
Vol. 40 (2009) ACTA PHYSICA POLONICA B No 8

EFFECT OF COHERENT-PAIR APPROXIMATION

ON NUCLEON PROPERTIES IN THE EXTENDED

LINEAR SIGMA MODEL

M. Abu-Shady

Department of Mathematics, Faculty of Science

Menofiya University, Egypt

(Received January 26, 2009; revised version received April 14, 2009)

Extended chiral sigma model with quark fields and elementary pion
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field equations have been solved in the coherent-pair approximation. Better
results are obtained for the nucleon properties in comparison with previous
work and reasonable agreement with data.
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1. Introduction

Nonperturbative regime of QCD is a mechanism responsible for the for-
mation of baryons which belong to the low-energy. The difficulty in numeri-
cal calculations of lattice QCD leading to alternative models are considered
some features of QCD. Lagrangians for these models should be derivable
from QCD; in practice one constructs them taking into account relevant fea-
tures of the underlying theory such as confinement, asymptotic freedom and
spontaneous broken chiral symmetry [1].

One of the effective models in describing baryons properties is the linear
sigma model which has been suggested earlier by Gell-Mann and Levy [2]
to describe nucleons interacting via sigma (σ) and pion (π) exchanges. Lin-
ear sigma model sets up to understand the structure of nucleon that should
respect the constraints imposed by chiral symmetry. Spontaneous and ex-
plicit chiral symmetry breaking require the existence of the pion which its
mass vanishes in the limit of zero current mass. A few solutions for the La-
grangian of chiral linear sigma model when applied to the nucleon and delta
have already been suggested. Birse and Banerjee [3] solved the linear chiral
sigma model in mean-field approximation using the hedgehog ansatz for the
pion field. After the variation, they performed an approximate projection on
angular momentum and isospin ignoring in this procedure the contribution
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of the pions. Birse [4] and Golli and Rosina [5] evaluated this model fur-
ther performing proper projections even before the variation in the hedgehog
approximation. Fiolhais et al. [6] generalized the hedgehog and performed
spin and isospin projections as well. In contrast with the mean-field ap-
proximation, the coherent-pair approximation is being studied to provide
a systematic expansion method for the description of a boson field. In ad-
dition, it avoids assumptions like the hedgehog structure of the quark and
pion fields [7, 8], Goeke et al. [7] obtained the static solitonic solution of
the linear sigma model using a coherent pair trial Fock state with proper
spin and isospin quantum numbers. The work of Goek et al. [7] has been
re-examined by Aly et al. [8] and they corrected some misprints in it.

In recent years, there has been growing interest in studying nucleon prop-
erties, therefore some modifications have been suggested in the linear sigma
model in the framework of some aspects of QCD. Broniowski and Golli [9]
analyzed a particular extension of the linear sigma model coupled to valence
quarks containing an additional term with two ingredients of the chiral fields
and investigated the dynamic consequences of this term and its relevance to
the phenomenology of soliton models of the nucleons. Dmitrasinovic and
Myhrer [10] used an extended linear sigma model [11] in which a pair of
extra terms has been added to the original linear sigma model in order to
improve pion–nucleon scattering and the nucleon sigma term. Furthermore,
Korchin [12] calculated the properties of the nucleon in a non-local sigma
model where conserved electromagnetic and vector currents and partially
conserved axial vector current are obtained. In the same direction, Rash-
dan et al. [13–15] considered higher-order mesonic interactions in the linear
sigma model using mean-field approximation to get a better description of
the nucleon properties. Also, Logarithmic mesonic potential is suggested in
which some aspects of QCD are taken to get a better description of nucleon
properties [16, 17].

The aim of this paper is to estimate the effect of coherent-pair approx-
imation on nucleon properties in the extended chiral quark sigma model is
suggested by Broniowski and Golli [9].

This paper is organized as follows: In Sec. 2, extended chiral sigma model
is explained briefly. The Fock state in the coherent-pair approximation and
the variational principle are presented in Secs 3 and 4, respectively. De-
rived nucleon properties are explained in Sec. 5. Numerical calculations and
results discussion are presented in Sec. 6.

