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Central diffractive production of heavy states (massive dijets, Higgs
boson) is studied in the exclusive mode using a new Hybrid Pomeron Model.
Built from Hybrid Pomerons defined by the combination of one hard and
one soft color exchanges, the model describes well the centrally produced
diffractive dijet data at the Tevatron. Predictions for the Higgs boson and
dijet exclusive production at the LHC are presented.
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1. Introduction: The hybrid Pomeron

Central diffractive production of heavy objects in its exclusive mode (no
other particle produced in the central rapidity region) appears as a promising
complementary tool for the study of new particles at the LHC, such as the
Higgs boson. Indeed, for instance, the mass determination can be made
quite precise if both incident protons are detected and measured in forward
detectors located at 220 and 420 m from the interaction point at the LHC
[1,2]. One expects to take advantage of the absence of other particles than
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the decay products in the central rapidity region and some other interesting
aspects such as the depletion of b-quark production due to the helicity rule
specific of this production mode [3]. The key problem of central diffractive
production in the exclusive mode is to determine its rate as a function of e.g.
the Higgs boson mass or the minimum pT of the jets. Experimental results
on massive dijet production at the Tevatron have shown indirect evidence
for exclusive production, by comparison with models of inclusive diffractive
production. Inclusive models [4,5] agree to point out an excess of events over
the inclusive spectrum in the kinematical region where exclusive production
is expected to contribute.

The experimental interest of central exclusive production, in the first
place for the Higgs boson and γ induced processes, and the preparation of
concrete proposals at the LHC are a major incentive for theorists to work
out reliable predictions for the production cross-section, which could serve
as a basis for the necessary data simulations. This task is not easy since
central diffractive processes imply both hard subprocesses, related to the
high mass of the centrally produced states, and soft ones which are typical
of diffractive events which leave intact the initial particles e.g. protons at
the LHC. In some sense one could say that central diffractive production is
expected to combine the “hardest” events such as the production of massive
Higgs bosons or of any high mass object (dijet, diphoton . . . ), with the
“softest” ones, since the initial particles remain totally intact (up to a loss of
energy not bigger than 10%). This reveals the potentially hybrid character
of central diffractive production.

On the theoretical ground, different mechanisms of exclusive central
diffraction have been proposed since years [6], but we will restrict to two
classes of models which are based on the exchange of colorless objects, in
order to take into account the diffractive property. Indeed, any colored ob-
ject would generate particle production in the whole rapidity interval1. One
class is based on the exchange of two Pomerons, where the Pomeron is the
colorless exchange which appear in e.g. elastic reactions; it can be called
the Non Perturbative Model (NPM) and was based on a typical soft inter-
action hypothesis, which comes from the Bialas–Landshoff mechanism [8]
originally proposed for central diffractive production. It has an inclusive
version which describes the inclusive diffractive dijet production [9], while
its exclusive version has been studied in Ref. [10]. One another class of
models is based on the exchange of two gluons at each vertex for the exclu-

1 One notable exception is the Soft Color Interaction (SCI) model [7] where a color-
ful exchange is compensated by a phenomenological soft color interaction at long
distance, which generates a gap in rapidity. We do not consider this model in the fur-
ther discussion since it would need modifications to describe the CDF measurement
of the dijet mass fraction [5].
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sive production [11] called KMR (from the author names) in the following.
For both models there exists a detailed phenomenological discussion (see
e.g. [5]) based on dedicated simulations.

Let us recall the present status of this physically meaning discussion.
The inclusive production mechanism based on the NPM [9] gives satisfac-
tory results when compared to Tevatron data. Using this agreement, the
extraction of the exclusive component in the DPE framework becomes pos-
sible, since it appears to be necessary to include it in a well-defined region
of phase-space. When comparing [4, 5] the extracted dijet cross-section and
spectra with the models, it appears that the KMR model [11] gives a better
description of the results than NPM [9]. The main reason is that it takes
into account the Sudakov suppression factors preventing the cross-sections
to include the gluon radiation normally associated with the production of
a massive object. The soft Pomeron exchanges of NPM [9] do not contain
these perturbative QCD factors and give a too flat distribution as a function
of the minimum transverse momentum pmin

T of the jet [5]. As a consequence,
the prediction for the Higgs boson cross-section, which was similar for both
models for a light Higgs boson [12], has a different form as a function of the
Higgs boson mass, being steeper for the KMR model [11] than for NPM [9].
It is expected that the NPM model in Ref. [9] works at low masses (for in-
stance for χc production [13]) whereas a model including a hard contribution
may be valid at higher masses.

