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Assuming that the energy dependence of quasi on-shell parton–nucleon
interactions can be parametrized in terms of J-plane singularities we explore
consequences of Regge behavior for Deeply Virtual Compton Scattering
(DVCS). In particular we find that resulting generalized parton distribu-
tions develop singularities which prevent the use of collinear factorization.
The microscopic interpretation is that DVCS is dominated by photon disso-
ciation into a quark–antiquark pair with subsequent re-scattering on target
constituents rather than scattering on partons forming the target bound
state.

PACS numbers: 11.10.Ef, 11.55.Jy, 12.38.Aw, 12.38.Cy

1. Introduction

1.1. Motivation: Regge behavior and generalized parton distributions

Nowadays it is common to consider deeply virtual exclusive electropro-
duction of mesons or photons in the context of generalized parton distri-
butions (GPD’s) [1–6]. In the case of deeply virtual Compton scattering
(DVCS) [7, 8], a single initial quark near its mass shell becomes highly vir-
tual after it interacts with the off-shell photon. This virtual quark is believed
to propagate essentially without interaction with the quark and gluon spec-
tators until it radiates a real photon. To produce a final hadron in place of
a real photon, the off-shell quark can radiate a hard gluon that enhances its
correlation with soft quarks and antiquarks around the target, and hence in-
creases the probability of hadronization into a single meson. In the language
of QCD factorization [9,10], the exchange of a single off-shell quark between
the two photons (or photon and meson, in the case of hard exclusive meson
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production) is said to be sensitive to QCD interactions at momentum scales
of the order of Q2, where Q2 is the large virtuality of the incoming photon,
while all processes involving target constituents occur at scales much smaller
than Q2. If there is scale separation then the physics of hard two-photon–
quark interactions can be separated from soft parton–nucleon dynamics.

An alternative approach to exclusive processes involving strong interac-
tions is based on identifying singularities of the scattering amplitude close to
the physical region of the relevant kinematical variables. In particular one
expects physical states with quantum numbers of the t-channel to dominate
processes involving two-to-two particle scattering, ab → cd at low momen-
tum transfer to the target, t = (pd − pb)

2 < 0 and large values of s (the
square of the center of mass energy) s = (pa + pb)

2 ≫ −t. Inclusion of
all allowed t-channel exchanges leads to the Regge-type dependence, of the
scattering amplitude A(s, t)

A(s, t) ∼ sα(t) (1)

on the center of mass energy s where for low momentum transfer −t ≤
1 GeV2. In Eq. (1) the intercept α(t) of the Regge trajectory is a positive
number less than one (with exception of diffractive scattering which in this
language corresponds to the Pomeron exchange).

If analogous dynamics microscopically occur at the level of parton
–nucleon interactions, then, microscopically, exclusive electroproduction dif-
fers substantially from that given in terms of generalized parton distribu-
tions. Qualitatively, the Regge picture corresponds to the virtual photon
dissociating into a quark–antiquark pair followed by rescattering on target
constituents. On the other hand dynamics that is commonly associated with
the structure functions (pdf’s) or generalized distributions, has to do with
the parton content of the target nucleon, i.e. parton bound states [11, 12].
It was recently shown [13], that, at least in the case of pdf’s, both, bound
and scattering parton–nucleon states are indeed relevant. In particular it
was shown that in light cone gauge structure functions are sensitive to in-
teractions between the anti-quark from the virtual photon and the target
spectators. Such interactions occur in the final state and correspond to
scattering of a near on-mass shell parton on the proton, as opposed to inter-
actions between target constituents in a bound state. This implies that the
pdf’s measure not only the target bound state wave function but also probe
the parton–nucleon scattering amplitude. Such a microscopic interpretation
of low-xB [14] behavior of DIS was proposed long ago in [15,16] and further
explored in [17–19]. In these models the low-xB limit of the structure func-
tions is directly related to the Regge-like behavior of the parton–nucleon
scattering amplitude which now as shown in [13] is consistent with expecta-
tions from leading-twist QCD.
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In this paper we explore consequences of Regge parton–nucleon scatter-
ing for DVCS. In particular following [13] we allow for on-shell re-scattering
of partons on target constituents in building the DVCS amplitude, i.e. for
interactions which do not fall with the c.m parton–nucleon energy. A com-
plete amplitude would also involve the bound state component but we do
not study it here. The conclusion from [13] is that the QCD analysis is qual-
itatively similar to that of the pre-QCD models of [15–19]. In the modern
language these models describe 0-th order, leading twist two-photon inter-
actions while allowing for an arbitrary form of parton–nucleon interactions
i.e they allow for both bound and scattering states. Our study builds upon
these approaches.

1.2. Phenomenological implications

A distinguishing feature of the GPD mechanism is amplitude scaling
in terms of Bjorken variables, i.e. at fixed momentum transfer and mass
of the produced hadron (or photon) the hadronic part of electroproduction
amplitudes [20] is predicted to be a simple function of −q2 = Q2, the photon
virtuality, times a dynamical function of the ratio xB ≡ Q2/(2ν) alone,
where ν = pa · pb is the energy of the virtual photon in the target rest
frame. Furthermore, at fixed Bjorken xB QCD makes specific predictions
for the leading order large-Q2 dependence. In Regge theory, in general the
amplitude is expected to be a function of both Q2 and ν.

Recent results on exclusive vector and pseudoscalar meson production
from JLab [21] and from HERMES [22] do not provide conclusive evidence
of the Q2 scaling predicted by QCD factorization. In the case of meson
production, the γ∗p → Mp cross-section is predicted to fall as 1/(Q2)n

with n = 3, while JLab ω production data and HERMES π+ data taken
in a similar kinematic range give n ∼ 2. Earlier data [23] on ρ0 production
might be consistent with QCD expectations, but these results appear to be
softer than the n = 3 predicted by QCD scaling.

DVCS data from Hall A at Jefferson Laboratory [24] and HERMES [22]
appear to be consistent with the Q2-independent amplitude predicted by
QCD factorization [25], however, the available Q2 window is quite small,
from 1.5–2.5GeV2 and within the published experimental errors one can-
not rule out a power-like dependence of the amplitude, A ∝ (Q2)α, with α
as large as 0.25. Perhaps even more surprising, “standard” Regge-exchange
models have proved successful in describing a variety of differential cross sec-
tions [21,26], in the kinematical range where scaling would be expected based
on comparisons with deep inelastic scattering (DIS). As we see it, a funda-
mental question is whether the success of the Regge picture is accidental. If
not, this immediately raises the question of how one can disentangle scat-
tering off the meson cloud from effects of nucleon tomography.
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It is well known that Regge exchanges also contribute to DIS structure
functions [27], but their contribution is restricted to very low xB ∼ 0. Once
it was realized that Regge exchange might play a significant role in exclusive
electroproduction, attempts have been made to incorporate Regge effects
using analogies with DIS, i.e. to restrict Regge contributions in exclusive
electroproduction reactions to low-xB so that scaling is not otherwise modi-
fied [28–31]. To the best of our knowledge it has not been proven that Regge
contributions should only contribute to exclusive amplitudes in this domain,
and in fact in Ref. [32] we provide arguments that, in a certain kinematic
regime, Regge effects should be substantial even at large xB.

In this paper, we investigate further this issue. InRef. [32] we analyzed
hard exclusive reactions by examining the high-energy behavior of t-channel
exchange processes. Here we will show that utilization of an s-channel frame-
work, in which one analyzes the “handbag” diagrams that are used in ex-
tracting GPDs, leads to the same conclusions reached in Ref. [32], i.e. we
show that in the region of high energy and small t, Regge effects should
make sizeable contributions to hard exclusive amplitudes.

