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An elementary pedagogical derivation of the Lense–Thirring precession
is given based on the use of Hamilton vector. The Hamilton vector is an
extra constant of motion of the Kepler/Coulomb problem related simply to
the more popular Runge–Lenz vector. When a velocity-dependent Lorentz-
like gravitomagnetic force is present, the Hamilton vector, as well as the
canonical orbital momentum are no longer conserved and begin to precess.
It is easy to calculate their precession rates, which are related to the Lense–
Thirring precession of the orbit.

PACS numbers: 45.20.–d, 91.10.Sp, 04.25.Nx

1. Introduction

Every relativistic theory of gravitation must include a Lorentz-like force
induced by a magnetic-type component of the gravitational field; the general
theory of relativity by Einstein does so. More precisely, in its weak-field and
slow-motion approximation the highly nonlinear Einstein field equations get
linearized, thus resembling the linear equations of the Maxwellian electro-
magnetism. As a consequence, a magnetic-type component of the gravita-
tional field appears, induced by the off-diagonal components g0i, i = 1, 2, 3 of
the spacetime metric tensor [1]. The role of the electric currents is played by
mass-energy currents: in the case of a slowly rotating mass, a test particle
geodesically moving far from it is acted upon by a non-central velocity-
dependent Lorentz-like force. For other effects induced by the gravitoma-
gentic field on the motion of gyroscopes, test particles, moving clocks and
atoms, light rays see, for example, [2].

Recent years have seen increasing efforts, both from theoretical and
observational points of view, towards a better comprehension of the post-
Newtonian gravitomagnetic field: for a comprehensive recent overview see,
for example, [3]. Thus, we feel it is not worthless to offer to the reader an
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elementary derivation of the precessional effects induced by the gravitomag-
netic field on some Keplerian orbital elements of a test-particle, i.e. the so
called Lense–Thirring effect [4], although a recent historical analysis [5] sug-
gests that it should be more appropriately named Einstein–Thirring–Lense
effect. For other derivations of such an effect see, for example, [6–10].

Our presentation is aimed for the first year physics students with lim-
ited experience in mathematics and theoretical methods of physics. We,
therefore, give somewhat detailed exposition which an experienced physicist
may find unnecessary long, but as our teaching experience shows such an
exposition is helpful and necessary for newcomers in the field. We hope the
material presented here will help students which just begin their physics ed-
ucation not only master some simple mathematical methods learned during
the first year mechanics course but also feel the beauty of advanced topics
which they will learn in detail later on.

2. Gravitomagnetism

Nowadays it is widely accepted that the correct theory of gravitation is
provided by the Einstein’s general theory of relativity [11] (for an excellent
introduction for beginners see [12]; a classic textbook is [13]). However, the
general theory of relativity is a highly non-linear theory. The spacetime in
it is not merely a static background for physical processes; it is dynamic
and affected by any contribution to the energy-momentum tensor of the
system under investigation. Such a tensor enters in a prescribed manner
the Einstein’s equations which determine the ten components of the metric
tensor. This metric tensor enters by itself the equations of motion of the
system under study. There is no hope for a neophyte to struggle his/her way
into this impossibly tangled up mess of non-linear jungles “unless months of
study on the specialized terminology, procedures, and conventions of the
general relativity theorist have been completed” [14].

However, virtually the large part of all the performed and/or proposed
tests, aiming to observationally scrutinize the post-Newtonian regime, deal
with weak fields and non-relativistic velocities. Therefore, we may expect
that the full machinery of general relativity is not necessarily required to
estimate the relevant post-Newtonian effects. Some linearized version of
the theory will suffice to do the job much faster and physically in a more
transparent manner [2, 14–16].