Our motivation is to keep the Double Pomeron Exchange (DPE) hypoth-
esis, while taking into account the fact that the diffractive production process
is expected to be a mixture of soft and hard color exchanges. Indeed, the
notion of a hard Pomeron (associated in QCD with the summation of lad-
der diagrams in the leading or next-to-leading logarithmic approximation
(LLA) of the perturbative expansion) is a theoretical result of QCD [14].
Moreover it has been successfully compared with data in (hard) inclusive
diffraction (see, e.g. [15, 16]) and exclusive vector meson production [18].
The example of heavy vector meson production, in particular, is well suited
for our approach since it corresponds to the (quasi-) elastic production of
a heavy state, which can be formulated in the framework of a hard Pomeron
exchange.

In the theoretical calculations, the hard Pomeron appears to correspond
to ladder diagrams connecting two exchanged reggeized colored gluons [14].
However, in central diffractive production, one could expect to have two
different colored exchanges, one hard and one soft. It would correspond
physically to two time scales, one short corresponding to the heavy state
production, and one long corresponding to the necessary color neutraliza-
tion. Hence, the qualitative picture of central diffractive production which
we formulate is a DPE process in which each Pomeron exchange at the ver-
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tex would correspond to hybrid Pomerons with two different types of color
exchanges one soft and one hard. It would correspond to an effective way
of summing ladder diagrams between hard and soft colored reggeized gluons,
which precise calculation remains beyond our scope (and beyond the present
knowledge of non perturbative QCD physics).

The plan of the paper is the following. In the next section, we shall
formulate the Hybrid Pomeron Model (HPM) and determine its parameters
obtained from known soft and hard Pomeron processes. In Section 3, we will
show its good description of exclusive dijet production extracted from data
at the Tevatron and the prediction for Higgs Boson and dijet production at
the LHC. The last section is for discussions, conclusions and an outlook.

2. Formulation: The Hybrid Pomeron Model

The model, adopting as a starting point the idea of the original Bialas–
Landshoff formulation, consists in defining effective propagators and cou-
plings for the colored exchanges associated with central DPE processes, see
Fig. 1. However, by contrast with the original NPM model of Ref. [8], we
introduce two types of propagators and couplings, depending of its soft or
hard character. The soft propagator DS and coupling GS are exactly those
which appear in the original description of the Bialas–Landshoff model [8],
themselves connected to the soft Pomeron Landshoff–Nachtmann formula-
tion [17] of the elastic cross-section, see Fig. 2. They are constrained to
describe the elastic hadronic cross-section, which fixes its parameters.

Heavy State2
S GSD

2
H GHD

2
H GHD

Fig. 1. Hybrid Pomeron Model. The dotted lines schematically represent the col-

ored exchanges. They are formulated in terms of effective propagators for soft and

hard exchanges (resp. DS and DH) and couplings (resp. GS and GH), see text.

The new aspect, w.r.t. the original formulation [8], is to introduce sim-
ilarly effective propagators and couplings DH and coupling GH for hard
Pomeron processes. Since we are formulating a Hybrid Pomeron Model
(HPM), we would optimally need the resummation of QCD ladder diagrams
corresponding to both soft and hard colored exchanges. As we see in Fig. 1,
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the hard exchange produces the heavy state object (DHG2
H) while the col-

orless aspect of the exchange is ensured via the emission of a soft additional
gluon (DSG

2
S). This means that most of the available momentum is carried

away by one of the gluons, the hard one, while the soft one carries only a very
small fraction of the proton momentum. The hard part of the HPM model
will be based on hard physics measured at HERA (for instance the proton
structure function F2) while the soft part will be based on usual soft cross-
section measurements. In the case of simple elementary gluon exchanges, as
developed in the model [11], the problem is perturbatively tractable2, since
the loop kinematics enforces a (semi-) perturbative calculation. However,
when considering Pomeron ladders, the gluon loop constraint, character-
istic for the mechanism of [11], does not hold and thus one relies on the
Bialas–Landshoff modified picture in order to include both soft and hard
effective color exchanges, see Fig. 1. Hence our proposal is to start with
the description of hard Pomeron scattering in terms of effective hard colored
propagators DH and couplings GH, in the same way as for the soft color
exchanges in [8].

For this sake we consider the well-known dipole–proton amplitudes which
appears in the QCD description of many hard processes. They will be used
to determine the effective propagators and couplings. In that sense, it is pos-
sible to fix the parameters of the model using hard physics measurements
at HERA, especially from the measurements of the proton structure func-
tion and the vector meson production cross-sections. In this basic process,
a dipole of size r experiences an elastic scattering with the proton. Since
the dipole–proton amplitude, corresponding to a hard Pomeron exchange,
appears in the formulation of different observables, its parameters are well
determined, and this gives the possibility to define the appropriate hard
propagators DH and couplings GH, in the same way as was done for the
soft ones, but with the advantage that we have a theoretical control on its
precise QCD formulation.

