense medium [62] for use of these techniques.
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3.1. Gauge invariant matrix elements

The relevance of consistent operator definitions for parton k⊥ distribu-
tions was emphasized long ago in the context of Sudakov processes [70],
jet physics [71], exclusive production [72], spin physics [73]. The approach
commonly used to ensure gauge invariance is to generalize the coordinate-
space matrix elements that define ordinary pdf’s to the case of field operators
at non-lightcone distances. For instance, for the quark distribution one has
(Fig. 9)

f̃(y) = 〈P |ψ(y)V †
y (n)γ+V0(n)ψ(0)|P 〉 . (15)

Here ψ are the quark fields evaluated at distance y = (0, y−, y⊥), where y⊥
is in general nonzero, and V are eikonal-line operators in direction n,

Vy(n) = P exp


igs

∞∫

0

dτnµAµ(y + τ n)


 , (16)

which we require to make the matrix element gauge-invariant. The unin-
tegrated quark distribution is obtained from the double Fourier transform

in y− and y⊥ of f̃ . An extra gauge link at infinity [74] is to be taken into
account in the case of physical gauge.
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Fig. 9. Correlator of two quark fields at distance y.

There are subtleties, however, to using Eq. (15) beyond tree level. Parton
distributions at fixed k⊥ are not protected by KLN cancellation [75] against
lightcone divergences near the x = 1 endpoint [70,76]. The singularity struc-
ture at x→ 1 is different than for ordinary (integrated) distributions, giving
divergences even in dimensional regularization with an infrared cut-off [63].
The singularities can be understood in terms of gauge-invariant eikonal-line
matrix elements [63] and related to cusp anomalous dimensions [66, 77, 78].

This can be analyzed explicitly at one loop. Expansion in powers of y2

of the coordinate-space matrix element (15) at this order yields a result of
the form [63,79]
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f̃1(y) =
αsCF

π
p+

1∫

0

dv
v

1 − v

{
[
eip·yv − eip·y

]
Γ

(
2 − d

2

)(
4πµ2

ρ2

)2−d/2

+ eip·yv π2−d/2 Γ

(
d

2
− 2

)
(−y2µ2)2−d/2 + · · ·

}
, (17)

where µ is the dimensional-regularization scale and ρ is an infrared mass
regulator. The lightcone singularity v → 1, corresponding to the exclusive
boundary x = 1, cancels for ordinary pdf’s (first term in the right hand side
of Eq. (17)) but it is present, even at d 6= 4 and finite ρ, in subsequent terms.
This implies that, using the matrix element (15), the 1/(1− x) factors from
real emission probabilities do not in general combine with virtual corrections
to give 1/(1 − x)+ distributions, but leave uncancelled divergences at fixed
k⊥. It is only after supplying the above matrix element with a regularization
prescription that the distribution is well-defined.

Similarly to what observed in [45] for the case of the Sudakov form
factor, the choice of a particular regularization method for the lightcone
divergences also affects the distributions integrated over k⊥ and the ultra-
violet subtractions. The analyses in [63, 68, 80–82] address issues that are
concerned precisely with the coefficient functions governing the expansion
of unintegrated distributions in terms of ordinary ones. Evolution equations
both in mass [6, 53] and in rapidity [51, 71] are implied by (17).

A possible regularization method for the endpoint is by cut-off, imple-
mented by taking the eikonal line n in equation (16) to be non-light-like
[51, 64, 70, 71, 83, 84], combined with evolution equations in the cut-off pa-
rameter η = (p · n)2/n2 [71, 77]. Then the cut-off in x at fixed k⊥ is of
order 1 − x & k⊥/

√
4η. Monte Carlo generators that make use of uninte-

grated pdfs can also be regarded as implementing a cut-off. We consider
such applications in Sec. 4.

There also exists a more systematic method than the cut-off, based on
the subtractive technique of [45, 49]. Although phenomenological studies
in this framework are not available yet, this method is potentially relevant
both for investigations of parton branching approaches beyond leading log-
arithms [49, 59, 69] and for addressing issues of factorization [85] and its
possible breaking [86–89]. We briefly comment on these potential directions
of development in the next two subsections.

3.2. Subtractive method

The cut-off regularization is widely used to treat the endpoint region
[51, 64]. It is however not particularly well-suited for applications beyond
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leading order. Having introduced n2 6= 0 as in the previous subsection, the
two lightcone limits y2 → 0 and n2 → 0 do not necessarily commute. The
integral over k⊥ of the distribution has a finite dependence on the regular-
ization parameter η, which makes the relation with the standard operator
product expansion not so transparent.