In this s-channel formalism we are able to explore the interplay between
Regge behavior in the parton–nucleon amplitude and the hard interaction in-
duced by the virtual photon. We will show that there are crucial differences
between DIS and DVCS handbag diagrams which make Regge components
of the soft parton–nucleon amplitude much more pronounced for DVCS than
for DIS. We find that the difference between these processes arises when one
attempts a collinear factorization of the quark propagators occuring in these
processes. In the presence of Regge behavior in the parton–nucleon ampli-
tude, the DVCS formalism is ill-defined. We then compute the handbag
diagram using the full hard quark propagator. For hard exclusive processes,
the divergent terms that are introduced due to the Regge behavior produce
a non-analytic, non-scaling dependence on the photon virtuality.

This has the following effect on the hard exclusive amplitudes. First, the
breakdown of factorization means that the soft amplitudes are not universal,
but are process-dependent. Second, in the region of small t Regge effects will
make substantial contributions to DVCS and exclusive meson production.
Third, the Q2 behavior of these hard exclusive processes should be different
from that predicted from scaling arguments.

All these effects arise from the one reasonable, although admittedly un-
proven, hypothesis that the Regge behavior of the quark–nucleon amplitude
parallels the Regge behavior of known hadron–hadron amplitudes, that is,
that quarks couple to the mesons exchanged in the t-channel as any other
hadron would. From this hypothesis we at least know that the standard
Regge behavior of forward pdf’s can be derived, and will do so in the fol-
lowing. One can then extend the discussion off-forward at no cost (since
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the formalism is covariant) and describe the entire handbag part of the
DVCS amplitude, independently of any factorization (although, where this
is applicable at sizeable t, the GPD and factorized DVCS amplitude can be
obtained).

Our paper is organized as follows. In the following section we introduce
the framework and consider the case of collinear factorization. We review
both DIS and DVCS reactions, and we show that the DVCS formalism is
ill-defined in the presence of Regge-like behavior in the parton–nucleon am-
plitude. In Section 3 we compute the handbag diagram with the full hard
quark propagator and show how the divergent would-be collinear factoriza-
tion forces a non-analytical, non-scaling dependence on the photon virtual-
ity. We derive the Q2 behavior for hard exclusive processes and show how it
differs from scaling predictions, and how this Q2 behavior is related to the
leading Regge trajectories. We analyze existing DVCS and exclusive meson
data, and show that their Q2 behavior is, at least qualitatively, consistent
with our predictions.

2. Collinear factorization in presence of Regge asymptotics

2.1. Compton amplitude and parton–nucleon amplitude

The hadronic tensor that describes electromagnetic transitions in the
doubly virtual, diagonal Compton scattering γ∗p → γ∗p or off-diagonal
γ∗p→ γp DVCS reactions, is given by

T µν = i

∫
d4z ei

q′+q
2

z

〈
p′λ′|TJµ

(z
2

)
Jν

(
−z

2

)
|pλ

〉
. (2)

In Eq. (2), q is the four momentum of the virtual photon, q2 < 0, q′ = q
+p− p′ ≡ q−∆, and q′2 = 0 is the momentum of the real photon produced
in DVCS. In the case of DIS, q′2 = q2 and ∆ = 0 and the DIS cross-section
is proportional to the discontinuity of T across the cut in (p + q)2. Even
though we will explicitly consider only the kinematics relevant for either DIS
or DVCS the analysis can easily be extended to the more general case of arbi-
trary time-like q′ which is relevant, for example for meson electroproduction.
The currents are given by Jµ(z) =

∑
q eqJ

µ
q (z), Jµ

q (z) = ψ̄(z)γµψ(z) where
ψ is the quark field operator and eq is the quark charge. Throughout this pa-
per we will consider a single quark flavor. For large Q2 the z-integral peaks
at z2 ∼ 1/Q2 and using the leading order operator product expansion of
QCD we replace the product of the two currents by a product of two quark
field operators and a free propagator between the photon interaction points
(z/2,−z/2)
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T µν = −e2q

∫
d4zd4k

(2π)4

[
e−ikz − e+ikz(µ↔ ν)

]

×〈p′λ′|Tψ(z/2)

[
γµ

(
6k +

6 q + 6 q′

2

)
γν

]

(
q+q′

2 + k
)2

+ iǫ
ψ(−z/2)| pλ〉

≡ −ie2q

∫
d4k

(2π)4





[
γµ

(
6k+

6 q + 6 q′

2

)
γν

]

αβ(
q+q′

2 +k
)2

+iǫ
−

[
γν

(
−6k+

6 q + 6 q′

2

)
γµ

]

αβ(
q+q′

2 −k
)2

+ iǫ





×Aβα(k,∆, p, λ, λ′) . (3)

Here A is the parton–nucleon scattering amplitude un-truncated, with re-
spect to the parton legs [33],

Aβα ≡ Aβα(k,∆, p, λ′, λ) ,

Aβα = −i

∫
d4ze−ikz〈p′λ′|T ψ̄α(z/2)ψβ(−z/2)|pλ〉 . (4)

As in Refs [15–19], we assume that despite its non-physicality, the analytical
properties of the parton–nucleon amplitude display structures in the complex
plane similar to conventional hadron scattering amplitudes. In the light cone
gauge this assumption captures the physics of final state interactions between
the antiquark and nucleon spectators which are responsible for the low-xB

behavior of the DIS cross-section [13]. This is necessary if such amplitudes
are to be of any use at all, i.e. if they are to be connected to asymptotic
properties of QCD1.

The T -ordered product could then be replaced by a normal ordered prod-
uct corresponding to generalized parton distributions [35]. For the purpose of
our study it will be more efficient to deal directly with the T -ordered ampli-
tudes. The parton–nucleon amplitude is a function of four variables and the
nucleon helicities. The variables are k2

1 = (∆/2−k)2, k2
2 = (−∆/2−k)2 the

(virtual) masses of the incoming and outgoing partons (∆ = p′−p = q− q′),
s = (p+k1)

2 = [(p+p′)/2−k]2 is the square of the center of mass energy in
the s-channel, u = (p′−k1)

2 = [(p′ +p)/2+k]2 is the square of the center of

1 Recently similar amplitudes (e.g. gluon and quark propagators in Landau gauge) were
explored [34] and they were found to have usual threshold branch points associated
with the production of colored quasiparticles (such as additional gluons or ghost
pairs).
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Fig. 1. Parton–nucleon scattering amplitude.

mass energy in the u-channel. Together with the four-momentum transfer,
t = (p′ − p)2 = ∆2 they satisfy s + t + u = k2

1 + k2
2 + 2M2 where M is the

nucleon mass.
To obtain DIS scaling relations it is necessary to assume that the parton–

nucleon amplitude has cuts for positive s and u. We will be interested pri-
marily in the implications of the high-s or u behavior at low t where the
amplitude is expected to be helicity conserving. Furthermore to reproduce
the scaling limit of DIS and to preserve current conservation, the depen-
dence on the parton spin (Dirac) indices must be of the form Aβα ∝ 6kβα, or
[γ5 6k]βα The former (latter) contributes respectively to the symmetric (anti-
symmetric) parts of the hadronic tensor T µν . Finally for fixed-t we arrive
at the general representation of the parton–nucleon amplitude in the form,

A = A+ 6kβα

4
δλ′λ +A−

[γ5 6k]βα

4
τ3
λ′λ , (5)

with the factor of 1/4 introduced for later convenience and with the ampli-
tudes A± having the Mandelstam representation,

A± = (2π)4
∫

dβ2dm2

(β2−k2
1−iǫ)(β

2−k2
2−iǫ)

[
ρ±s (β2,m2, t)

m2−s−iǫ
±
ρ±u (β2,m2, t)

m2−u−iǫ

]

+ subtractions . (6)

At asymptotically high energies, the quark and antiquark structure func-
tions are becoming identical which implies that the s and u-channel spectral
functions become identical, and so for large m2 ρ±u ∼ ρ±s . These amplitudes
are in principle different in the valence (finite m2) region. Even though
we are primarily interested in the large-m2 region we will distinguish be-
tween the s and u spectral functions in order to be able to keep track of
quark and antiquark contributions. The dependence of the spectral density
ρ± on β determines the dependence of the parton–nucleon scattering am-
plitude on parton virtualities. In perturbation theory [15] one would have