A comment has to be made at this stage. The main new aspect of HPM
is to introduce a formulation for hard color exchanges. Since it is a phe-
nomenological effective description of diagrams going beyond elementary
gluon exchanges, it aims at keeping the physical image of two different time
scales and thus of two different types of effective propagators. Hence the
virtuality associated with the hard color exchanges cannot be transferred to
the other color exchange through the loop kinematics, as is the case in the
model [11]. On the other hand the inclusion of hard color exchanges in the
DPE formulation is expected to (and indeed will, as we shall see) correct
the drawbacks of the initial soft model.

2 At least partly, since the considered models have to correct for the rapidity gap
survival probability, corresponding to the interaction between incident particles
[19,20].
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2.1. Soft color exchange

We evaluate the non-perturbative gluon propagator from the elastic
proton–proton data, see Fig. 2. Following Landshoff–Nachtmann proposal
[17], the elastic hadron–hadron scattering is represented by the contributions
of elastic valence quark scattering mediated by a non-perturbative model for
gluon exchange. The elastic quark–quark amplitude in terms of soft propa-
gator and coupling writes

Aqq ≡ G2
S DS = sαP (t)−1 G2

S D
(0)
S et/µ2

S , (1)

where s is the total c.o.m. energy, t the transfer quadrimoment squared
whose dependence is approximated by an exponential slope given by µS and

αP(t) ≡ αP(0) + α′
Pt = 1 + ǫ + α′

P t (2)

is the soft Pomeron Regge trajectory [21], with ǫ ∼ .08 being the Pomeron
“anomalous intercept”. Note that we have incorporated the factors due to
reggeization [8] in the definition of the propagators. This is required in order
to take into account the different Regge parameters (and in particular the
known different energy dependence) between the soft and hard Pomeron
ingredients. In other terms the hybrid Pomeron will have an intermediate
energy dependence compared to the soft and the hard Pomeron’s ones.

2
S GSD 2

S GSD

Fig. 2. Proton–proton elastic scattering in the Landshoff–Nachtmann formulation.

The elastic amplitude is described by two-color exchanges associated with “non-

perturbative” gluon propagators DS and couplings GS [8].

All in all, the differential elastic hadronic cross-section, from which the
relevant parameters will be obtained, is given in a suitable normalization, by

dσ

dt
≡ {9Aqq}2 =

|3β|4
4π

s2αP (0)−2 exp
[

(4b + 2α′
P log s) t

]

, (3)

where the parameter β can be obtained [8] from the total cross-section and b
from the elastic form factor or equivalently, from the differential cross-
section. Note that the factor {9Aqq} comes from the number of valence
quark combinations, which are considered independent in the Landshoff–
Nachtmann formulation.
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Using the effective propagator and coupling formulation of (1), one fi-
nally determines

µ−2
S = 2b + α′ log s ,

[

G2
S DS

]2
=

√
4πβ2et/µ2

S . (4)

It is relevant to note the exponential transverse momentum cut-off µS, which
will limit the loop integration of the HPM model, see Fig. 1. This is a char-
acteristic feature of the HPM which distinguishes it from the perturbative
mechanism of [11], see further the theoretical discussion.

2.2. Hard color exchange

For the definition of the propagator and coupling of the hard color ex-
change, we will use the well-known hard Pomeron for the dipole proton elas-
tic amplitude calculated from perturbative QCD using as a starting point
the Balitsky–Fadin–Kuraev–Lipatov (BFKL) equation [14]. It is convenient
to open the possibility of saturation effects, even if they are not expected
to be important in the kinematical domain we are interested in. Indeed,
this form of the dipole proton amplitude (eventually modified by saturation
contributions) has been proven to be phenomenologically successful in the
description of proton total and diffractive structure functions [15] and, more
importantly for our analysis, for structure function F2 measured at HERA
including the charm contribution [22] for vector meson elastic differential
cross-section [18] and for inelastic diffraction [16], which will be used for
parameter fixing. Hence the model we will adopt for dipole–proton elastic
scattering contains saturation effects and |t| dependence [18].

We start with the following amplitude in terms of the BFKL kernel. One
writes

N (r, Y ) =

∫

C

dγ

2iπ
N0(γ) r2γ exp {ᾱχ(γ)Y } , (5)

where χ(γ) is the Mellin transform of the BFKL kernel [14]. N0(γ) con-
tains information on the coupling to the proton and other normalization
contributions.

The effect of saturation, through nonlinear damping factors, is known [23]
to select a critical value γc. This corresponds to a “anomalous dimension”
dc = γc−1 which is characteristic of a (saturation-corrected) hard Pomeron.
In a more concrete way, the authors of [18] make use of a model for the
dipole–proton amplitude [24] which successfully describes the precise proton
structure function data.
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2
H GHD 2

H GHD

2 ~  A/M2r

Fig. 3. Dipole–proton elastic amplitude. The elastic amplitude is described by two-

color exchanges associated with hard colored propagators DH and couplings GH,

see text. As well-known, the dipole size is approximately related to the vector

meson mass r2 ∝ M−2.