2. Extended chiral quark sigma model

We begin with extended chiral quark sigma model [9] which the La-
grangian density of extended sigma model that describes the interactions
between quarks via the σ-and π-mesons is written [9]
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L(x) = iΨ∂µγµΨ̂ + 1
2 (∂µσ̂∂µσ̂ + ∂µπ̂ · ∂µ

π̂) + 1
2A0 (σ∂µσ + π̂.∂µ

π̂)2

+gΨ̂ (σ̂ + iγ5τ̂ .π̂) Ψ̂ − U (σ̂, π̂) (1)

with

U (σ̂, π̂) =
λ2

4

(

σ̂2 + π̂
2 − ν2

)2 − fπm2
πσ̂ , (2)

λ2 =
m2

σ − m2
π

2f2
π

, (3)

ν2 = f2
π − m2

π

λ2
, (4)

m̄2
σ =

(

1 + f2
πA0

)

m2
σ , (5)

where fπ is the pion decay constant, mπ is the pion mass, and mσ, g
and A0 are constants to be determined wherever A0 is constrained by Eq. (5)
(m̄2

σ≻0). The quark, sigma and π-mesons are quantum fields denoted by (ˆ).
Spontaneous symmetry breaking generates mass for the quark which breaks
the chiral symmetry and generates the small pion mass which would be zero,
otherwise as the Goldstone boson of the theory (for details, see Ref. [8]).

Now, we can rewrite the Hamiltonian density as in Ref. [8].

Ĥ(r)= 1
2

{

P̂σ(r)2+(∇σ̂(r))2+P̂π(r)2+(∇π(r))2+A0

(

σ∂µσ + π̂.∂µ
π̂

)2
}

+U(σ̂, π̂) + Ψ̂ †(r)(−iα∇)Ψ̂(r) − g (r) Ψ̂ †(r)(βσ̂(r) + iβγ5τ̂ .π̂)Ψ̂(r) , (6)

where α and β are the usual Dirac matrices. In the above expression Ψ̂ , σ̂,
and π̂ are quantized field operators with the appropriate static angular mo-
mentum expansion [8],

σ̂(r) =

∞
∫

0

d3k

[(2π)32Wσ(k)]
1

2

[

ĉ†(k)e−ik.r + ĉ(k)e+ik.r
]

, (7)

π̂(r) =

[

2

π

]1/2
∞
∫

0

dkk2

[

1

2Wπ(k)

]1/2
∑

lmw

jl(kr)Y ∗
lm(Ωr)[â

1w†
lm (k)

+(−)m+wâ1−w
l−m(k)] , (8)

Ψ̂(r) =
∑

njmw

(

〈r|njmw〉 d̂
1

2
w

njm + 〈r|njmw〉 d̂
1

2
w†

njm

)

, (9)
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where the |njmw〉 and |njmw〉 form a complete set of quark and antiquark
spinors with angular momentum quantum numbers and spin–isospin quan-
tum numbers j, m, and w, respectively. The corresponding conjugate mo-
mentum fields have the expansion [8],

P̂σ(r) = i

∞
∫

0

d3k

[

Wσ(k)

2(2π)3

]
1

2
[

ĉ†(k)e−k.r − ĉ(k)e
+k.r

]

,

P̂π(r) = i

[

2

π

]
1

2

∞
∫

0

dkk2

[

Wπ(k)

2

]
1

2 ∑

lmw

jl(kr)Y ∗
lm(Ωr)

[

â1w†
lm (k)

−(−)m+wâ1−w
l−m(k)

]

. (10)

Here ĉ(k) destroys a σ-quantum with momentum k and frequency Wσ(k) =
(

k2 + m2
σ

)
1

2 and â1w
lm(k) destroys a pion with momentum k and correspond-

ing Wπ(k) = (k2 + m2
π)

1

2 in isospin-angular momentum state {lm; tw}.