2200 A.P. Szczepaniak, J.T. Londergan, F.J. Llanes-Estrada

ρ ∝ δ(β2 −µ2) where µ is the bare quark mass. The free quark propagators
are needed in order to represent final state interactions between one of the
partons from the virtual photon and target spectators. We will return to
this point in Sec. 2.5 where we discuss current conservation and positivity
constraints. Before the real photon is emitted, partons hadronize, and thus
the ultraviolet behavior of the loop integrals over the parton momenta is
softened. This implies that at least the 0-th moment of ρ vanishes [36, 37]

∫
dβ2ρ±u,s(β

2) = 0 . (7)

The spin structure of A could be more complicated than given by the two
terms in Eq. (5), for example there could be terms proportional to 6p, 6p ′, or
6p γ5 etc. [16]. As will be clear from the discussion that follows, however, it is
the terms proportional to 6k that lead to the Regge behavior of the structure
functions and thus will be considered here. Without loss of generality we
can take

ρ±u,s(β
2,m2, t) → ρ±u.s(m

2, t)(µ2)n
dn

d(µ2)n
δ(β2 − µ2) , (8)

with n ≥ 1, where for simplicity we use a single scale µ for both partons
(inclusion of charge symmetry breaking effects is an obvious generalization).
The most general spectral density can always be written as a linear combi-
nation of functions of this type ρ =

∑
n cnρn. Henceforth, we will omit the

subindex on ρn. As we have already discussed, for low m2 this amplitude is
expected to be sensitive to poles and cuts associated with low energy reso-
nances and few-particle production thresholds. For large m2 it is expected
to be dominated by the leading Regge trajectory,

ρ±u,s(m
2, t) = ρ±u,s,V (m2, t) + ρ±u,s,R(m2, t) . (9)

For large m2, the valence part ρ±u,s,V (m2) falls off with m2 and does not

require subtractions, on the contrary for large m2 the Regge part, ρ±u,s,R(m2)
behaves as

ρ±u,s,R(m2, t) → β±u,s(t)

(
m2

µ2

)α±
u,s(t)

, (10)

where 0 < α±
u,s(t) < 1 for small t and requires one subtraction in Eq. (6).
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Here we consider only the quark contribution, as opposed to gluon exchanges
which lead to diffractive, Pomeron-type contributions with α > 1. These
could also be effectively included but would require additional subtractions.
As we are interested in the low-t limit, we have approximated the intercepts
and residues by their values in the limit t→ 0.

In the following we will be interested in the role of the Regge (high
energy) component and thus the parton–nucleon amplitude can be written,

A±(s, u, k2
1 , k

2
2) = (2π)4

∫
dm2In

1

(µ2 − k2
1 − iǫ)(µ2 − k2

2 − iǫ)

×

{[
ρ±s (m2)

m2 − s− iǫ
−
ρ±s,R(m2)

m2 − iǫ

]
± (s→ u)

}
, (11)

where in Eq. (11), In = (µ2)ndn/d(µ2)n. It should be noted that as long
as s and u channel spectral functions are identical, subtractions are really
only necessary for A+ while they cancel in A−. We are now in position
to evaluate the two diagrams (direct and crossed) that contribute to the
hadronic tensor W as shown in Fig. 2. For the symmetric part the leading
contribution in the Bjorken limit is given by

A

p p′

µ ν

+

A

p p′

µ ν

Tµν
=

q+q′

2 +k

q+q′

2 −k

∆
2 −k −∆

2 −k

−∆
2 −k ∆

2 −k

q q′

q q′

Fig. 2. u and s channel contributions to the DVCS amplitude.
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T µν
+ = iδλ′λ e

2
q

∫
d4kdm2

im2




ρ+
s (m2)

(
p+p′

2 − k
)2

[(
p+p′

2 − k
)2

−m2 + iǫ

] + (s→ u, k → −k)




× In

[
1[

(∆
2 − k)2 − µ2 + iǫ

] [
(∆

2 + k)2 − µ2 + iǫ
]
]

×




(
k + q+q′

2

)µ

kν + (µ ↔ ν) − gµν
(
k + q+q′

2

)
· k

(
q+q′

2 + k
)2

+ iǫ

−

(
−k + q+q′

2

)µ

kν + (µ↔ ν) − gµν
(
−k + q+q′

2

)
· k

(
q+q′

2 − k
)2

+ iǫ


 . (12)

Similarly the leading contribution to the antisymmetric part can be written,

T µν
− = iτ3

λ′λe
2
q

∫
d4kdm2

m2




ρ−s (m2)
(

p+p′

2 − k
)2

(
p+p′

2 − k
)2

−m2 + iǫ
− (s→ u, k → −k)




× In

[
−iǫµρνη

[
(∆

2 − k)2 − µ2 + iǫ
] [

(∆
2 + k)2 − µ2 + iǫ

]
]

×




(
k + q+q′

2

)
ρ
kη

(
q+q′

2 + k
)2

+ iǫ
+

(
−k + q+q′

2

)
ρ
kη

(
q+q′

2 − k
)2

+ iǫ


 . (13)

To obtain an expression in terms of structure functions or generalized parton
amplitudes, one applies a collinear factorization to the quark propagator in
the last square bracket in Eqs (12) and (13). We will first consider the diag-
onal case, q = q′. In this case T is the analog of the hadronic amplitude for
forward virtual Compton scattering, whose imaginary part is proportional
to the DIS cross-section.

2.2. The DIS reaction γ∗p→ γ∗p

In this subsection we will show how our minimal assumption about the
parton–nucleon amplitude, namely that it supports Regge behavior as any
other hadron–hadron amplitude, automatically yields the standard Regge
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behavior of conventional pdf’s, namely a x−α divergence at low x. This is
an encouraging feature noted in [15–19] among others, and we repeat the
discussion here for completeness.

It is convenient to express all momenta in terms of light cone components,
aµ = (a+, a−, a⊥) with a± = a0 ± az, a⊥ = (a1, a2) and to choose a frame
in which, p = p′ = (P+,M2/P+, 0⊥), q = q′ = (0, Q2/xBP

+, Q⊥), with
−q2 = −q′2 = Q2 = Q2

⊥
. Since the nucleon mass M does not play a role

in our discussion, for simplicity we will set it to zero. The hard quark
propagators (the term in the last square bracket in Eqs (12,13)) become

1
(

q+q′

2 ± k
)2

+ iǫ
→

xB

Q2

1

(−xB ± k+

P+ + iǫ)
, (14)

where following the collinear approximation k ∝ P we have ignored terms
of order |k⊥|/

√
Q2. The leading contribution to the numerator comes from

the terms that maximally involve the photon momentum; the term in the
last square bracket in Eq. (12) can be written as

[. . .] = tµν (k+/P+)2

(k+/P+)2 − xB
2 + iǫ

, (15)

where we have introduced the vectors, nµ = (0+, 2, 0⊥) (n · a = a+) and
p̃µ ≡ pµ/P+ and introduced tµν ≡ nµp̃ν + nν p̃µ − gµν(n · p̃) . In the next
step we combine all of the propagators using the Feynman parametrization,
and we obtain

T µν
+ = iδλ′λe

2
qt

µν

∫
d4k

∫
dm2

1∫

0

dx




(k+/P+)2
(

k+

P+

)2
− xB

2 + iǫ




×

[
ρ+
s (m2)In

(
2(1 − x)

[(k−xp)2−xm2−(1−x)µ2+iǫ]3
−

1

−m2(k2 − µ2 + iǫ)2

)

+ (s→ u, k → −k)] . (16)

Finally we perform the k− and k⊥ integrals using2

∫
dk−d2k⊥

2i(k2 + a2 + iǫ)α
= π2Γ (α− 2)

Γ (α)

δ(k+)

(a2 + iǫ)α−2
(17)

2 For positive (negative) k+, the singularities of the integrand in the complex k− plane
are all in the lower (upper) half-plane and the k− integral vanishes. If k+ = 0 the
integrand is k− independent and the k− integration is divergent. Thus the result has
to be proportional to δ(k+). The coefficient can be determined by integrating over
k+ and comparing with the covariant result.
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to obtain

T µν
+ = δλ′λe

2
qt

µν

1∫

0

dx
2x

xB
2 − x2 − iǫ

[
fq(x) + f̄q(x)

]
. (18)

Here fq(x), f̄q(x) are the quark and antiquark structure functions, respec-
tively, which are given by

fq(x) = fV (x) + fR(x)

=
π2

2
µ2θ(1 − x)

∫
dm2ρ+

s (m2)In−1
x(1 − x)2

[xm2 + (1 − x)µ2]2
,

f̄q(x) = f̄R(x)=
π2

2
µ2θ(1−x)

∫
dm2ρ+

u (m2)In−1
x(1−x)2

[xm2+(1 − x)µ2]2
.