N (r, Y ) = N0 (PH)γc exp

(

− log2 PH

2κλY

)

exp(Bt) ,

PH = (r/rS)
2 ,

r2
S = r2

0 exp(−λY ) , (6)

where QS ≡ 2/rS is the well-known saturation scale, the term exp(−B|t|) has
been added in order to take into account the momentum transfer dependence
in vector meson production [18]. The exponential term in (6) takes into
account the contribution from the kernel variation around the saddle-point.
Note that this amplitude works [24] in the region PH < 1, which is safely
true in our case. The saturation corrections are expected to be negligible in
that region.

It is important to notice at this stage that we need to consider amputated
amplitudes, that is multiplying the expressions (5,6) of the dipole–proton
amplitude by a factor r−2. Indeed, we have to remove from the usual dipole
proton amplitude the factor corresponding to the geometrical dimension
of the dipole cross-section proportional to r2, or in other words the gluon
dipole coupling. This factor has to be removed in order to define properly the
couplings and propagators of the hard effective color exchanges, which would
be valid for any massive state. We are interested in applying our formalism
to the exclusive production of massive dijets or the Higgs boson and thus
have to switch from a dipole state to the wave function corresponding to the
heavy state under study.

In the kinematical configuration of central diffractive production, we
have at each hard color exchange vertex (see Fig. 1)

Y = − log ξ , and r2 ∼ A

M2
, (7)
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where we used a very simple3 relation (with A ∼ 7 phenomenologically)
between the mass M of the heavy state and the corresponding dipole size r
to be considered. The normalization factors N0 for the amplitude and the
scale r0 are also determined phenomenologically from HERA data. For
dipole–proton scattering, we assume also a dominance of “valence” quark–
quark scattering and 6 quark–quark combinations are allowed.

The main characteristic feature of the hard Pomeron by contrast with
the soft one is that it has a non trivial dependence on Y and r (translating
into a non trivial ξ and M dependence in the central diffraction kinematics)
through the anomalous dimension γc. Indeed, this perturbative QCD feature
gives a dependence on the hard scale which has to be contrasted with the one
coming from the Sudakov form factors, see further the theoretical discussion
in section IID. It acquires also a different, faster, energy dependence through
the dependence on PH in (6).

Using concretely the parameters from the fit to the HERA data [18,22],
one finds the following expression for the couplings and propagators of the
hard gluon exchanges:

µ2
H = B−1 ∼ 0.25 ,

[

G2
HD

(0)
H

]2
= N0 × r−2 × P γc

H exp

(

log2 PH

2κλ log ξ

)

, (8)

where we have used the values for κ, λ,B (see formulae (6)) taken from
the phenomenological analysis [18,22] of massive vector mesons, charm and
structure function measurements at HERA [26]. The different parameters
used in the model are given in Table I.

2.3. The central diffractive cross-section

All in all, and following the scheme depicted in Fig. 1, one has the
following matrix element for the central exclusive diffractive production of
a massive state:

|M |2 =
(

DSG
2
S

)2 ([

DHG2
H

]

1

)2 ([

DHG2
H

]

2

)2 |Mσ̂|2 . (9)

The notation [DHG2
H]i, i = 1, 2 is used to distinguish the hard colored ex-

changes from each vertex, see Fig. 1. Mσ̂ is the hard process matrix element
for the considered produced massive state.

3 More refined wave function analyses are straightforward extensions of our formalism.
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TABLE I

List of parameters used in the HPM. The second column give the default values
used in the model, the third one the range of values used for systematics coming
from the fit uncertainties to F2 data, and the fourth one the values of parameters
when heavy quarks are also considered in the model (see text).

Parameter Central value Uncertainties Charm included

Hard parameters
N0 0.7 — 0.7
Q0 0.254 GeV 0.243–0.263 0.298
Rp 3.277 GeV−1 3.233–3.321 3.344
γC 0.6194 0.6103–0.6285 0.7376
κ 9.9 — 9.9
λ 0.2545 0.2494–0.2596 0.2197
B 2 — 2
µH 0.5 — 0.5

Soft parameters

αP (0) 1.08 — 1.08
α′ 0.06 — 0.06
β 4 — 4
b 4 3–5 4

In parallel with the approach of Ref. [8], the cross-section is written as:

σ = 81
2s

(2π)5

[

G2
S D

(0)
S

]2

×
∫

d4p1d
4p2 δ

(

p2
1

)

δ
(

p2
2

)

δ
(

(pa + pb − p1 − p2)
2 − M2

)

×
(

s

s1

)2αP (t1)−2 (

s

s2

)2αP (t2)−2

× e2bt1e2bt2
[

G2
H D

(0)
H

]2

1

[

G2
H D

(0)
H

]2

2
|Mσ̂|2 . (10)