3. The Fock state

For convenience one constructs the configuration space pion field func-
tions needed for the subsequent variational treatment by defining the alter-
native basis operators,

b̂1w
lm =

∫

dkk2ζl(k)â1w
lm(k) , (11)

where â1w
lm(k) are basis operators which create a free massive pion with

isospin component w and orbital angular momentum (l,m), and ζl(k) is
the variational function. Taking this over to configuration space defines the
pion field function [8]

Φl =
1

2π

∞
∫

0

dkk2 ζl(k)

Wπ(k)
1

2

jl(r) . (12)

In the following only the l = 1 value is used and the angular momentum
label will be dropped. The Fock state for the nucleon is taken to be [8]

|NT3Jz〉 =
[

α
(

|n〉 ⊗
∣

∣P 00
〉)

T3Jz
+ β

(

|n〉 ⊗
∣

∣P 11
〉)

T3Jz

+γ
(

|δ〉 ⊗
∣

∣P 11
〉

T3Jz

)

|0〉
] ∣

∣

∣

∑

〉

, (13)
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where |∑〉 is the coherent sigma field state with the property: 〈∑|σ̂(r)|∑〉=
σ̂(r), and |P 00〉(|P 1w

1m〉) are pion coherent-pair states to be determined. The
normalization of the nucleon state requires α2 + β2 + γ2 = 1. The permu-
tation symmetric form of that SU(2)× SU(2)× SU(2) quark wave functions
imply that the source terms in the pion field equations will induce in angular
momentum isospin correlation for the pion field (for details, see Ref. [8]).

4. The variational principle

The objective of this section is to seek the minimum of the total energy
of baryon is given by

EB = 〈BT3Jz|
∞
∫

0

d3r : H(r) : |BT3Jz〉 , (14)

where B = N or ∆. The field equations are obtained by minimizing
the total energy of the baryon with respect to the variation of the fields,
{u(r), w(r), σ(r), Φ(r)}, as well as the Fock-space parameters, {α, β, γ} sub-
jected to the normalization conditions. The total energy of the system is
written as

EB = 4π

∞
∫

0

drr2εB(r) . (15)

Writing the quark Dirac spinor as

Ψ
1

2
w

1

2
m

(r) =
(

u(r)
v(r)σ.r̂

)

χ 1

2
mζ

1

2
w , (16)

the energy density is given by

εB(r) =
1

2

(

dσ

dr

)2

+
1

2
A0σ

2

(

dσ

dr

)2

+ A0Φ
dΦ

dr
σ

dσ

dr
− λ2

4

(

σ2(r) − ν2
)2

−m2
πfπσ(r) + 3

[

u(r)

(

dv

dr
+

2

r
υ(r)

)

− υ(r)
du

dr
+ gσ(r)

(

u2(r) − υ2(r)
)

]

+(Nπ+x)

(

(

dΦ

dr

)2

+
2

r2
Φ2(r)

)

+(Nπ−x)Φ2
p(r)−αδg(a+b)u(r)v(r)Φ(r)

+λ2
[

x2 + 2xNπ + 81
(

α2a2c2 +
(

β2 + γ2
)

d2
)]

Φ4(r)

+λ2 (Nπ+x)
(

σ2(r)−v2
)

Φ2(r)+A0Φ(r)2 (Nπ+x)

(

(

dΦ

dr

)2

+
2

r2
Φ2

)

, (17)



2230 M. Abu-Shady

where Nπ is the average pion number

Nπ = 9
(

α2a2 +
(

β2 + γ2
)

c2
)

, (18)

and where δ takes the following values for nucleon or delta quantum numbers:

δN =
(

5β + 4
√

2γ
)

/
√

3 , δ∆ =
(

2
√

2β + 5γ
)

/
√

3 . (19)

The function Φp(r) is obtained from Φ(r) by double folding,

Φp(r) =

∞
∫

0

w(r, ŕ)Φ(r)r2dŕ , (20)

w(r, ŕ) =
2

π

∞
∫

0

dkk2w(k)j1(kr)j1(kr
′

) . (21)

For fixed α, β and γ, the stationary functional variations are expressed by

δ





∞
∫

0

drr2(εB(r) − 3ǫ
(

u2(r) + v2(r)
)

− 2kΦΦp(r))



 = 0 , (22)

where the parameter k enforces the pion normalization condition,

8π

∞
∫

0

Φ(r)Φp(r)r
2dr = 1 , (23)

and ǫ fixes the quark normalization,

4π

∞
∫

0

(

u2(r) + v2(r)
)

r2dr = 1 . (24)