An alternative route is based on the subtractive method [45, 49]. This
is reviewed in [44]. The direction n in Eq. (16) in this case is kept to be
light-like but the divergences are canceled by multiplicative, gauge-invariant
counterterms given by vacuum expectation values of eikonal operators. The
counterterms contain in general both light-like and non-light-like eikonals.
The matrix element with subtraction factors is pictured schematically in
Fig. 10. The graph in the numerator stands for the same matrix element
as in Eq. (15), or Fig. 9. The graphs in the denominator represent the
counterterms. Here y = (0, y−, y⊥), ȳ = (0, y−, 0⊥), and the eikonal line in
direction u is the auxiliary eikonal that provides a gauge-invariant regulator
near x = 1 and cancels in the matrix element at y⊥ = 0 [63].

u
0 y

u
0 y

p

0 y

Fig. 10. Matrix element with subtractive regularization.

The form of the counterterms in Fig. 10 is simple in coordinate space,
where it can be given in terms of compact all-order expressions. Corre-
sponding expressions are obtained in momentum space by expanding order
by order. In particular, it is noted in [63] that at one loop the two coun-
terterms in Fig. 10 give contributions to the unintegrated density f(x, k⊥)
respectively, of the form

−WR(x, k⊥, ζ) + δ(1 − x) δ(k⊥)

∫
dx′dk′⊥WR (18)

and

+δ(k⊥)

∫
dk′⊥WR(x, k′⊥, ζ) − δ(1 − x) δ(k⊥)

∫
dx′dk′⊥WR , (19)

where ζ measures the angle for the eikonal u, and WR is computed to order
αs. The structure in Eqs. (18), (19) results in a well-prescribed extension
for k⊥ 6= 0 of the plus-distribution regularization.
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For theoretical applications, the subtractive method provides the tech-
nique to handle overlapping divergences in infrared regions in factorization
studies, see e.g. [50,51]. It has been used to relate the endpoint behavior at
fixed k⊥ with the cusp anomalous dimension [66] and investigate the role of
the Mandelstam–Leibbrandt prescription in lightcone gauges [67]. For phe-
nomenological applications, the subtractive method is likely more suitable
than the cut-off method for using transverse-momentum dependent parton
distributions at subleading-log level. It may be helpful for programs of global
NLO analyses incorporating Sudakov resummation [90,91], and in attempts
to construct parton-shower algorithms beyond leading order [59, 68].

3.3. Coulomb-phase effects

The treatment of soft gluons exchanged between subgraphs in different
collinear directions is crucial in establishing factorization for general cases.
The underlying dynamics is that of non-abelian Coulomb phase [85], involv-
ing interactions with spectator partons [92]. The issue was studied long
ago for fully inclusive Drell–Yan [93]. For more complex observables, in-
cluding color in both initial and final states, a systematic treatment is still
missing. Potential non-universality effects of k⊥-dependent parton distri-
butions [89] are discussed in [86–88] by model calculations for di-hadron
and di-jet hadroproduction near the back-to-back region. A typical graph
is shown in Fig. 11. Universality-breaking terms potentially appear at high
orders of perturbation theory, involving soft gluons coupling initial and final
states.

Fig. 11. Soft gluon exchange with spectator partons [87].
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Although the role of these corrections is yet to be fully established, it is
interesting that Coulomb/radiative mixing terms are also found [94] to be
responsible for the breaking of angular ordering in the initial-state cascade
and the appearance of superleading logarithms in di-jet cross-sections with a
gap in rapidity. A full understanding of these issues will be relevant to clarify
the range of validity of the arguments based on the calculations of [86, 87].

4. Applications to jets

This section discusses applications of the unintegrated pdf parton bran-
ching to jet physics.

We start by considering a new area of measurements that will open up
at the LHC, involving events that are both high-pT and forward. Using the
forward calorimeters, experiments will be able to measure azimuthal plane
correlations between jets across intervals of five units or more in rapidity.

Then we turn to results for angular and momentum correlations in multi-
jet final states observed, at central rapidities, in pp̄ and ep collisions. Finally
we comment on possible applications to recent measurements of azimuthal
distributions in bottom quark jet production at the Tevatron.

