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DENSITY DEPENDENT NUCLEON–NUCLEUS

OPTICAL POTENTIAL IN THE (p, n) REACTIONS
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The quasielastic (p, n) reactions are studied for different incident pro-
ton energies. Transitions to isobaric analog states are obtained for different
target nuclei with masses 13 ≤ A ≤ 208. The nucleon–nucleus interactions
are considered to be density dependent in the optical model potential. Mi-
croscopic and macroscopic distorted-wave Born approximation (DWBA)
calculations with the optical model potential are introduced. Differential
cross-sections and angular distributions are calculated for different (p, n)
reactions. The present theoretical calculations are in good agreement with
the experimental data.
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1. Introduction

Heavy ion scattering [1] and the scattering of nucleons from nuclei [2]
have been widely considered in the last few years. The nucleon–nucleon ef-
fective interactions describing the target nuclei are taken density-dependent
from realistic free nucleon–nucleon forces. The mass operator is calculated
from the hard core free nucleon–nucleon interaction and introduced on en-
ergy shell to the optical model potential to be applied to finite nuclei through
the improved local density approximation. The energy variations of the po-
tential depth of the optical model potential are parametrized to reproduce
the proton scattering and the reaction for spherical and soft nuclei [2] and
deformed stable and unstable isotopes [3]. Calculations of the symmetric and
asymmetric terms of the optical model potential show [4] that the isovec-
tor components are very weak. Energy-dependent nucleon–nucleus potential
depth are parametrized and compared with nucleon elastic and quasielastic
scattering observables to separate isoscalar and isovector optical potential
components, using finite-range density-dependent forces.
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Isobaric analog states are shown [5] as useful source for understanding
nuclear structure of nuclei, and explaining [6] the charge-independence- and
charge-symmetry-breaking interactions [7] in nuclei. The isobaric analog
states introduce [8] helpful study showing the relation between the giant
isovector monopole state and the isovector part of the nucleon–nucleus po-
tential. The isovector nucleon–nucleus potential can be extracted from the
optical model describing the transitions in the (p, n) reactions for which the
total angular momentum and parity transferred are 0+, known as quisielastic
scattering. Extending the analyses for wide range of target nuclei and wide
range of incident energies, the imaginary strength of the optical potential
were found [9] independent of the mass number. The obtained parameters of
the isovector potential are found as A-dependent parameters of the potential.

In the present work, the quasielastic scattering (p, n) reactions are con-
sidered. The (p, n) reactions are studied for a wide range of target nuclei
and for different values of the incident energies. Optical model potential
are used to explain these reactions for each target nucleus. The isovector
term of the nucleon–nucleus potential is extracted for each case. Nucleon–
nucleon effective interaction is constructed as finite range, density dependent
effective interaction from realistic free nucleon–nucleon forces. The optical
model analyses of the isobaric analog states transitions are introduced in
the (p, n) reactions. Differential cross-sections of the quasielastic (p, n) reac-
tions are calculated for different incident proton Ep = 23 MeV, 26 MeV and
35 MeV incident on the different target nuclei 13C, 70Zn, 96Zr, 112Sn, 124Sn
and 208Pb. Numerical calculations are carried out for the angular distribu-
tions of the (p, n) reactions leading to isobaric analog states. The systematic
optical model analyses, and the result of calculated angular distributions are
compared with the experimental data.

In Section 2, we introduce the formulation of the optical model potential
and the distorted wave Born approximation. Numerical calculations and
results are given in Section 3. Section 4 is left for discussion and conclusions.

2. Optical model potential and DWBA

The nucleon–nucleus optical model potential including isospin symmetry
in nuclei is suggested by Lane [10, 11] and is expressed as

U(r) = Uo(r) + 4
~t · ~T

A
U1(r) + Us.o.(r) +

(

1
2 − tZ

)

VC(r) , (1)

where A is the mass of the nucleus, Us.o. is the spin–orbit potential, and VC

is the Coulomb potential. The off-diagonal part of the potential U in the
~t · ~T space yields the quasielastic (p, n) transitions leading to the isobaric

analog states. Since ~t and ~T are the isospins of the projectile and the target,
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respectively, then the second term of Eq. (1) represents the isospin dependent
~t · ~T term. This term leads to terms t+T

−
, t

−
T+, and tzTz corresponding to

the (p, n), (n, p), and (p, p) or (n, n) nuclear reaction processes, respectively.