Although, in general, spacetime is dynamical and there is no natural
way to split it into space plus time, for stationary spacetimes, like the one
around the Earth, stationarity dictates a preferred way of how this splitting
can be performed. There is no approximation in such slicing of spacetime
into three-dimensional space plus one-dimensional time. It is just a new
mathematical language convenient in stationary situations [16].
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Under 3 + 1 slicing, the spacetime metric tensor gµν naturally decom-
poses into several parts. In the case of weak gravity and non-relativistic
velocities, this decomposition allows one to set up a remarkable analogy
with electromagnetism [2, 14–16]. In particular, gravitational analogies of

the electromagnetic scalar and vector potentials, Φ and ~A, respectively, are
determined by the time–time and time–space components of the spacetime
metric:

Φ = 1
2 (g00 − 1) c2 , Ai = g0ic

2 ,

where c is the speed of light. Gravitoelectric field ~E and gravitomagnetic
field ~H are related to these potentials (in the Lorentz gauge [2]) in the
usual way (up to an extra factor 4 which also appears in the Lorentz gauge
condition):

~E = −∇Φ −
1

4c

∂ ~A

∂t
, ~H = ∇× ~A

and satisfy a gravitational analog of Maxwell’s equations [2, 16, 17]

∇ · ~E = −4πGρ , ∇ · ~H = 0 ,

∇× ~E = 0 , ∇× ~H = 4

[

−4πG
ρ~v

c
+

1

c

∂ ~E

∂t

]

. (1)

Similarity with Maxwell’s electromagnetic equations is apparent. The role
of charge density is played by mass density, ρ, times Newton’s gravitation
constant, G. The mass current density, Gρ~v, with ~v as the velocity of the
source mass, plays the role of the charge current density.

However, there are several important differences [16]. Gravity is medi-
ated by a spin-two field and is attractive. In contrast, electromagnetism
is mediated by a spin-one field and can be both attractive and repulsive.
This difference leads to the extra minus signs in the source terms in (1).
Another remnant of the tensor character of gravity is an extra factor, 4, in
the equation for ∇ × ~H. No gravitational analog of the Faraday induction
is present in (1). However, this is an artifact of restricting to the only first
order terms in v/c of the gravitating masses in the above equations. At the

second order, (−1/c)(∂ ~H/∂t) term reappears in the equation for ∇ × ~E,
but also some non-Maxwell-like terms are introduced elsewhere in the field
equations [15, 16].

Once the gravitoelectric and gravitomagnetic fields are known, the force
acting on a small test body of mass m is given by the formula which is
analogous to the Lorentz force law [16]

~F = m~E +
m

c
~v × ~H .
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More precisely, there is still another difference from electromagnetism as far
as the equation of motion is concerned. So far nothing was said about the
space–space components, gij , of the metric tensor. In general, they do not
correspond to Euclidean space but to that of curved space. Just the space
curvature effects are responsible for the classic general relativistic predictions
for Mercury’s perihelion precession and bending of light rays. In the presence
of space curvature, we have the curvilinear equation of motion [14]

1

Γ

d(Γvi)

dt
−

1

2

(

∂gjk

∂xi

)

vjvk = Ei +
1

c

(

~v × ~H
)

i
−

1

c

∂Hi

∂t
, (2)

where

Γ ≈

(

1 +
2Φ

c2
−

v2

c2

)−1/2

and, as usual, summation over repeated indexes is assumed.
In this paper, we are interested in tiny secular effects of Earth’s rotation

on a satellite orbit. Therefore, we will neglect the space curvature effects, as
well as terms of the order of (v/c)2 other than gravitomagnetic. Although
these curvature effects are even more prominent than the effects we are
interested in, they are well known. Therefore, for our goals, equation (2)
takes the form

m
d~v

dt
= −

α

r2
~n +

m

c
~v × ~H , (3)

where ~r = r~n is the radius-vector of the satellite of mass m, α = GmM ,
where M is the Earth’s mass, and ~H is the gravitomagnetic field caused by
Earth’s rotation.