(19)

There is no “valence” contribution to the antiquark distribution. Increasing
n produces more powers of (1− x) that soften the propagator, form factors,
and simultaneously the x→ 1, end-point behavior of the parton distribution
functions (PDFs), as dictated by the Drell–Yan–West relation [38]. The
valence part of the spectral function vanishes in the limit of large-m2, which
implies that the valence structure functions are proportional to x as x→ 0.
The low-x behavior originating from the Regge part of the spectral function
is given by

fR(x) = (µ2)1−α+
s
xπ2β+

s

2
In−1

∞∫

0

dm2(m2)α
+
s

(xm2 + µ2)2

→ (µ2)1−α+
s In−1

π2β+
s

2(µ2)1−α+
s

[
πα+

s

sinπα+
s

1

xα+
s

]
≡
γ

α+
s

xα+
s

(20)

and for the antiquark distribution f̄q(x) one needs to replace s → u. As
expected the small-x behavior of the structure function is determined by
the leading high-energy behavior of the parton–nucleon amplitude.

A similar analysis for the antisymmetric part, T µν
− , gives

T µν
− = ie2qǫ

µν
03τ

3
λ′λ

1∫

0

2xB

xB
2 − x2 − iǫ

[
∆fq(x) +∆f̄q(x)

]
, (21)

where
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∆fq(x) = ∆fV(x) +∆fR(x)

=
π2

2
µ2θ(1 − x)

∫
dm2ρ−s (m2)In−1

x(1 − x)2

[xm2 + (1 − x)µ2]2
,

∆f̄q(x) = ∆f̄R(x)

=
π2

2
µ2θ(1 − x)

∫
dm2ρ−u (m2)In−1

x(1 − x)2

[xm2 + (1 − x)µ2]2
. (22)

Since antiquarks are expected to dominate in the sea region, the valence part
ρ−u,V can be neglected in this region. The low-x behavior of the spin depen-
dent structure functions is determined by the Regge part and is proportional

to 1/xα−
u or 1/xα−

s for ∆fq(x) or ∆f̄q(x), respectively. We note that the sub-
traction terms do not contribute to the hadronic tensor. This is related to
the small-x behavior of the structure functions, which are integrable over
the low-x region since we assume α < 1.

The hard propagators in the collinear approximation do not spoil the
convergence of the integrals over low-x. It is important to realize, however,
that this need not be the case in general. For example in the scalar model it
was shown that the full T µν amplitude has a constant component (indepen-
dent of Q2 and xB), the so-called J = 0 pole contribution in the language of
Regge phenomenology. This component originates from the seagull coupling
of both photons to the quark at the same space-time point, as required by
QED gauge invariance. This interaction alone leads to a divergent contribu-
tion of the form

∫
0 dxfq(x)/x (as opposed to

∫
0 dxfq(x) found above) which

gets regulated as x → 0 precisely by the subtraction term [17–19]. Thus in
the scalar case the subtraction term is essential for producing a finite Comp-
ton amplitude. The J = 0 pole is a finite piece in the amplitude originating
from subtraction of the leading Regge contribution. It is also expected to
contribute in the spin-1/2 case. The reason why in Eq. (18) there is no trace
of the Regge subtraction term is because in Eq. (16) after integrating over
k− the Regge subtraction term becomes proportional to x2δ(x)/(x2 − x2

B)
and vanishes for xB 6= 0. However it is finite for xB = 0 and it is this value
that provides a Q2-independent contribution to T+ at finite xB that can be
identified with the J = 0 pole [39].

From this discussion it should be clear that the convergence of the low-x
integration may be a special rather than a general feature of these ampli-
tudes. In Sec. 2.4 we show that convergence arises for DVCS in a different
manner than for DIS.
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2.3. Normalization

The structure functions fq(x) and f̄q(x) represent probability densities
for finding a quark or antiquark of a particular flavor q in the nucleon and as
such need to be normalized to the net number of quarks of that flavor in the
proton, (e.g. nq = (0, 1, 2) for s, d and u quarks in the proton, respectively)

1∫

0

dx[fq(x) − f̄q(x)] = nq . (23)

Below we verify that this is consistent with the normalization of the vec-
tor current which is also sensitive to quark densities. The normalization
of the diagonal matrix element of the electromagnetic current, J+(0) =
eqψ̄(0)γ+ψ(0), is given by

〈pλ′|eqJ
+
q (0)|pλ〉 = 2P+δλ′λeqF

q . (24)

The factor of 2 on the r.h.s of Eq. (24) comes from the relativistic normal-
ization of states and F q is the contribution to the proton charge from the
particular quark flavor. In terms of the parton–nucleon amplitudes defined
in Eq. (4), the vector current matrix element is given by

〈pλ′|eqJ
+
q (0)|pλ〉 = −eq

∫
d4k

i(2π)4
Tr[γ+A] = −eq

∫
d4k

i(2π)4
Tr

[
γ+A+ 6k

4

]

= −ieqδλ′λ

∫
d4kdm2

m2
k+In

1

(k2 − µ2 + iǫ)2

×

[
ρ+
s (m2) (p− k)2

(p− k)2 −m2 + iǫ
− (s→ u, k → −k)

]

= 2P+δλ′λeq

1∫

0

dx[fq(x) − f̄q(x)] . (25)

Thus as expected the quark and antiquark structure functions contribute
with opposite signs. We also note that the subtraction terms do not con-
tribute, since for these terms the integrand is antisymmetric in k+. The
normalization of the spin dependent structure functions is related to the
axial current matrix element J+

5 (0) = ψ̄(0)γ+γ5ψ(0)

〈pλ′|J+
5q(0)|pλ〉 = 2P+gq

Aτ
3
λ′λ . (26)

In Eq. (26) gq
A denotes the contribution from a single quark flavor to the

nucleon axial charge, and in terms of the spin-dependent structure functions
should be given by
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gq
A =

1∫

0

dx
[
∆fq(x) +∆f̄q(x)

]
. (27)

Indeed, expressing the axial current matrix element in terms of the parton–
nucleon amplitude we obtain

〈pλ′|J+
5q(0)|pλ〉 = −

∫
d4k

i(2π)4
Tr
[
γ+γ5A

]
= −

∫
d4k

i(2π)4
Tr

[
γ+A−

6k

4

]

= −iτ3
λ′λ

∫
d4kdm2

m2
k+In

1

(k2 − µ2 + iǫ)2

×

[
ρ−s (m2) (p− k)2

(p− k)2 −m2 + iǫ
− (s → u, k → −k)

]

= 2P+τ3
λ′λ

1∫

0

dx
[
∆fq(x) +∆f̄q(x)

]
. (28)

In the following section we will consider the collinear approximation for the
DVCS amplitude.

2.4. The DVCS reaction γ∗p→ γp

In this subsection we attempt to write a collinearly factorized formula for
off-forward DVCS. We will show that in presence of Regge behavior, sα in the
parton–nucleon amplitude that for positive α (small t) grows with parton–
nucleon c.m. energy, the collinear approximation introduces a singularity
in the longitudinal momentum integral of the handbag diagram for DVCS.
This is because the Regge behavior of the parton–nucleon amplitude results
in a GPD that is singular at the break points. We note that it is the same
parton–nucleon amplitude which in the case when the virtualities of both
photons are large does lead to scaling.