Therefore, while the diagonal part of U in the term ~t · ~T in Eq. (1) shows
the influence of the isovector potential on elastic scattering, the off-diagonal
t+T

−
part stands for the quasielastic (p, n) transition between the ground

state and the associated isobaric analog state. Then, the quasielastic (p, n)
scattering transition isovector potential is given by

Uqe(r) =
(

2/A1/2
)

{[ρn(r) − ρp(r)] / [ρn(r) + ρp(r)]}
1/2 U1(r) . (2)

In Eq. (2), the quasielastic scattering potential is using the asymmetry re-
alistic nuclear densities calculated from effective density dependent force
nucleon–nucleon interaction. The isovector component of the spin–orbit
form factor together with the energy-dependent potential depth normaliza-
tions factors are used to obtain the spin–orbit part of the (p, n) transition
potential. Since then, the isovector potential U1(r) can be given in the form
of parametrized Woods–Saxon form

U1(r, ρ,E) = V1(ρ,E)
[

1 + e(r−rR(A))/aR(A)
]

−1

−4iaI(A)W1(ρ,E)
d

dr

[

1 + e(r−rI(A))/aI(A)
]

−1
. (3)

In Eq. (3), V1(ρ,E) and W1(ρ,E) represent the real and imaginary poten-
tials, each including the corresponding isovector potentials. The nucleon–
nucleus optical potential is density-dependent and obtained from the elastic
nucleon scattering. Also, these energy-dependent nucleon–nucleus optical
model potential depths are parametrized and normalized, for both of the
isoscalar and isovector components. Then, the potential for the quasielas-
tic (p, n) reactions leading to isobaric analog states is used in the distorted
wave Born approximation to calculate both of the entrance and exit channels
distorted waves.

3. Numerical calculations and results

Differential cross-sections of the quasielastic (p, n) reactions on different
target nuclei and leading to isobaric analog states transitions are calculated
using the distorted wave Born approximation. Optical model potentials are
adjusted to deduce the proton and neutron scattering cross-sections. These
optical potentials are used as first estimate for the isoscalar components in
performing the distorted wave calculations of the quasielastic (p, n) scat-
tering. The same can be done for the isovector components of the optical
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model potential. Then, we reach the parametrized and normalized energy
and density dependent potential depths. Therefore, the normalized isoscalar
and isovector real and imaginary parts of the optical model potential repre-
senting the real and imaginary potential depths are given as

V1(ρ,E) =
(

6.61 + 2.18A1/3
)

[0.903 + 0.0007 ln(1000E)]

×

[

1.45 − 0.63
(

1 + e(E−1.32)/3
)

−1
]

(4)

and

W1(ρ,E) =
(

5.12 + 0.36A1/3
)

[

1.17 −
(

1 + e(E−4.8)/3.5
)

−1
]

×

{

1.09 + 0.42

[

1 +
(

e(E−38)/48.8
)4

]

−1
}

. (5)

The geometrical parameters of the nucleon–nucleus optical model potentials
are also determined. The radius rR and the diffuseness aR parameters of
the real part of the potential are taken to have the same values used pre-
viously [12] only for the purpose to reduce the number of parameters to be
fitted. The radius of the imaginary part of the potential rI and the diffuse-
ness parameter aI are then after searching given as

rI = 1.89 − 0.13A1/3 (6)

and
aI = −0.083 + 0.21A1/3 . (7)

The radial wave functions of the single particles in the distorted wave Born
approximation calculations are obtained using Woods–Saxon potentials with
radius ro = 1.23 fm, diffuseness a = 0.58 fm and Vl.s. = 5.8 MeV, and the
depth normalized to fit the valence nucleon binding energy.

The microscopic distorted-wave Born approximation calculations are
used to compare the corresponding data by using the DWBA computer
code. The calculations include also exchange effects such as knock-on effects
which contribute to the cross-sections. The entrance channel parameters of
the optical model are used as those of Becchetti and Greenless [12]. In the
exit channel, self-consistent potential parameters are derived and used in the
DWBA calculations. In the microscopic analysis, effective nucleon–nucleon
interactions are used in the calculations.

Numerical calculations are carried out for the differential cross-sections
of the quasielastic (p, n) reactions on different target nuclei. The calcu-
lations are performed for protons incident with different energies 23 MeV,
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26 MeV and 35 MeV incident on the different target nuclei 13C, 70Zn, 96Zr,
112Sn, 124Sn and 208Pb. The geometrical parameters for the real part of the
nucleon–nucleus potential are used to have the values taken by Becchetti
and Greenless [12], while those for the imaginary part of the potential are
obtained using Eqs (6),(7). These values are introduced with distorted wave
Born approximation calculations to reproduce the differential cross-sections
of the quasielastic (p, n) reactions leading to isobaric analog states transi-
tions. The result of the calculated differential cross-sections are compared
with the experimental data and previous calculations [2, 9]. The results of
the present calculations are shown in figures 1–7 by the solid curves which
better reproduce the experimental data.