The gravito-electromagnetic analogy implied by (1) allows us to find
~H [17]. It is well known that the magnetic moment

~µ =
1

2c

∫

[

~r ×~j
]

dV ,

related to the electric current density ~j, creates a dipole magnetic field

~H =
3~n (~n · ~µ) − ~µ

r3
.

Equations (1) indicate that the gravitational analog of the electric current
density is −4Gρ~v. Therefore, the gravitational analog of the magnetic mo-
ment is

~µ = −4G
1

2c

∫

ρ [~r × ~v ] dV = −2G
~S

c
,

where ~S =
∫

[~r × ~v] ρdV is the rotating body’s proper angular momentum.
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Thus the gravitomagnetic field of the Earth is given by

~H =
2G

c

~S − 3~n (~n · ~S)

r3
. (4)

3. Larmor precession

It is instructive first to consider in detail a simpler case of a non-relativistic
Coulomb atom slightly perturbed by a weak and uniform constant magnetic
field ~H. The equation of motion is

m~̇v = −
α

r2
~n +

e

c
~v × ~H , (5)

where now m and e are electron mass and charge respectively, and α is the
strength of the corresponding electromagnetic coupling between the electron
and the atom nucleus.

In the absence of perturbation, ~H = 0, equation (5) describes the electron
motion on the ellipse. It is convenient to characterize the orientation of this
ellipse by the angular momentum vector ~L = ~r × ~p, which is perpendicular
to the orbit plane, and the Runge–Lenz vector

~A = ~v × ~L − α~n , (6)

which is directed towards perihelion of the orbit and equals in magnitude
to the orbit eccentricity times electromagnetic coupling α. The Runge–
Lenz vector is an extra constant of motion of the Coulomb problem and
its existence is related to the so called hidden symmetry of the problem
[18, 19] which makes the Kepler/Coulomb problem an interesting testing
ground for various algebraic and geometric methods [20–22]. Note that first
integrals for the Kepler Problem, equivalents of the Runge–Lenz vector, were
first obtained by Ermanno and Bernoulli many years before Gibbs devised
his vectorial notation [23–25]. “The lack of recognition of Ermanno and
Bernoulli parallels that of Aristarchos and makes one wonder if there is some
sinister influence for those who are initiators in the field of the motions of
the planets” [23].

The Runge–Lenz vector ~A and the angular momentum vector ~L are
mutually perpendicular. Therefore, we can find the third vector ~u such that

~A = ~u × ~L . (7)

This vector is called the Hamilton vector [26–29] and it has the form

~u = ~v −
α

L
~eϕ , (8)
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where

~eϕ =
1

L
~L × ~n = ~l × ~n , with ~l =

~L

L
, (9)

is the unit vector in the direction of the polar angle ϕ in the orbit plane.
Sometimes it is more convenient to characterize the orbit orientation by
vectors ~u and ~L.

Now let us return to (5) with the non-zero magnetic field ~H. As the
Lorentz force, in general, has a component outside the unperturbed orbital
plane, it is evident that the motion will no longer be planar. However, for
weak magnetic fields, the Lorentz force component in the orbital plane is
much smaller than the binding Coulomb force. Therefore, it can cause only
small perturbations of the elliptical orbit. The Lorentz force component per-
pendicular to the orbital plane is expected to cause this plane to turn slowly
around the Coulomb field center. This intuitive picture of the perturbed
motion suggests us to decompose the electron velocity in such a way

~v = ~v ′ + ~Ω × ~r . (10)

Here ~v ′ is the electron velocity relative to the instantaneous orbital plane,
and the second term, ~Ω × ~r, is due to slow revolution of this plane with
a small angular velocity ~Ω.

If we want the angular momentum ~L to be perpendicular to the instant
orbital plane, we should replace ~v by ~v ′ in its definition:

~L = ~r × ~P , ~P = m~v ′ . (11)

Analogously, the appropriately generalized Hamilton vector is

~u = ~v ′ −
α

L
~eϕ =

~P

m
−

α

L
~eϕ , (12)

where ~eϕ is still given by equation (9).
The Runge–Lenz vector, defined as earlier by (7), is no longer conserved.