When ∆ 6= 0 it is convenient to choose a frame with the following
momentum coordinates [40] (where again we ignore the nucleon mass)
p = [P+, 0, 0⊥], p′ = [(1 − ζ)P+,∆2

⊥
/(1 − ζ)P+,∆⊥], q = [0, (Q⊥ − ∆⊥)2/

ζP+ + ∆2
⊥
/(1 − ζ)P+, Q⊥], q′ = [ζP+, (Q⊥ − ∆⊥)/ζP+, Q⊥ − ∆⊥]. In

the Bjorken limit, at small momentum transfer, ζ = xB + O(−t/Q2) and
−t = ∆2

⊥
/(1 − ζ). Since we are interested in the small-t region we also

set ∆⊥ = 0 which also implies ∆2 = 0 (∆ → [−ζP+, 0, 0⊥]). To facilitate
comparison with standard formulas it is convenient to shift the integration
variable in Eqs (12), (13) from k to k̃ ≡ k +∆/2. In the collinear approxi-
mation, the hard propagators become
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1
(

q+q′

2 + k̃−∆
2

)2 ±
1

(
q+q′

2 −k̃+ ∆
2

)2 =
1

(q′+k̃)2+iε
±

1

(q−k̃)2+ iε

=
xB

Q2

[
1

ek+

P+ +iǫ
±

1

−xB−
ek+

P+ +iǫ

]
. (29)

Next we combine the two soft propagators,

1[
(∆− k̃)2 − µ2

] [
k̃2 − µ2

] =

1∫

0

dr
1

[
(k̃ − r∆)2 − µ2 + iǫ

]2 (30)

and for T µν
+ we obtain,

T µν
+ = iδλ′λe

2
q

1

2
tµν

∫
d4k̃dm2

1∫

0

drdx




(
ek+

P+ − ∆+

2P+

)

ek+

P+ + iǫ
−

(
ek+

P+ − ∆+

2P+

)

−xB −
ek+

P+ + iǫ




×

[
ρ+
s (m2)In

(
2(1 − x)

[(k̃ − xp′ − (1 − x)r∆)2 − xm2 − (1 − x)µ2 + iǫ]3

−
1

−m2[(k̃ − r∆)2 − µ2 + iǫ]2

)

+ ρ+
u (m2)In

(
2(1 − x)

[(k̃ + xp− (1 − x)r∆)2 − xm2 − (1 − x)µ2 + iǫ]3

−
1

−m2[(k̃ − r∆)2 − µ2 + iǫ]2

)]
(31)

and after integrating over k̃− and k̃⊥, we obtain a formal relation that is
reminiscent of the standard leading-twist DVCS formula in terms of GPD’s.

T µν
+ = −e2qδλ′λt

µν

1∫

0

dxH+(x, xB)

(
1

x− iǫ
+

1

x− xB + iǫ

)
. (32)

The hadronic tensors, spectral functions and generalized parton distributions
here all represent the contribution from a single quark flavor; we have not
included the quark flavor indices but they are implicit. As will be discussed
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shortly, this expression for DVCS fails to be convergent in the presence of
Regge behavior. In Eq. (32) the generalized parton distribution is given by

H+(x, xB) =
(
x−

xB

2

) 1∫

0

dr

1∫

0

dy

×

{
δ (x−y−(1−y)rxB)

[
fq(y)+f̄q(y)

y

]
−δ(x−rxB)

[
f0(y)+f̄0(y)

y

]}
,(33)

with f0 and f̄0 given by Eq. (19) without (1−x)2 in the numerator. Just as
in the case of DIS analyzed in the previous section the contribution given by
the quark (antiquark) distribution fq(x) (f̄q(x)) comes from the s-channel
(u-channel) spectral function respectively. The δ-functions which arise after

k̃− integration fix k̃+/P+ in terms of the Feynman parameter-x, and lead to

both positive and negative k̃+/P+. We immediately note that the first term
under the double integral is divergent for Regge-behaved pdf’s when y → 0,
independent of the values of x and xB. This singularity is precisely canceled
by the last term in Eq. (33), which originates from the subtractions in the
parton–nucleon amplitude needed for the parton–nucleon amplitude with
Regge asymptotic behavior. The generalized parton distribution H+ is thus
perfectly well defined, however, as we will discuss below it leads to a singular
expression for the DVCS amplitude. The GPD appearing in Eq. (32) is the
C-even generalized parton distribution [6]. The factor (x−xB/2) in Eq. (33)
makes the expression vanish at x = xB/2, this is, however, not necessarily
true for the total GPD, but only for this portion carrying the Regge behavior,
since the factor can be traced back to 6k in Eq. (5).

It can easily be checked that H+ satisfies the correct normalization con-
ditions

1∫

0

dx
H+(x, xB)

1 − xB/2
=

1∫

0

dx[fq(x) + f̄q(x)] (34)

and
H+(x, 0) = fq(x) + f̄q(x) . (35)

Finally changing variables in Eq. (33) to (α, β) where α = 2(1− y)r− 1+ y,
β = y, that equation can be represented in terms of a double distribution
[3, 8, 41, 42]:

H+
s (xs, η) =

1∫

0

dβ

1−β∫

−1+β

dαδ(β + ηα− xs) [f(β) + ηg(β, α)] , (36)
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with f(β) =
fq(β) + f̄q(β)

2(1−β)
,

g(β, α) =
α

2(1−β)


fq(β)+f̄q(β)

β
−δ(β)

1∫

0

dβ′
f0(β

′)+f̄0(β
′)

β′


 .(37)

Here we used the symmetric variables of [2] xs ≡ (x − xB/2)/(1 − xB/2),
η ≡ xB/2/(1 − xB/2) and H+

s (xs, η) ≡ H+(x, xB).
Even though H+ is well defined, the DVCS amplitude in Eq. (32) is not.

This is easily seen by first simplifying the expression for H+ in Eq. (33);
the y integral is done using the δ function and the variable r is changed to
z where z = (x− rxB)/(1 − rxB). This leads to

H+(x, xB) =
x− xB

2

xB




θ(x− xB)

x∫

x−xB
1−xB

dz
fq(z) + f̄q(z)

z(1 − z)

+ θ(xB−x)




x∫

0

dz
fq(z)+f̄q(z)

z(1−z)
−

1∫

0

dz
f0(z)+f̄0(z)

z






 . (38)

Since for z → 0, fq(z)(f̄q(z)) → f0(z)(f̄0(z)) the singularities at z → 0 cancel
between the last two integrals. For finite xB and x→ 0 H+ is determined by
the θ(xB−x) term in Eq. (38). Since the low-z Regge behavior of the quark

and antiquark structure functions is fq(0)(z) ∼ 1/zα+
s and f̄q(0)(z) ∼ 1/zα+

u ,

in the limit x → 0 the last two integrals in Eq. (38) result in H+ of the
general form

H+(x ∼ 0) ∼ −
1

2α

1

xα
. (39)

The integral over the first hard propagator in Eq. (32) thus gives a contri-
bution to the DVCS amplitude

∫

0

dx
H+(x, xB)

x− iǫ
∼ O

(
1

ǫα

)
, (40)

which is divergent for 0 < α < 1. Similarly, as x → xB
+ the first term in

Eq. (38) for H+, proportional to θ(x− xB), by virtue of the Regge form for
fq(z) and/or f̄q(z) ∝ 1/zα, is dominated by the lower limit of the integral
over z, leading to

H+(x ∼ xB
+) ∼

1

2α

(1 − xB)α

(x− xB)α
. (41)
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Using the form of H+ from Eq. (41) in Eq. (32), and integrating over the
second hard propagator, (1/[x − xB + iǫ]), it gives a contribution to the
DVCS amplitude of the form

∫

xB

dx
H+(x, xB)

x− xB + iǫ
∼ (1 − xB)αO

(
1

ǫα

)
. (42)

Even though these singular terms contribute to T µν
+ with opposite signs,

they do not cancel because of the extra factor (1 − xB)α. These resid-
ual singularities must originate from the collinear approximation since after
Regge subtraction there is no reason to expect that the expression for T µν

+
in Eq. (12) will be singular. In other words, to properly regularize those
singularities it will be necessary to retain the full momentum dependence of
the hard propagators.