Fig. 1. Angular distribution for the 13C(p, n)13N reaction at incident proton energy Ep =

35 MeV leading to the ground state of 13N. The dashed curve is the previous calculation [9].

The solid curve is our present calculation. The dots are the experimental data [13,14].

4. Discussion and conclusions

In the present work, distorted wave Born approximations calculations are
carried out for the differential cross-sections of the quasielastic (p, n) reac-
tions leading to isobaric analog states transitions. The results of the present
calculations of the angular distributions are in a good agreement with the
experimental data as shown in figures 1–7. From the present analyses, the
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real and imaginary isoscalar and isovector parts of the nucleon–nucleus opti-
cal model potential are energy-dependent, while the geometrical radius and
diffuseness parameters are mass number dependent linearly with A1/3. From
figures 1–7, we see that the present theoretical calculations match the shapes
as well as the amplitudes of the experimental data, where all of its essential
features are very well described by the present calculations. The results of
the calculated angular distributions are in a good agreement with experi-
mental data, where the peaks are too large and too narrow especially at
the forward scattering angles. Since the real and imaginary components of
U1(r) exist only in the central part of the (p, n) transition potential given by
Eq. (2), the quasielastic (p, n) scattering forms a good test for the isovector
components of the optical model potential. We notice that the forward angle
data are very well reproduced using the present optical model potential cal-
culation, while the backward angle quasielastic scattering cross-sections are
underestimated. It is expected to lower the backward angle differential cross-
sections by considering the coupling of the analog-excited levels, which is not
considered in the present calculations. The isobaric analog excitations are
studied [19] microscopically following the folding model using phenomeno-
logical potentials, by introducing the isovector density dependence in the
analysis.

Fig. 2. Angular distribution for the 70Zn(p, n)70Ga reaction at incident proton energy

Ep = 35 MeV leading to the 8.26 MeV isobaric analog state in 70Ga. The dashed curve is

the previous calculation [9]. The solid curve is our present calculations. The dots are the

experimental data [13,14].
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Fig. 3. Differential cross-sections of 96Zn(p, n)96Nb reaction at incident proton energy

Ep = 23 MeV. The dashed curve is the previous calculation [2]. The solid curve is our

present calculation. The dots are the experimental data [15].
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Fig. 4. Differential cross-sections of the 112Sn(p, n)112Sb reaction at incident proton en-

ergy Ep = 35 MeV. The dashed curve is the previous calculation [2]. The solid curve is

our present calculation. The dots are the experimental data [16].
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Fig. 5. Differential cross-sections of the 124Sn(p, n)124Sb reaction at incident proton en-

ergy Ep = 23 MeV. The dashed curve is the previous calculation [2]. The solid curve is

our present calculation. The dots are the experimental data [17].
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Fig. 6. Differential cross-sections of the 208Pb(p, n)208Bi reaction at incident proton en-

ergy Ep = 26 MeV. The dashed curve is the previous calculation. The solid curve is our

present calculation. The dots are the experimental data [18].
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Fig. 7. Angular distribution for the 208Pb(p, n)208Bi reactions at incident proton energy

Ep = 35 MeV leading to the 15.17 MeV isobaric analog state in 208Bi. The dashed curve

is the previous calculation [9]. The solid curve is our present calculation. The dots are

the experimental data [13,14].

The obtained present results are in a good agreement with the experimen-
tal data [13–18]. The present calculations of the differential cross-sections
show the oscillatory pattern, and fit the position of the peaks. Also, the
present calculations extract larger values for the angular distributions at
backward angles, with better and good agreement with the data.

The nucleon–nucleus optical model potentials for the quasielastic (p, n)
reactions leading to isobaric analog states transitions depend on the po-
tential depths and on the local asymmetry parameter α(r), where α(r) =
[ρn(r)−ρp(r)]/[ρn(r)+ρp(r)], dealing with finite nuclei improved local den-
sity approximation. The good agreement between the present theoretical
calculations and measured data shows the importance of the isovector com-
ponents of the nucleon–nucleus optical model potential.

Therefore, we can conclude that the energy density as well as the energy-
dependence of the real and imaginary parts of the isoscalar and isovector
components of the nucleon–nucleus optical model potentials are very impor-
tant and should be included in calculating the differential cross-sections of
the quasielastic (p, n) reactions leading to isobaric analog states transitions.
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