4.1. Forward jets in hadronic collisions

Experiments at the LHC will explore the forward region in pp collisions
with the main general-purpose detectors and with dedicated experiments,
including both proton taggers and forward calorimeters [29, 95–97]. The
forward-physics program involves a wide range of topics, from QCD to dis-
covery processes. In particular, owing to the large center-of-mass energy
of the collision and the unprecedented experimental coverage, it becomes
possible to carry out a program of high-pT physics at very large rapidities.

An example process, forward jet production, is pictured in Fig. 12 [98].
The kinematics of the process is characterized by the large ratio of sub-
energies s2/s1 ≫ 1, giving rise to potentially large perturbative corrections.

p
A

p
B

forward
jet

X
s 1

s 2 >> s 1

Fig. 12. Production of forward jet in hadron–hadron collisions.
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The initial-state parton configurations contributing to forward production
are asymmetric, with the parton in the top subgraph being probed near the
mass shell and large x, while the parton in the bottom subgraph is off-shell
and small-x.

At the LHC it will be possible to observe events where sizeable pT’s
are produced several units of rapidity apart, and measure azimuthal plane
correlations between jets across rapidity intervals ∆η & 4÷6 [29,95,97]. The
jet cross-section differential in transverse energy Qt and azimuthal angle ϕ
can be computed by high-energy factorization [14, 18, 98] as

dσ

dQ2
tdϕ

=
∑

a

∫
φa/A ⊗ dσ̂

dQ2
tdϕ

⊗ φg∗/B , (20)

where σ̂ is the hard scattering cross-section, calculable from a suitable off-
shell continuation of perturbative matrix elements, φa/A is the distribution of
parton a obtained by near-collinear shower evolution, and φg∗/B is the gluon
unintegrated distribution obtained from k⊥-dependent parton branching.

Potentially significant coherence effects involve both the short-distance
factor σ̂ and the long-distance factor φ. Fig. 13 [98] illustrates the effect in
the short distance part. Here we consider the hard scattering function for the
term a = q in Eq. (20), and separate the contributions proportional to the
color factors C2

F and CFCA. The final state transverse energy Qt is defined
in terms of the momenta of the two hardest jets, working in the laboratory
frame. We plot the cross-section versus the ratio between kt, measuring the
transverse momentum carried away by additional jets accompanying the two
leading jets, and Qt. The leading-order process with two back-to-back jets
corresponds to the region kt/Qt → 0.
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Fig. 13. Off-shell continuation of the qg hard cross-section for forward jet produc-

tion at high energies [98]: (left) C2
F term; (right) CFCA term.
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We observe in Fig. 13 that the role of coherence from multi- gluon emis-
sion is to set the dynamical cut-off at values of kt of order Qt. Non-negligible
effects arise at high energy from the finite-kt tail. These effects are not in-
cluded in collinear-branching generators, and become more and more im-
portant as the jets are observed at large rapidity separations. Monte Carlo
implementations of Eq. (20) and the coherent matrix elements will be rele-
vant for phenomenological studies of the forward region.

To get a handle on what size effects one may expect, it is interesting
to ask what one can learn from pp̄ and ep data. Most of this data is at
central rapidities. Nevertheless, certain correlations among jets in angle and
momentum, even in the central region, turn out to give useful information.
We turn to this in the next subsection.

4.2. Jet correlations in pp̄ and ep final states

In a multi-jet event the correlation in the azimuthal angle ∆φ between
the two hardest jets provides a useful measurement of how well multiple-
radiation effects are described. At the LHC such measurements may become
accessible relatively early and be used to test the description of complex
hadronic final states by Monte Carlo generators [99].

Data on ∆φ correlations are available from the Tevatron [100] and from
Hera [101–103]. The comparison with Monte Carlos and perturbative results
are very different in the two cases. The Tevatron ∆φ distribution (Fig. 14)
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Fig. 14. Dijet azimuthal correlations measured by D/0 along with the Herwig and

Pythia results [100].
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drops by about two orders of magnitude over a fairly narrow range, es-
sentially still close to the two-jet region. The measurement is dominated
by leading-order processes, with small sub-leading corrections. Data are
reasonably well described both by collinear showers (Herwig and the new
tuning of Pythia) and by fixed-order NLO calculations [99, 100].