Minimizing the Hamiltonian yields the four nonlinear coupled differential
equations,

du

dr
= −2(gσ + ǫ)v(r) − 1

3
αδ(a + b)gΦ(r)u(r) , (25)

dv

dr
= −2

r
v(r) − 2(gσ(r) − ǫ)u(r) +

1

3
αδ(a + b)gΦ(r)u(r) , (26)

d2σ

dr2
=

1

(1 + A0σ2)

{

− 2

r

(

1 + A0σ
2
) dσ

dr
− m2

πfπ + 3g
(

u2(r) − v2(r)
)

+2λ2 (Nπ + x)Φ2(r)σ(r) + λ2
(

σ2(r) − v2
)

σ(r)
}

, (27)
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d2Φ

dr2
= −2

r

dΦ

dr
+

2

r2

(

2Nπ + A0Φ
2 (Nπ + x)

4Nπ + 2A0Φ2 (Nπ + x)

)

Φ(r)

+

(

2Nπ + 2x

4Nπ + 2A0Φ2 (Nπ + x)

)

m2
πΦ(r) +

1

4Nπ + 2A0Φ2 (Nπ + x)

×
{

4λ2
[

x2 + 2Nπx + 81
(

α2a2c2 +
(

β2 + γ2
)

d2
)]

Φ3(r)

−α(a + b)gδu(r)v(r) + 2λ2(Nπ + x)
(

σ2 − ν2
)

Φ

−2KΦ(r)
}

+
2A0Φ (Nπ + x)

4Nπ + 2A0Φ2 (Nπ + x)

(

(

dΦ

dr

)2

+
2

r2
Φ2

)

, (28)

with eigenvalue ǫ and k. These consist of two quark equations for u and v
where σ(r) and Φ(r) appear as potentials, and two Klein–Gordon equations
with u(r)v(r) and (u2(r)−v2(r)) as source terms. The boundary conditions
are for r −→ 0,

v =
dσ

dr
= Φ =

du

dr
= 0 , (29)

and for r −→ ∞,
[

r (gfπ − ǫ)
1

2 + (gfπ + ε)−
1

2

]

u(r) − r (gfπ + ǫ)
1

2 v(r) = 0 , (30)
(

2 + 2mπr + m2
πr2
)

Φ(r) + r(1 + mπr)Φ(r) = 0 , (31)

rσ(r) + (σ(r) − fπ) (1 + mσr) = 0 . (32)

The field equations are solved for fixed coherence parameter (x) and fixed
Fock-space parameter(α, β, γ) as in Ref. [8].

5. The nucleon properties

The expectation value of energy is minimized with respect to (α, β, γ)
by diagonalizing of the energy matrix





Hαα Hαβ Hαγ

Hαβ Hββ Hβγ

Hαβ Hβγ Hγγ









α
β
γ



 = E





α
β
γ



 , (33)

each H entry of the matrix is related to a corresponding density as follows:

Hαβ = 4π

∫

r2Eαβ(r)dr , (34)

and analogously for the other entries. The functions for a nucleon are

Eαα = E0(r) + 18a2Φ2
p(r) + 9a2λ2

(

2x + 9c2
)

Φ4(r)

+9a2λ2
(

σ2(r) − v2
)

Φ2(r) + 9A0a
2Φ2(r)

(

(

dΦ

dr

)2

+
2

r2
Φ2

)

,(35)



2232 M. Abu-Shady

Eββ = E0(r) + 18c2Φ2
p(r) + 9λ2

(

2xc2 + 9d2
)

Φ4(r)

+9c2λ2
(

σ2(r)−v2
)

Φ2(r)+9A0c
2Φ2(r)

(

(

dΦ

dr

)2

+
2

r2
Φ2

)

, (36)

Eαβ = −2g(a + b)Φ(r)u(r)v(r)
2
√

2√
3

, (37)

Eαγ = −2g(a + b)Φ(r)u(r)v(r)
5√
3

. (38)

If A0 = 0, the usual linear sigma model of the above equations are
recovered where:

E0(r) =
1

2

(

dσ

dr

)2

+
1

2
A0σ

2

(

dσ

dr

)2

+ A0Φ
dΦ

dr
σ

dσ

dr
− λ2

4

(

σ2(r) − f2
π

)2

+3gσ(r)
(

u2(r) − υ2(r)
)

+(Nπ + x)