We note that the problem arises from the Regge contribution to the soft
part of the handbag diagram. The valence spectral functions do not require
subtraction, thus their contributions to T µν

+ do not have the singularity
associated with the (f0(x)+ f̄0(x))/x term in Eq. (33). Furthermore valence
structure functions vanish at small-x. As a result, the valence contributions
vanish in the regions H+(x ∼ 0) and H+(x ∼ xB

+), so no singularities
appear of the type given in Eqs (40) and (42).

A similar analysis of the antisymmetric contribution yields,

T µν
− = −e2qǫ

µν
03τ

3
λ′λ

1

2

∫
d4k̃ dm2

1∫

0

drdx




(
ek+

P+ − ∆+

2P+

)

ek+

P+ +iǫ
+

(
ek+

P+ − ∆+

2P+

)

−xB−
ek+

P+ +iǫ




×

[
ρ+
s (m2)In

(
2(1 − x)

[(k̃ − xp′ − (1 − x)r∆)2 − xm2 − (1 − x)µ2 + iǫ]3

−
1

−m2
[
(k̃ − r∆)2 − µ2 + iǫ

]2




− ρ+
u (m2)In

(
2(1 − x)

[(k̃ + xp− (1 − x)r∆)2 − xm2 − (1 − x)µ2 + iǫ]3

−
1

−m2
[
(k̃ − r∆)2 − µ2 + iǫ

]2





 , (43)

T µν
− = e2qǫ

µν
03τ

3
λ′λ

1∫

0

dxH̃+(x, xB)

(
1

x− iǫ
−

1

x− xB + iǫ

)
. (44)
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The H̃+ parton distribution appearing in Eq. (44) is given by the same
equation as H+ from Eq. (38) with the replacements fq → ∆fq and f̄q →
∆f̄q, thus there are the same left-over singularities in the DVCS amplitude

as in the case of T µν
+ . These originate from the 1/xα−

u,s behavior of H̃+ near

x ∼ 0 and the 1/(x − xB)α
−
u,s behavior for x near xB.

The origin of the break point singularity has a simple explanation. Con-
sider first the symmetric DIS reaction discussed in Sec. 2.2. The invari-
ant parton–nucleon mass is proportional to the light-cone k− energy of
the parton which, for a quasi-on-shell particle, is in turn proportional to
1/k+ ∝ 1/x. Thus the parton–nucleon amplitude becomes large when
x → 0. In the case of DVCS, however the parton light-cone energies are
proportional to either 1/x or 1/(x − xB) thus the amplitude becomes large
at finite xB as long as x→ 0 or x→ xB.

2.5. Current conservation and the parton–nucleon amplitude

Electromagnetic current conservation imposes constraints on the cou-
pling of the photon to the electric charge of the quarks. To ensure cur-
rent conservation the quark propagating between the two photons has to
be treated in the same way as the antiquark emitted by the virtual photon
that scatters off nucleon spectators. This justifies the use of the free quark
propagators in the parton–nucleon amplitude. More specifically, in place
of A given by Eqs (5),(6) we can consider the following representation for
Eq. (4) which has the same spin-1/2 propagators as the hard one

A′

u =
(2π)4

4
δλ′λ

∫
dβ dm2

[
1

6k1 − β + iǫ
Γu

1

6k2 − β + iǫ

]

βα

. (45)

Here Γu = Γu[β, (k + (p + p′)/2)2,m2, t] =
∑

i Γ
i
αβF with Γi representing

combinations of Dirac matrices and 4-vectors, k, (p+p′),∆ and F are scalar
form factors. For simplicity we consider only the u-channel contribution to
the symmetric hadronic tensor (the treatment of the s-channel and spin-flip
contributions is analogous)

T µν
+ = iδλ′λe

2
q

∫
d4k dβ dm2 1

4
Tr

{
Γu

[
β,

(
k +

p+ p′

2

)2

,m2, t

]

×

[
1

−6k+ 6∆/2−β+iǫ
γµ 1

−6k−(6 q + 6 q′)/2−β+iǫ
γν 1

−6k−6∆/2−β+iǫ

+
1

−6k+ 6∆/2−β+iǫ
γν 1

−6k + (6 q + 6 q′)/2 − β + iǫ
γµ 1

−6k − 6∆/2 − β + iǫ

]}
,

(46)
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where we included the (soft) quark mass in the hard propagator. Contrac-
tions with qµ vanishes (and similarly contraction with q′ν) as expected

qµT
µν
+ = iδλ′λe

2
q

∫
d4k

i
dβdm2 1

4
Tr

{
Γu

[
β,

(
k +

p+ p′

2

)2

,m2, t

]

×

[
1

−6k − (6 q + 6 q′)/2 − β + iǫ
γν 1

−6k − 6∆/2 − β + iǫ

−
1

−6k + 6∆/2 − β + iǫ
γν 1

−6k + (6 q + 6 q′)/2 − β + iǫ

]}
(47)

= eqΓ
ν(p′, p′ + q′) − eqΓ

ν(p− q′, p) , (48)

where

Γ ν(p − q, p) = iδλ′λeq

∫
d4kdβdm2

×
1

4
Tr

[
1

−6k −6 q − β + iǫ
γν 1

−6k − β + iǫ
Γu(β, (k + p)2,m2, t)

]
. (49)

Finally the relation qµT
µν
+ = 0 is obtained after Born diagrams with nucleon

exchange are added [19].
The amplitudes derived in Secs 2.2–2.4 are obtained by choosing Γu pro-

portional to the identity in the Dirac space. It is this choice that leads to
an appropriate behavior of the structure functions at low-xB. For example,
should Γu be proportional to the single Dirac γ matrix (e.g. via 6k1 or 6k2)
an additional power of x would result in in the numerator of Eq. (18) re-
sulting in fq(x) ∝ 1/xα−1 (0 < α < 1) at low-x. Such a spin dependence
of the parton–nucleon amplitude has also been been used elsewhere [36,43].
Current conservation could not be achieved if the quark that scatters off
the nucleon and the quark being exchanged between the photons were not
described by the same quark propagator. This is typically the case where
the quark which interacts with the nucleon forms part of the nucleon bound
state and is described by a soft amplitude, as discussed for example in [44],
however, if the quasi-free scattering of the parton on the nucleon contributes
to the structure functions as discussed in [13] such final state interactions
cannot be accounted for by the nucleon wave function alone. Finally we note
that Regge behavior of GPD’s derived here violates the constraint on the
upper bound of the GPD [45] (and references therein). The GPD being
constrained from above by the structure function follows from the assumed
finite norm of the states obtained by removing a quark from the target nu-
cleon. After the virtual photon is absorbed, final state rescattering in the
target can influence the cross-section and proceeds via on-shell intermediate
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states that have infinite Hilbert norm. Such contributions are regularized at
the level of the full DVCS amplitude and not by the nucleon state alone.
Therefore, it is not surprising that the constraints on the upper limit of
GPD’s are not satisfied in the presence of on-shell scattering in the final
state.

3. DVCS amplitude without collinear approximation

In the previous section we noticed that the C-even part of the DVCS am-
plitude is singular when evaluated in collinear approximation and expressed
in terms of the H+ or H̃+ GPD’s, provided that the parton–nucleon ampli-
tude has a high energy behavior typical of hadronic amplitudes, commensu-
rate with the Regge type scaling behavior of the form sα with
0 < α < 1 (we also showed that this problem does not arise for the structure
functions).