The Hera ∆φ measurements, on the other hand, are much more sensitive
to higher orders, Fig. 15 [101]. NLO results for di-jet azimuthal distributions
are affected by large corrections [104]) in the small-∆φ and small-x region,
and begin to fall below the data for three-jet distributions in the smallest
∆φ bins [101]. These measurements are characterized by large phase-space
available for jet production and are relevant for extrapolation of initial-state
showering effects to the LHC.
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Refs. [43, 105] investigate the effects of corrections to collinear-ordered
showers on angular and momentum correlations, Fig. 16. The shape of the
distributions is different for Herwig and for the k⊥-shower Monte Carlo
Cascade, with the largest differences occurring at small ∆φ and small
∆pt, where the two highest ET jets are not close to back to back [106] and
one has effectively three hard, well-separated jets. Ref. [43] also analyzes
the angular distribution of the third jet and finds significant contributions
from regions where the transverse momenta in the initial state shower are
not ordered. The description of the measurement by the k⊥-shower is good,
whereas the collinear-based shower is not sufficient to describe it.
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Fig. 16. (Left) angular correlations and (right) momentum correlations [43] in

three-jet final states measured by [101], compared with k⊥-shower (Cascade) and

collinear-shower (Herwig) Monte Carlo results.

Fig. 17 illustrates the relative contribution of matrix element corrections
and shower evolution to the result [43]. The solid red curve is the full re-
sult, normalized to the back-to-back cross-section. The dashed blue curve is
obtained from the same unintegrated pdf’s but by taking the collinear ap-
proximation in the hard matrix element. The dashed curve drops much faster
than the full result as ∆φ decreases, indicating that the high-k⊥component
in the hard ME is necessary to describe jet correlations for small ∆φ. The
dotted (violet) curve is the result obtained from the unintegrated pdf with-
out any resolved branching. This represents the contribution of the intrinsic
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Fig. 17. The dijet azimuthal distribution [43] normalized to the back-to-back cross-

section: (solid red) full result (u-pdf ⊕ ME); (dashed blue) no finite-k⊥correction

in ME (u-pdf ⊕ MEcollin.

); (dotted violet) u-pdf with no resolved branching.

k⊥distribution only, corresponding to nonperturbative, predominantly low-
k⊥modes. That is, in the dotted (violet) curve one retains an intrinsic
k⊥ 6= 0 but no effects of coherence. We see that the resulting jet correlations
in this case are down by an order of magnitude. The inclusion of the per-
turbatively computed high-k⊥ correction distinguishes the calculation [43]
of multi-jet cross-sections from other shower approaches (see e.g. [42]) that
include transverse momentum dependence in the pdfs but not in the matrix
elements.

4.3. b-jets correlations

Measurements of angular correlations have recently been performed for
bottom quark jet production at the Tevatron [107–109]. See [29, 110, 111]
for reviews of related phenomenology.

Results for b-jet distributions in invariant mass and azimuthal angle are
shown in Fig. 18 [108] and Fig. 19 [109]. Collinear-shower descriptions of
the data do not appear to be satisfactory especially at small ∆φ [1]. The
measurements are sensitive to soft underlying events [108] and in this respect
parton showers using unintegrated densities are likely to provide a more
natural framework [113] to describe the k⊥ distribution of the underlying
event. Phenomenological studies of b-jet correlations based on k⊥-dependent
parton branching are warranted.

As regards small ∆φ, it is worth recalling that heavy flavor hadropro-
duction is dominated for sufficiently high energies by gluon splitting into
heavy-quark pairs [14], g → QQ where g is produced from the spacelike
jet. The coefficient functions associated to the leading high-energy singular-
ity [14] enhance regions that are not ordered in transverse momentum in the
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Fig. 18. Invariant-mass distribution and azimuthal-angle distribution for produc-

tion of b-jets at the Tevatron [108].

initial state jet. In fact, such contributions are already found to be signifi-
cant at the level of the NLO correction [111, 112]. They may be related to
the rather large theoretical uncertainties, due to uncalculated higher orders,
found [111, 112] in the NLO predictions when going from the Tevatron to
the LHC. It will be of interest to investigate their role for the shape of the
∆φ distribution.
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Note that even more complex multi-scale effects are expected [29] at
the LHC in the associated production of bottom quark pairs and W/Z
bosons [114], and possibly in final states with Higgs bosons [115–117] espe-
cially for measurements of the less inclusive distributions and correlations.
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Similar studies are to be carried out in vector boson production, probing
sea-quark channels [20, 118, 119] at high energy. This is relevant for early
phenomenology at the LHC, as the possible broadening of W and Z pT dis-
tributions [120] affects the use of these processes as luminosity monitor [121].

I thank the organizers for inviting me to participate in this conference
commemorating Jan Kwieciński.
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