(

(

dΦ

dr

)2

+
2

r2
Φ2(r)

)

+ (Nπ − x)Φ2
p(r) − 2xm2

πΦ(r)2 + λ2x2Φ4(r) +
m2

π

4
(σ(r) − fπ)2

×λ2x
(

σ2(r)−f2
π

)

Φ2(r)+A0Φ(r)2(Nπ+x)

(

(

dΦ

dr

)2

+
2

r2
Φ2

)

, (39)

µp(r)

4πe
=

ruv

81

(

54α2 + 2β2 + γ2 + 32
√

2βγ
)

+
x

729a2

(

9a2 + x
) (

4β2 + γ2
)

Φ2 , (40)

µn(r)

4πe
=

ruv

81

(

−36α2 − 8β2 + γ2 − 32
√

2βγ
)

− x

729a2

(

9a2 + x
) (

4β2 + γ2
)

Φ2 , (41)

gA

gv
= 4π

∞
∫

0

drr2
[

(

5

3
α2 +

5

27
β2 +

25

27
γ2 +

32
√

2

27
βγ

)

×
(

u2(r) − υ2(r)

3

)

+
8

3
√

3
αβ(a + b)

dσ

dr
Φ
]

, (42)

σ(π,N) = 4πfπm2
π

∞
∫

0

drr2 (σ(r) − fπ) . (43)

The change in the magnetic moments, coupling constant ( gA

gv
) and sigma

commutator σ(πN) induced by A-term through the dynamics in Eqs (25)–
(28) (for details, see Refs [8,9]).
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6. Discussion of results

The set of nonlinear differential equations have been solved in the same
manner as Aly et al. [8]. The iteration procedure is implemented in the
following. As to the fixed values α, β and γ, the set of differential equations
with the corresponding boundary conditions are solved by using the modified
numerical package (COLSYS) as that used in Ref. [8]. The solutions of
the system are mixed and repeated until self-consistency is achieved. We
reconsider the nucleon properties for different values of sigma mass which
consistents with Refs [19,20].

First, we need to show the effect of the A-term on the meson fields
and the nucleon and delta masses in comparison with previous calculations.
Fig. 1 shows the mesons fields for the x = 3.0, g = 5 and mσ = 441 MeV,
where the presence of the A-term weakens the pion field, modifies the shape
of the sigma field as well as increasing slightly the soliton size that leads to
a stability in the energy of the soliton, therefore the behavior is in an agree-
ment with the behavior in the mean-field approximation as in Ref. [9]. From

Fig. 1. Sigma and pion fields as functions of the distance r in units fπ for A0 = 0.0

(light curves) and A0 = 0.9 MeV−2 (bold curves), mσ = 441 MeV and g = 5.0.

Fig. 2 we see that the A-term has strong effect on nucleon and delta masses
wherever the energy is lowered at high values of coupling constant g. This is
a desired effect since many phenomenological approaches have problems in
getting the mass in the right ball park if g is too high [9] therefore, the nu-
cleon mass has a good agreement with data and is improved in comparison
with the original model [8] (see Table I).
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Fig. 2. The soliton energy depends on the coupling constant g for A0 = 0 (solid

lines) and A0 = 0.9 MeV−2 (dashed lines) for sigma mass = 441 MeV and x = 1.

TABLE I

The energy contributions (in MeV) to nucleon and delta when using g = 5, mσ =
550 MeV, A0 = 0.9 MeV−2 and x = 1.

Quantity Nucleon Delta Nucleon [8] Delta [8]

Quark kinetic energy 1138.49 984.85 1124 975
Sigma kinetic energy 194.03 206.87 304 268
Pion kinetic energy 227.85 180.0 236 185
Quark–meson interaction −694.19 −319.79 −675 −318
Meson interaction energy 72.58 86.778 84 114
Baryon mass 938.76 1138.71 1073 1224
Nucleon-Delta mass difference 199.9 140