However, the Compton amplitude we started with was perfectly finite.
From the discussion above it is also clear that the singularity in the DVCS
amplitude appears with the collinear approximation to the denominators
of the hard quark propagator exchanged between photon interaction points.
Thus in the following we use the collinear approximation only for the numer-
ators and keep the full k-dependence of the denominators while performing
the d4k integral in Eqs (12) and (13). Then the Regge part of the spectral
function, that is now finite and dominant at low t in the DVCS amplitude
T µν

+ gives:

T
µν
+ = −δλ′λe

2
q

1

2
t
µν Q2

xB

∞
Z

0

dξ

1
Z

0

dx

x

1
Z

0

dr

1
Z

0

dz2π
2(1 − x)(1 − z)2

×

(

µ2β+
s

(xµ2)α
+
s

In−1

×

»

 

ξα+
s (1 − x)2[x(1 − xB) + xB

2
− (1 − x)(1 − z)rxB − (1 − x)zxB]

[ξ+(1−x)(1−z)µ2
−(2p · q+q2)xz(1−x)−z(1−z)(1−x)2rq2

−iǫ]3
−(x = 0)

«

−

 

ξα+
s (1 − x)2(x(1 − xB) + xB

2
− (1 − x)(1 − z)rxB)

[ξ+(1−x)(1−z)µ2+(2p·q)xz(1−x)−z(1−z)(1−x)2(1−r)q2
−iǫ]3

− (x = 0)

«–

+
µ2β+

u

(xµ2)α
+
u

In−1

×

" 

ξα+
u (1 − x)2(−x + xB

2
− (1 − x)(1 − z)rxB − (1 − x)zxB)

[ξ + (1 − x)(1 − z)µ2 + (2p · q)xz(1 − x) − z(1 − z)(1 − x)2rq2
− iǫ]3

− (x = 0)

«

−

 

ξα+
u (1 − x)2(−x + xB

2
− (1 − x)(1 − z)rxB)

[ξ + (1 − x)(1 − z)µ2
− (2p · q + q2)xz(1 − x) − z(1 − z)(1 − x)2(1 − r)q2

− iǫ]3

− (x = 0)

«–ff

. (50)
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Here following Ref. [19] we changed the m2 variable to ξ, with m2 → ξ/x.
The large m2 contribution to the integral corresponds to small-x thus we
ignore x in all terms of the form (1− x), and terms proportional to x in the
numerator, and we extend the x integral to infinity. We change the x variable
so as to bring each denominator to the same form as in the subtraction terms
(those with (x = 0)). In particular for the term written explicitly in the third
line of Eq. (50) we replace x→ x′ given by,

x = x′
ξ + (1 − z)µ2 − z(1 − z)rq2

z(2p · q + q2)
, (51)

in the fourth line,

x = x′
ξ + (1 − z)µ2 − z(1 − z)(1 − r)q2

2p · qz
, (52)

in the sixth line

x = x′
ξ + (1 − z)µ2 − z(1 − z)rq2

2p · qz
, (53)

and in the seventh line

x = x′
ξ + (1 − z)µ2 − z(1 − z)(1 − r)q2

z(2p · q + q2)
. (54)

We note that since q2 < 0 and 2p · q + q2 > 0 these transformations are
non-singular. After this change of variables we obtain,

T µν
+ = −δλ′λe

2
q

1

2
tµνQ2

∞∫

0

dξ

∞∫

0

dx′

x′

1∫

0

dr

1∫

0

dz2π2(1 − z)2

×

{
µ2β+

s

(x′µ2)α
+
s

In−1

×

[
[
(2p · q+q2)z

]α+
s

ξα+
s
[
1
2−(1 − z)r − z

]

[ξ+(1−z)µ2+z(1−z)rQ2]3+α+
s

(
1

(1−x′− iǫ)3
−1

)

− [(2p · q)z]α
+
s

ξα+
s
[

1
2 − (1 − z)r

]

[ξ+(1 − z)µ2+z(1−z)(1−r)Q2]3+α+
s

(
1

(1 + x′−iǫ)3
−1

)]
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+
µ2β+

u

(x′µ2)α
+
u

In−1

[[
(2p · q)z

]α+
u ξα+

u
(

1
2 − (1 − z)r − z

)

[
ξ+(1−z)µ2 + z(1 − z)rQ2

]3+α+
u

×

(
1

(1 + x′ − iǫ)3
− 1

) [(
2p · q + q2

)
z
]α+

u

×
ξα+

u
(

1
2 − (1 − z)r

)

[ξ+(1−z)µ2+z(1−z)(1−r)Q2]3+α+
u

(
1

(1−x′−iǫ)3
− 1

)]}
. (55)

The ξ integral in Eq. (55) can be performed analytically yielding,

T µν
+ = −δλ′λe

2
q

1

2
tµνQ2

∞∫

0

dx′
1∫

0

dr

1∫

0

dz2π2

×

{
zα+

s β+
s (µ2)1−α+

s

(1 + α+
s )(2 + α+

s )
In−1

1
2 − (1 − z)r − z

[µ2 + zrQ2]2
1

x′1+α+
s

×

[[
2p · q + q2

]α+
s

(
1

(1−x′−iǫ)3
−1

)
+ [2p · q]α

+
s

(
1

(1+x′−iǫ)3
−1

)]

+
zα+

u β+
u (µ2)1−α+

u

(1 + α+
u )(2 + α+

u )
In−1

1
2 − (1 − z)r − z

[µ2 + zrQ2]2
1

x′1+α+
u

×

[
[2p·q]α

+
u

(
1

(1+x′−iǫ)3
−1

)
+
[
2p·q+q2

]α+
u

(
1

(1−x′−iǫ)3
− 1

)]}
.

(56)

The crucial ingredient which leads to the difference between the DVCS
amplitude given in Eq. (56) and the DIS case studied in [19] is the presence
of the r factor in the zrQ2 terms in the denominators. In the absence of this
factor, the integral over z would be dominated by the region z ∼ µ2/Q2.
In that case the factors of zα(2p · q + q2)α and zα(2p · q)α would become
Q2-independent; this would produce a Q2-independent expression for T µν

+
as expected from scaling. This additional r-dependence is of the same type
as found in Ref. [32]. In that paper, Regge behavior was introduced by
utilizing a t-channel approach, and not through the s or u-channel formalism
as employed here. The factor of r in zrQ2 makes r peak around µ2/Q2,
and this produces an overall (Q2)α dependence for the DVCS amplitude.
In particular we can write the symmetric tensor T µν

+ in the form

T µν
+ = −δλ′λe

2
qt

µν

[(
Q2

xBµ2

)α+
s

F+
s (xB) +

(
Q2

xBµ2

)α+
u

F+
u (xB)

]
, (57)
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where in Eq. (57) we have introduced the quantities

F+
s,u(xB) ≡

π2

2

(1 − α+
s,u)Γ (α+

s,u)

(1 + α+
s,u)Γ (3 + α+

s,u)
β+

s,u

[
µ2In−1

1

µ2

]

×
[
ξ+
α+

s,u
+ (1 − xB)α

+
s,uξ−

α+
s,u

]
(58)

and in Eq. (58) we define

ξ±α ≡

∞∫

0

dx′

x′1+α

[
1

(1 ± x′ − iǫ)3
− 1

]
. (59)

We call the functions F (xB) introduced in Eq. (58) the Regge Exclusive
Amplitudes, since they contain the information from the coupling of the rel-
evant Regge trajectories to a particular exclusive process, in this case DVCS.
Unfortunately, the loss of factorization in this process makes this and anal-
ogous functions non-universal, unlike the generalized parton distributions
or GPDs. However the Regge Exclusive Amplitudes do convey information
regarding the exponents α of the relevant Regge trajectories that are indeed
universal. These amplitudes also allow a comparison between hard exclu-
sive processes and high-energy total cross-sections. Alternatively one can
directly employ the t-channel formulation of the hard process in terms of
a single (or a few) Regge trajectories.