Using relation [27]
∫

d4piδ(p
2
i ) = −1

2

∫

dξi d2~vi ;
s

si
=

1

ξi
, (11)

where ~vi is the transverse momentum of the final protons and changing the
variable vi to |ti| using |~vi|2 = (1 − ξ1)|ti|, one finally finds:

σ =
81

2(2π)3

[

G2
S D

(0)
S

]2 ∏

i=1,2

∫ ∫

dξid|ti|
1−ξi

ξi
2ǫ exp

{

2(b − α′
P log ξi)ti

}

×
[

G2
H D

(0)
H

]2

i
× |Mσ̂ |2 . (12)
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2.4. Theoretical issues: offshellness and Sudakov form factors

Let us describe the hybrid model mechanism for central diffractive pro-
duction, see Fig. 4(a), by comparison with the non-perturbative one
(cf. Bialas–Landshoff), see Fig. 4(b), and the perturbative (KMR) mech-
anism, see Fig. 4(b).

SD  

e−S

e−Se−S

e−S
SD  

SD  SD  

SD  

ba c

g g

gg QT
2

1

( ) ( ) ( )

Fig. 4. Comparison of central diffractive production mechanisms. The continuous

lines, (resp. hatched lines) correspond to the non-perturbative (resp. perturbative)

propagators. g represent the gluon distributions (see text). exp−S/2 correspond

to the contributions of the Sudakov form factor. (a) The hybrid model mechanism;

The non-perturbative (Bialas–Landshoff) mechanism; (c) The perturbative (KMR)

mechanism. In the hybrid model (Fig. 4(a)) the non-perturbative propagator DS

replaces the perturbative propagator 1/Q2

T
of the left exchanged gluon (Fig. 4(c)).

In the case of the hybrid model mechanism, one perturbative gluon prop-
agator (the one corresponding to the left gluon exchange in Fig. 4(c)) is
replaced by the non-perturbative one DS with a Gaussian dependence in
transverse momentum Q2

T, see formula (4). This provides a cut-off on large
values of the transverse momentum which thus dominates over the ultra-
violet cut-off due to the Sudakov form-factor in the case of the perturbative
mechanism.

Let us examine more quantitatively this mechanism and the modifica-
tion of the role of Sudakov form factors w.r.t. the perturbative mecha-
nism schematized in Fig. 4(b). For this sake we consider an expression
for the loop-integration general enough to embody the three typical cases:
non-perturbative, perturbative and hybrid. Such an expression enters (as
a square) in the cross-section expression. for simplicity, we choose scalar
Higgs boson production for this discussion, but its validity extends to the
other cases. On a general footing, one may write the typical loop integra-
tion as

I =

∫

P(Q2
T) dQ2

T f(ξ1,M
2
H ;Q2

T; . . . ) f(ξ2,M
2
H ;Q2

T, . . . ) , (13)

where P(Q2
T) dQ2

T is the integration measure corresponding to the gluon
propagators to which one adds the loop contribution from the Higgs vertex,
and f(ξi,M

2
H ;Q2

T; · · · ) are the general probability distributions of the gluons
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in the incident protons producing by gluon–gluon fusion the Higgs boson of
mass MH . The dots are for the variables nonrelevant for the loop integration.
Note that these distributions may depend on both scales M2

H and Q2
T. Let

us consider successively the three types of models.

(i) For the hybrid model, see Fig. 4(a), one has

P(Q2
T) dQ2

T ∼ dQ2
T

Q2
T

DS(−Q2
T) ,

f(ξi,M
2
H ;Q2

T; . . . ) ∼ e−S(Q2

T
,M2

H)/2 g(ξi,M
2
H ;Q2

T; . . . ) , (14)

where DS ∝ e−t/µ2

S = e−Q2

T
µ2

S , have a Gaussian behaviour in transverse
space, with an ultra-violet cut-off µS and e−S is the overall Sudakov
form factor (to be discussed below).

(ii) For the non-perturbative model, see Fig. 4(b), one writes

P(Q2
T) dQ2

T ∼ Q2
TdQ2

T DS(−Q2
T) ,

f(ξi,M
2
H ;Q2

T; . . . ) ∼ DS(−ξiQ
2
T) , (15)

where all functions have a Gaussian behaviour in transverse space,

namely DS ∝ e−t/µ2

S = e−Q2

T
µ2

S , see (4).

(iii) For the perturbative approach, see Fig. 4(c), the expression is4:

P(Q2
T) dQ2

T ∼ dQ2
T

Q4
T

,

f(ξi,M
2
H ;Q2

T; . . . ) ∼ e−S(Q2

T
,M2

H
)/2 ∂

∂ ln Q2
T

G(ξi, Q
2
T) , (16)

where G(ξi, Q
2
T) are the gluon distributions in the initial protons and

e−S is the Sudakov form factor5.

The comparison of the expressions (14) with (15) and (16) calls for the
following comments.