Examining the effect of the degree of coherent state (x) and A0 -term on
the magnetic moments of proton and neutron. From Figs. 3 and 4 we see
that the magnetic moments of proton and neutron are decreasing by increas-
ing the value of A0 but the change is about 7% in comparison with original
model [8] (A0 = 0.0) the reason back to the change in the expressions of
nucleon magnetic moments are not modified however changes in these quan-
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tities are induced by the A0 through the change of the dynamics of equations
of motion as in mean-field approximation in Refs [9,21] but the coherent pa-
rameter x appears explicitly in the expressions of nucleon magnetic moments
in Eqs (40), (41) so to improve the values of magnetic moments of proton
and neutron the coherent parameter is taken (x = 3.0) thus we note from
the Figs 3 and 4 the values are strongly effect by increasing the coherent
parameter (x) also we note from Table II the mesonic contributions have
been increased in comparison with original model [8] leading to the change
in range 23% thus the improvement in the nucleon magnetic moments are
obtained in comparison with previous work [8].

Fig. 3. The dependence of magnetic moment of proton on the constant A0 MeV−2.

Two values of x are used.

TABLE II

Nucleon observables using x = 3, mσ = 441 MeV, A0 = 0.9 MeV−2 and g = 5.

Quantity Quark Meson Total Quark Meson Total [8] Expt.

r2
c (proton)(fm2) 0.684 0.046 0.73 0.533 0.023 0.556 0.7

r2
c (neutron)(fm2) 0.028 −0.108 −0.08 0.019 −0.023 −0.004 −0.12

Magnetic moment (proton) 1.66 0.44 2.1 1.53 0.18 1.71 2.79
Magnetic moment (neutron) −1.24 −0.46 −1.7 −1.13 −0.18 −1.31 −1.91
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Fig. 4. The dependence of magnetic moment of neutron on the constant A0 MeV−2.

Two values of x are used.

From Table II, the proton and neutron have smallest values in the pre-
vious calculation [8] that there is the relative error in the neutron radius
is about 96% and 20% in the charge radius of proton in comparison with
data by increasing the coherent parameter (x) leading to improve in this
quantities that the charge radius of proton is excellent with data and the
relative error in the charge radius of neutron is reduce to 33%.

From Table III, the sigma commutator σ(πN) is improved with the
change in about 41% relative to the original model [8] and 24% in compari-
son with the result in mean-field approximation [21] and a good agreement
with data. This quantity σ(πN) is the fundamental parameter of low-energy
hadron physics since it provides a direct measure of the scalar quark conden-

TABLE III

The observables of coupling constant gA(0)
gV (0) , pion-coupling constant gπNN(0) and

sigma commutator σ(πN) using g = 5, mσ = 750 MeV and x = 0.65, A0 =
1.6 MeV−2.

Quantity Quark Meson Total Quark Meson Total [8] [21] Expt. [8]

σ(πN) 52 88.9 69 45±5
gA(0)
gV (0) 1.016 0.364 1.38 1.07 0.39 1.46 1.78 1.25

gπNN (0) 10.71 3.79 14.5 12.806 2.769 15.57 13.91 12.4
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sates in baryons and constitutes a test for the mechanism of chiral symmetry
breaking [22]. Note that the meson contribution to the axial vector coupling
constant gA(0) is increased in comparison with the original model [8] by
inclusion of the A0-term that the change in range 7–10% due to the expres-
sion for the axial vector current, which does not depend explicitly on the A0

constant but only on the dynamic of the fields. If one uses the Goldberger

Treimen relation and evaluates the gπNN (0) as gπNN (0) =
Mn(

gA
gV

)

fπ
where the

ration of the axial-vector coupling constant, to the vector coupling constant
gV is obtained in Table III, therefore we can obtain the value gπNN (0) as in
Ref. [7] that we note the mesonic contributions in the gπNN (0) is increased
about 26% in comparison with original model [8] (see Table III).

7. Conclusion

In present work, we examine the effect of coherent-pair approximation in
the extended linear sigma model [9]. The coherent-pair approximation has
some advantages in comparison with mean-field approximation that provides
a systematic expansion method for the description of a boson field. In ad-
dition, it avoids assumptions like the hedgehog structure of the quark and
pion fields.

From the results, we note that the coherent-pair approximation has been
given a good description of the nucleon properties as nucleon mass, the
charge radius of proton and sigma commutator are closed with data. The
other nucleon properties are improved in comparison with previous calcu-
lations [8, 21] that change in range 20–30% and also reasonable agreement
with data.
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