Finally a similar analysis for the antisymmetric amplitude yields a form

T µν
− = ie2qǫ

µν
03τ

3
λ′λ

[(
Q2

xBµ2

)α−
s

F−

s (xB) +

(
Q2

xBµ2

)α−
u

F−

u (xB)

]
, (60)

where the relevant Regge Exclusive Amplitudes are defined as

F−

s,u(xB) ≡
π2

2

(1 − α−
s,u)Γ (α−

s,u)

(1 + α−
s,u)Γ (3 + α−

s,u)
β−s,u

[
µ2In−1

1

µ2

]

×
[
ξ+
α−

s,u
− (1 − xB)α

−
s,uξ−

α−
s,u

]
. (61)

We note the familiar structure. The finite constants ξ±α encode the in-
tegration over the hard propagators from the collinear approximation, and
contribute with a relative factor of ±(1 − xB)α to the symmetric and an-
tisymmetric DVCS amplitudes, respectively. This is the same factor that
arises from the singularities of the collinear approximation. The regulariza-
tion of the collinear approximation leads to an increase of the hard exclusive
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amplitude by a factor of (Q2/xBµ
2)α relative to the DIS amplitude. This

is the same enhancement factor that was found in Ref. [32]3. In the more
general case, when the nucleon and/or quark masses are kept finite or more
than one scale appears in the parton–nucleon amplitude, the single quantity
µ would be replaced by some combination of quantities. The functions F+

s,(u)

describe the quark (antiquark) helicity averaged contribution to the DVCS
amplitude. Similarly, the functions F−

s,(u) describe the quark (antiquark)

helicity-dependent contribution to the DVCS amplitude.

As was discussed in Sec. 1, we have carried out a preliminary study of
photon-induced exclusive processes. We have shown that Regge amplitudes
should make significant contributions at large values of xB, and not just
at small xB. A major result of our formalism is the prediction of scaling
violation in these hard exclusive processes. At intermediate energies the
Bethe–Heitler (BH) amplitude is generally substantially larger than DVCS,
so the DVCS amplitudes must be extracted via their interference with the
BH term. A group at Hall A in Jefferson Laboratory [24] has recently
performed a test of QCD scaling in spin-dependent ~ep scattering. They
measured the beam-spin azimuthal asymmetry [5, 6], which is proportional
to interference between BH and DVCS amplitudes. After removing the
Q2-dependence associated with the BH term, they extracted twist-2 and -3
Compton form factors which by QCD scaling should be Q2-independent. In
Fig. 3 we plot the twist-2 Compton form factor CI(F ) versus Q2; this term

1.5 2 2.5

Q
2
 [GeV

2
]

2

2.5

3

Im
 C

1 (F
)

α = 0.15

Fig. 3. (Color online) Comparison with DVCS results from Jefferson Lab [24]. The

data points represent the twist-2 Compton form factor extracted from beam-spin

asymmetry measurements in ~ep scattering, versus Q2. The data have been averaged

over t. The dotted curve is a (Q2)α fit with α = 0.15.

3 We have recently found an heuristic argument by Bjorken and Kogut [48] that leads
them to the same conclusion (see their equation 3.25) that the exponents of Q2 and ν
are different and thus scaling is absent in exclusive processes in the presence of Regge
behavior.
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has been averaged over t. Although the data show very little Q2 dependence,
they correspond to a limited range of Q2 and are also in good agreement
with our predicted behavior (Q2)α. In Fig. 3 the dotted line corresponds to
(Q2)α with α = 0.15. Because the data points were averaged over t it is not
obvious what value of α to choose, but over this range of Q2 our predicted
behavior is in agreement with the Hall A points.

In Fig. 4 we compare our predictions with the data on exclusive meson
electroproduction. Scaling arguments predict that the reduced π+ cross-
section should fall off at fixed xB as 1/Q2. We predict a behavior (Q2)2α−1

with 0 < α < 1. Fitting π+ data from HERMES [22] in the range 0.26 <
xB < 0.8 gives α = 0.13±0.1. Similarly for ω electroproduction cross-section
from the CLAS collaboration at Jefferson Lab [21] we find α = 0.6± 0.4 for
the range 0.52 < xB < 0.58.
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Fig. 4. (Color online) A simple fit to electroproduction data for mesons, π+ results

from HERMES (squares, [22]), and ω results from the CLAS Collaboration at

Jefferson Lab (circles, [21]). In the case of π+ production the cross-section reduced

by the photon flux is plotted (in arbitrary units).

We see that for both DVCS and exclusive meson electroproduction, not
only are the data consistent with scaling violations, but the additional Q2

dependence is softer than predicted by scaling and in agreement with our
predicted factor of (Q2)α with 0 < α < 1. At this point it is difficult to
compare the Regge exponents α obtained from the fit with total cross-section
data, since the electroproduction data was taken at different values of t.
However, we find this trend encouraging, and we believe that it warrants
further phenomenological studies. QCD scaling predicts that agreement with
scaling should become progressively better with increasing Q2. However, we
have shown that scaling violations should persist regardless of the size ofQ2.

We should point out, however, that in the absence of collinear factor-
ization the new expressions for the DVCS amplitudes are non-universal and
sensitive to non-perturbative physics. It remains to be seen how QCD cor-
rections behave in presence of GPD’s that are singular at the break points.
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For this reason it is hard to compare our predictions with the xB → 0, HERA
data, where it is known that NLO QCD corrections are necessary for obtain-
ing the observed Q2 dependence [30]. This can be seen from Refs [46, 47],
where a fit to HERA data [49–51] within a dipole-model of diffractive scat-
tering has been performed using several different parameterizations.

4. Summary and outlook

In this paper we examined Regge behavior in Compton scattering. We
started with the generic hadronic tensor for DVCS which was then expressed
in terms of a parton–nucleon amplitude with Regge behavior. We have
found that if the parton–nucleon amplitude increases with energy, which
is expected for low momentum transfer of hadronic scattering amplitudes,
the resulting generalized parton distributions become singular at the break
points and thus the standard factorization formula breaks down. This is to
be expected, since the proof of factorization in DVCS [9] is based on the
assumption that the parton–nucleon amplitude vanished with increasing s
or u of the parton nucleon system. The full amplitude, without collinear
approximation is, however, well defined and leads to non-scaling with the
DVCS amplitude proportional to να, where α is a positive Regge intercept.
If the quasi-onshell parton–nucleon states are relevant in DVCS then we
would argue that scaling might still take place but at a sizable momentum
transfer t < t0 ∼ −m2

ρ. This would occur because Regge intercepts de-
crease with increasing |t| and once they become negative scaling sets in.
A preliminary examination of experimental data on DVCS and hard me-
son production indicates that non-scaling behavior cannot yet be ruled out
and future experiments should soon be able to establish the Q2 dependence.
A similar problem could potentially arise in other channels. For example it is
commonly assumed that hadron (e.g. pion) distribution amplitudes vanish
at the end-points. And such behavior is in general necessary for factoriza-
tion theorems to be applicable. The vanishing of distribution amplitudes
near the endpoints has only been shown within perturbation theory. The
end-point region, however, may be dominated by soft scattering which could
enhance the end-point contribution [52].

Note added in revision. Following the first version of this paper a crit-
icism of our analysis was posed on the arXiv.org [53]. The main point
of the criticism is related to the treatment of the DVCS amplitude that
follows from our Regge-dominated description of the GPD. The authors
of [53] propose that the singularities in DVCS originating from the break-
point region of the x-integral in Eq. (32) should be removed. While this
is a possible way out, it seems to us more of a mathematical trick rather
than a physically motivated argument since we cannot identify a microscopic
origin of the would-be counter-terms. In contrast the relevant subtraction
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terms which make parton–nucleon and the DVCS amplitudes finite have
already being identified and included in the construction of the hadronic
tensor in Eqs (12), (13). The singularity in the DVCS amplitude discussed
in Sec. 2.4 is in fact artificially generated after a particular approxima-
tion to the integral over parton momenta (collinear factorization) is made.
Otherwise a finite, albeit non-scaling behavior is obtained as shown in Sec. 3.
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