Sudakov form factors.
Concerning the Sudakov form factors, the full expression including sin-

gle logs has an important phenomenological impact (e.g. [25]), but for the
purpose of our theoretical discussion, we may focus on the double-log ap-
proximation for the case of Q2

T ≪ M2
H , namely

4 A recent clear reviewing can be found in [25].
5 To be complete, the expression used in the KMR model contains also terms of the

kind ∂eS/2

∂ ln Q2

T

×G(ξi, Q
2

T), with no important relevance for our discussion.
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S
(

Q2
T,M2

H

)

∼ NcαS

4π
ln2

(

Q2
T

M2
H

)

, (17)

a priori, Eq.(17) leads to a lower bound on Q2
T, namely e−κ .

Q2

T

M2

H

, with

κ2 = 4π
NcαS

. In the perturbative case (Fig. 4(c)) the role of the Sudakov form

factor is two-fold. In the infra-red, it regularizes the propagators’ pole of
P(Q2

T), while in the ultra-violet, it sets the scale related to the Higgs boson
mass.

However, in the hybrid case (Fig. 4(a)) the Sudakov factor has a modified
role. It is still required to remove the logarithmic divergence (instead of
quadratic in the perturbative approach) of the integration measure, but it is
not operative at large Q2

T, since there already exists an ultra-violet cut-off
due to the non-perturbative scale µS. The integration is concentrated at
rather small Q2

Tmin ∼ M2
H e−κ, and the maximal offshellness is thus much

smaller than the hard scale related to the produced heavy state, namely
Q2

Tmax ∼ µ2
S ≪ M2

H .
In the non-perturbative Bialas–Landshoff approach, (Fig. 4(b), the loop

integration boils down to a simple Gaussian integration due to the Landshoff–
Nachtmann model for the non-perturbative propagators. The offshellness of
the propagators is thus limited by the non-perturbative cut-offs in transverse
space.

Gluon distributions.
In the case of the hybrid mechanism and due to the restricted offshell-

ness due to the non-perturbative propagator in (14), the unintegrated gluon
distributions g(ξi,M

2
H ;Q2

Tmin) can be approximately factorized out. They

depend on the hard scale M2
H but correspond to tranverse momenta Q2

Tmin≪
m2

H . Hence, the unintegrated gluon distributions g(ξi,M
2
H ;Q2

T; . . . ) cannot

be identified as the derivatives
∂G(ξi,Q2

T
)

∂ lnQ2

T

of the gluon structure functions.

This is legitimate only when there is a strong ordering of the transverse
momenta.

In order to look for an appropriate form of the gluon distributions, we
note that the hard scale is given by the heavy state mass (being a dijet at
large mass, a Higgs boson or else) and not by the transverse momentum.
This is characteristic of elastic amplitudes involving a heavy state, such as
the deep inelastic total cross-section or the elastic production of a heavy
meson. In all those cases, one successfully uses the hard BFKL Pomeron,
see e.g. Refs [15, 18]. Indeed, the hard Pomeron which has exactly these
properties: it is dominated by a hard scale but the transverse momenta
are not ordered and quite limited in some intermediate range (here of order
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(Q2
Tmin). In our simple phenomenology-inspired hybrid model it is repre-

sented, up to constants, by the hard propagators discussed in Section 2.2,
which are extracted from the description of hard exclusive diffractive pro-
cesses such as the deep-inelastic total cross-sections or, equivalently from
elastic vector meson production. Beyond our phenomenological model, a
direct calculation of the relevant gluon distributions is beyond the scope of
our study and thus deserves further work.

In summary, the Sudakov factors are still present and allow for a reg-
ularisation of the logarithmic divergence at small Q2

T and they contribute
to the (smallness of the) normalisation, but the hard scale is set through
a different mechanism derived from the hard Pomeron properties.

Helicity rule. Concerning the matrix element describing the produced
heavy state, it is known that the Jz = 0 rule applies as well in the per-
turbative framework (through the Jz = 0 matrix element) as in the non-
perturbative case (using the color decomposition of the Pomeron exchange,
see e.g. Ref. [27] for a detailed discussion). Note that in the second case, the
Jz = 0 rule is satisfied in a process which is definitely at low QT, by contrast
with the perturbative one. We thus expect the helicity rule to remain valid
also in the hybrid model case, and thus apply it to our phenomenological
model. We postpone more developed calculations to a further publication.