However, at instances when the particle is at perihelion of the instant ellipse,
the Runge–Lentz vector still points towards the perihelion, as the following
simple argument shows [30]. At the perihelion of the instant ellipse, the in-
trinsic velocity ~v ′ has no radial components and, therefore, is perpendicular
to the radius vector ~r. Then (12) shows that the Hamilton vector is also

perpendicular to ~r and, according to (7), the Runge–Lenz vector ~A will be
parallel to ~r, that is pointing towards the perihelion.

If our intuitive picture of the orbit plane precession is correct, we should
have

~̇L = ~Ω × ~L . (13)
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On the other hand,
~̇L = ~̇r × ~P + ~r × ~̇P . (14)

As for the velocity ~v = ~̇r, we have from (10)

~̇r =
~P

m
+ ~Ω × ~r . (15)

While, up to the first order terms in ~H and ~Ω,

~̇P =
d

dt

(

m~v − m ~Ω × ~r
)

≈ −
α

r2
~n +

e

mc
~P × ~H − ~Ω × ~P − m ~̇Ω × ~r . (16)

Substituting (15) and (16) in (14), we get

~̇L =
(

~Ω × ~r
)

× ~P +
e

mc
~r ×

(

~P × ~H
)

− ~r ×
(

~Ω × ~P
)

− m~r ×
(

~̇Ω × ~r
)

,

or, after using ( ~Ω × ~r) × ~P = −~r × ( ~Ω × ~P ) − ~Ω × (~P × ~r),

~̇L = ~Ω × ~L − ~r ×
[(

2 ~Ω +
e

mc
~H
)

× ~P
]

− m~r ×
(

~̇Ω × ~r
)

.

As we see, to get (13), it is sufficient to take

~Ω = −
e

2mc
~H . (17)

Now let us calculate (note that ṙ = ~v · ~n)

~̇n =
~v

r
−

~r(~v · ~n)

r2
=

1

r
(~n × ~v) × ~n .

Substituting

~v =
~P

m
+ ~Ω × ~r

and using

(

~n × ~P
)

× ~n =
L

r
~eϕ ,

[

~n ×
(

~Ω × ~n
)]

× ~n = ~Ω × ~n ,

we get

~̇n = ~Ω × ~n +
L

mr2
~eϕ . (18)

Analogously,

~̇eϕ = ~̇l × ~n +~l × ~̇n =
(

~Ω ×~l
)

× ~n +~l ×
(

~Ω × ~n
)

+
L

mr2
~l × ~eϕ .
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But ( ~Ω ×~l) × ~n +~l × ( ~Ω × ~n) = − ~Ω × (~n ×~l) = ~Ω × ~eϕ and ~l × ~eϕ = −~n.
Therefore,

~̇eϕ = ~Ω × ~eϕ −
L

mr2
~n . (19)

At last, by using (5) for ~̇v, we get

~̇v
′

= −
α

mr2
~n +

e

mc
~v × ~H − ~Ω × ~v = ~Ω × ~v −

α

mr2
~n .

But, up to first order terms in ~Ω, ~Ω × ~v ≈ ~Ω × ~v ′. Therefore,

~̇v
′

≈ ~Ω × ~v ′ −
α

mr2
~n . (20)

Having (20) and (19) at hand, it is easy to find

~̇u ≈ ~Ω × ~v ′ −
α

L
~Ω × ~eϕ = ~Ω × ~u .

Therefore, the Hamilton vector precesses with the same angular velocity (17)
as the angular momentum, and this angular velocity can be considered as
related to the precession of the instantaneous ellipse as the whole.