3. Comparison with dijet CDF data

3.1. Model implementation in FPMC

The model has been fully implemented in FPMC [28], using the param-
eters defined in the previous sections. The different parameters in the hard
part of the model come mainly from a fit to HERA data (structure func-
tion F2, charm and vector meson data) inspired by saturation models. By
default, we take the parameters from a fit to the diffractive structure func-
tion F2 measured by the H1 and ZEUS Collaborations at HERA [22]. The
systematics uncertainties on the fit parameters define the systematic uncer-
tainties of our model. In addition, it is possible to include heavy quarks
in the model [22], and compare it to the vector meson production cross-
section [18], which leads to different parameters of the model (see Table I).
The difference of the results with and without including charm effects is also
a kind of systematic uncertainty in the model and will be discussed further
in the paper. In addition, the parameters related to the soft exchange come
from the Donnachie–Landshoff model. All parameters are given for reference
in Table I. The only parameter in the model is the free normalisation which
we will obtain from a fit to the CDF exclusive diffractive measurements.
Implicitly, the normalisation will thus include the survival probability. Note
that the ratio of the survival probabilities between the Tevatron (0.1) and the
LHC (0.03) is taken into account when we predict later on the cross-sections
at the LHC.
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The implementation in FPMC [28] allows to interface the hybrid model
with a jet algorithm after hadronisation performed in HERWIG [29]. The
standard jet algorithm [30] used by the CDF Collaboration has been imple-
mented so that we are able to compare directly our model with the CDF
measurements of exclusive events.

3.2. Comparison with CDF data

To test the accuracy of the model it is useful to compare it with the CDF
measurements of exclusive events in the dijet channel at the Tevatron [4,5].
CDF used the dijet mass fraction to quantify the amount of exclusive events.
The dijet mass fraction, namely the ratio of the dijet mass to the total mass
in dijet events, is expected to peak around 1 for exclusive events since two
jets and nothing else are produced in the final state while inclusive events
show lower values of the dijet mass fraction. The comparison between the
CDF measurement and what is expected from inclusive diffraction based
from quark and gluon densities measured at HERA (including the survival
probability) leads to an estimate of the exclusive event cross-section. The
result is given in Fig. 5. Data points show the exclusive cross-section for jets
with a transverse momentum greater than a threshold value given in abscissa.
To compare with the expectation from HPM, the FPMC Monte Carlo was
interfaced with the jet cone algorithm used by the CDF Collaboration at
hadron level. Since the normalisation is not determined by the model, we
choose to fix it using the CDF measurement. The global normalisation is
obtained by fitting our predictions to the CDF measurement given in Fig. 5.
The normalisation is found to be: 3.85× 10−4 ± 1.89× 10−4 with χ2 = 0.67
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Fig. 5. Jet ET min distribution for exclusive events measured by the CDF Collab-

oration compared with the hybrid model. The shape of the distribution is well

reproduced by the model and the normalisation is fitted to the CDF measurement

(3.85 × 10−4 ± 1.89 × 10−4).
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for 5 data points and the uncertainty comes from the uncertainty on the
CDF measurement. In Fig. 5, we give the prediction of HPM in full line,
and the dashed line shows the uncertainty on normalisation (±1σ) coming
from the fit to the CDF data. We note that the shape of the HPM prediction
describes nicely the CDF data while the normalisation comes directly from
the CDF data as we mentioned previously.

In Fig. 6, we compare the predictions from the hybrid model to the dijet
mass measurements in diffractive exclusive events from the CDF Collabora-
tion. As explained in the CDF paper [4], this is an indirect measurement
which is MC dependent due to the method used by the CDF Collaboration
to extract the dijet mass cross-section. We follow the same method used
by the CDF Collaboration to compute the dijet mass cross-section. Namely,
we convert the measured exclusive dijet cross-section from CDF presented in
Fig. 5 to a cross-section versus dijet mass using the HPM. After each ET min

cut (10, 15, 20, 25, and 35 GeV), we normalise the HPM cross-section to the
CDF measurement. We have thus a “calibration” factor in each ETmin inter-
val. The MJJ distribution coming from the hybrid model is then reweighted
after applying the ET min cut using the same calibration factors. Removing
the cuts on ET min allows to obtain the “CDF points” given in Fig. 6. We
followed basically the same procedure as in Ref. [4], but using the reweighted
HPM instead of KMR. It is worth noticing that it is not strictly speaking
a measurement by the CDF Collaboration since it is model dependent. Nev-
ertheless, we can now compare the “CDF measurement” to the expectation
of the hybrid model and the result is shown in Fig. 6. The dashed line
indicates the uncertainties on the model related to the normalisation. The
model leads to a good description of CDF data over the full dijet mass range.
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Fig. 6. Dijet mass distribution for exclusive events using the CDF method compared

to the hybrid model. The normalisation comes from the fit to the CDF ET min

distribution (see Fig. 5) and the shape is well described by the hybrid model.
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3.3. Uncertainties on the model predictions