As the final remark, note that ~A = 1/2 ~H × ~r is the vector-potential

corresponding to the uniform magnetic field ~H. Therefore,

~P = m~v − m ~Ω × ~r = m~v +
e

c
~A

is just the canonical momentum of the non-relativistic electron in the mag-
netic field ~H.

4. Lense–Thirring precession

It is well known [31] that the vector-potential created by a magnetic
moment ~µ is

~A (µ) =
~µ × ~r

r3
. (21)

Therefore, by making the change ~µ → −2G
c

~L ′ in (21), we get the gravita-
tional analog of the vector potential for the gravitomagnetic field (4) of the

Earth with angular momentum ~L′:

A =
2G

cr3
~r × ~L ′ . (22)

To recast the canonical momentum,

~P = m~v +
m

c
A ,
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in the form ~P = m~v −m ~Ω × ~r, which corresponds to the decomposition of
velocity (10), we could take

~Ω =
2G

c2r3
~L ′ . (23)

Then the gravitomagnetic field (4) can be rewritten as

~H

c
= ~Ω − 3~n

(

~Ω · ~n
)

. (24)

By using (24) and equation of motion (3), we get

~̇P = −
α

r2
~n + 2m~v × ~Ω − 3m

(

~Ω · ~n
)

~v × ~n − m ~̇Ω × ~r . (25)

From (23), we find

~̇Ω = −3
~Ω

r
(~v · ~n) ,

and (25) takes the form

~̇P = −
α

r2
~n + 2m~v × ~Ω − 3m

[

~v
(

~Ω · ~n
)

− ~Ω (~v · ~n)
]

× ~n .

However,
[

~v
(

~Ω · ~n
)

− ~Ω (~v · ~n)
]

×~n =
[

~n ×
(

~v × ~Ω
)]

×~n = ~v× ~Ω−~n ~n ·
(

~v × ~Ω
)

,

and we end up with the equation

~̇P = −
α

r2
~n + m ~Ω × ~v + 3m~n ~n ·

(

~v × ~Ω
)

. (26)

Up to the first order in the small parameter ~Ω, (26) can be rewritten as

~̇P ≈ −
α

r2
~n + ~Ω × ~P + 3~n ~Ω ·

(

~n × ~P
)

. (27)

Now it is easy to find

~̇L =

(

~P

m
−

1

c
A

)

× ~P +~r×
(

~Ω × ~P
)

= −
(

~r × ~Ω
)

× ~P +~r×
(

~Ω × ~P
)

. (28)

But ~r × ( ~Ω × ~P ) + ~P × (~r × ~Ω) = − ~Ω × (~P × ~r) and (28) indicates that

the canonical angular momentum vector ~L really precesses with angular
velocity ~Ω:

~̇L = ~Ω × ~L . (29)
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We are interested in the secular changes of the orbital parameters. Therefore,
it makes sense to average ~Ω in (29) over fast orbital motion:

~Ω →
〈

~Ω
〉

=
2G

c2
~L ′

〈

1

r3

〉

. (30)

For the desired accuracy, we can average 1/r3 in (30) over the unperturbed
orbit p

r
= 1 + e cos ϕ ,

where p and e are the semi-latus rectum and eccentricity of the orbit. But
for the unperturbed orbit

dt =
mr2

L
dϕ , (31)

and we get

〈

1

r3

〉

=
1

T

T
∫

0

dt

r3
=

m

LTp

2π
∫

0

(1 + e cos ϕ) dϕ =
2πm

LTp
.