In this section, we discuss the uncertainties related to the chosen values
of parameters given in Table I. The first uncertainties come from the un-
certainties on the parameter used to describe the hard interaction. As we
mentioned already, the values of the parameters are taken from a fit to F2

data coming from the HERA experiments [22]. The values of the parameters
found in Ref. [22] where obtained with a given uncertainty coming from the
fit procedure and it is worth checking the effect on the HPM predictions.
There was also another kind of fits performed in Ref. [22] where heavy quarks
were considered and we also compare our predictions including or not the
heavy quarks. The values of the parameters are given in Table I for refer-
ences. It is worth noticing that we use the same values of parameters coming
from a fit to HERA data to extrapolate at LHC energies, especially when
we predict the exclusive Higgs boson cross-section. It will be thus important
to test the values of the parameters using directly LHC data when they will
be available, and to study whether this assumption is valid. The effect of
changing the hard parameters are given in Fig. 7 for the jet ET min and the
MJJ distributions. The differences are found to be less than 20%.
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Fig. 7. Effect on modifying the hybrid model hard parameters on the ET min and

MJJ cross-section distributions.

Another systematic study we performed was to change the b slope of the
soft cross-section responsible for the soft interaction. The uncertainty on
the b slope coming from soft data is quite small but we wanted to study
the dependence of our model on this parameter. Modifying the b parameter
from 2 to 4 leads to the cross-sections given in Fig. 8 for the jet ETmin and
the MJJ distributions. The difference is found to be less than 20% every-
where. It is worth noticing that the leading uncertainty in the predictions
for HPM comes from the statistical uncertainties of the ET min cross-section
measurement by the CDF Collaboration which is of the order of 50%.
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Fig. 8. Effect on modifying the hybrid model soft b parameters on the ET min and

MJJ cross-section distributions.

The effect of taking the parameters of the fit of Ref. [22] where heavy
quarks are considered are given in Fig. 9. We recomputed the normalisation
by fitting the ET min distribution to the CDF data and the normalisation for
the light quark only model is 6.80 × 10−3 ±3.46×10−3 with a χ2 of 0.83 for
5 data points. We notice that the mass dependence is stronger when heavy
quarks are considered, which means that the cross-section at high mass is
slightly smaller, and that the fit to the CDF data on ET min is slightly worse.
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Fig. 9. Comparison of the jet ET min and MJJ distributions for exclusive events

with the hybrid model including or not heavy quark effects. The normalisation

comes from a fit to the CDF exclusive PT min cross-section measurements. We note

that including heavy quarks leads to a stronger PT min dependence.

3.4. Predictions for the LHC

In Fig. 10, we show the exclusive Higgs boson cross-section using the
HPM. The cross-section varies from 1.1 ± 0.5 fb at 120 GeV to 0.32 ± 0.15
fb at 160 GeV. Including heavy quark effects reduces this cross-section by
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about 60%. The values are found to be slightly lower than with the KMR
model but compatible within uncertainties, and we should also notice that
these predictions are at LO and it is known that NLL corrections increase
the cross-section of typically about 20%.
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Fig. 10. Prediction on the diffractive exclusive Higgs cross-section at the LHC using

the HPM.

In Fig. 11, we also compare the ξ distributions for jet production in
exclusive events for the HPM and KMR models for jets with pT >50 at the
LHC. The ξ-slope is found to be smoother at the LHC for the KMR model
than for the HPM. LHC data should thus allow to distinguish between both
models or to tune better the parameters of the HPM given in the previous
section.
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Fig. 11. ξ distribution for exclusive events for jets with pT > 50 GeV at the LHC

for the KMR and HPM models. The ξ-dependence is smoother for KMR than for

the HPM model. LHC data will help to distinguish and tune both models.
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4. Conclusion

In this paper, we propose a new model to describe exclusive event pro-
duction at hadronic colliders. It is based on Double Pomeron Exchange. We
call it Hybrid Pomeron Model (HPM) since one of the color exchanges is
considered to be hard, taking away most of the transverse momentum avail-
able while the colorless aspect of the overall crossed channel is ensured via
a soft additional color exchange. The parameters of the model come from
a fit to HERA F2 data using a BFKL-based model for the hard part (eventu-
ally including saturation corrections), while the parameters of the soft part
come from the usual soft cross-section models. The model was successfully
implemented in a generator (FPMC) to be able to compare directly with
the CDF measurements performed at particle level.

Our predictions are found to be in very good agreement with the mea-
surements of the exclusive cross-section as a function of the minimum jet
transverse momentum or the dijet mass from the CDF Collaboration. The
HPM predicts a Higgs boson production cross-section of about 1.1 fb at the
LHC for a Higgs boson mass of 120 GeV. This is in the same range and
compatible with the KMR determination. The ξ distribution for exclusive
events is softer for KMR than for the HPM model and it will be worth mea-
suring it at the LHC and the Tevatron to distinguish and further tune both
models. As we mentioned, the parameters used in the HPM come from an
extrapolation from a fit to HERA data and it will be good to cross check
the values of the parameters using direct data from the LHC.

We thank Cyrille Marquet for useful remarks. One of us (M.R.) acknowl-
edges support from CNPq (Brazil).
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