Integrating (31) over the complete orbital period T , we get

LT

m
= 2S = 2πa2

√

1 − e2 ,

where S is the area of the ellipse and a is its semi-major axis. On the other
hand, p = a(1 − e2) and we finally get

〈

1

r3

〉

=
1

a3(1 − e2)3/2
. (32)

Therefore, the averaged angular velocity of the precession is

〈

~Ω
〉

=
2G

c2a3(1 − e2)3/2
~L ′ . (33)

It is not difficult to check that relations (18) and (19) remain valid if ~Ω in
these formulas is given by (23). Then, after using (27) and (19), we easily find

~̇u ≈ ~Ω × ~u + 3
~n

mr
~Ω · ~L = ~Ω × ~u + 3

2G

mc2

~n

r4
~L ′ · ~L . (34)

Therefore, the Hamilton vector does not precess with angular velocity ~Ω.
However, we should average (34) over the fast orbital motion. The first
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term simply gives 〈 ~Ω × ~u 〉 = 〈 ~Ω〉× ~u because ~u is a slowly changing vector
and we can assume that it does not change over time scales comparable to
the orbital period T . As for the second term, we can use ~n = cos ϕ~i+sinϕ~j
and get

〈

~n

r4

〉

=
m

TLp2

2π
∫

0

(

cos ϕ~i + sin ϕ~j
)

(1 + e cos ϕ)2 dϕ =
2πme

TLp2
~i . (35)

However,

~i = ~j × ~k =
~u

u
×

~L

L
,

e

puL
=

1

pα
=

m

L2
,

and (35) takes the form

〈

~n

r4

〉

=

〈

1

r3

〉

m

L2
~u × ~L . (36)

Therefore, after averaging, (34) changes to

~̇u ≈ ~ΩLT × ~u , (37)

where
~ΩLT =

2G

c2a3(1 − e2)3/2

[

~L ′ − 3~l
(

~l · ~L ′

)]

. (38)

As we see, the secular precession of the elliptic orbit contains two terms:
the precession of the orbital plane with the angular velocity 〈 ~Ω〉 around the

central body’s angular momentum ~L ′, and the precession within the orbital
plane with the angular velocity ~ΩLT −〈 ~Ω〉 around the angular momentum ~L.

The magnitudes of the angular momentum ~L and the Hamilton vector ~u, and
therefore, the orbital parameters such as the eccentricity and the semi-major
axis, remain unchanged to the first order of the perturbation theory.

5. Concluding remarks, Skovoroda’s principle and all that

Lev Borisovich Okun cites [32] eighteenth century Ukrainian philoso-
pher Grigory Skovoroda as the author of the remarkable principle, which
Okun’s PhD adviser Isaak Yakovlevich Pomeranchuk used to quote: “Thanks
God: All what is relevant is simple, all what is not simple is not rele-
vant.” The formal analogy between weak field low velocity general relativity
and Maxwellian electrodynamics is a simple and elegant way to illuminate
a whole class of interesting physical phenomena dubbed gravitomagnetism.
Lense–Thirring precession is one such example. However, it should be kept
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in mind that the analogy is only formal and sometimes can lead to strange
and erroneous conclusions if we forgot about rather strong limitations under
which the approximation underlying the analogy is valid [33].

Frame dragging is maybe more appropriate interpretation of the Lense–
Thirring effect not restricted to the weak field limit. However, “whereas
‘frame dragging’ is a very catchy appellation” [34] its meaning is not easy
to explain to introductory level students. Therefore, for them and not only
explaining the Lense–Thirring effect by analogy with Larmor precession re-
mains a relevant and simple option.

The use of Hamilton or Runge–Lenz vector greatly simplifies the dis-
cussion. However, a great deal of vector algebra is still needed in either
cases, as the previous chapters illustrate. This is in contrast with situation
in perihelion precession under central force perturbations where the use of
the Hamilton vector trivializes the problem [35]. In fact, the amount of
vector algebra is a price we should pay for our desire to keep the approach
elementary and accessible in introductory mechanics course. If more ad-
vanced background in analytical mechanics is assumed, much more elegant
and technically simple way is provided by the use of the Poisson brackets [36]
or, alternatively, by Hamilton equations of motion [37].

In terms of the standard Poisson brackets, we have

L̇i = {Li,H} , u̇i = {ui,H} , (39)

where the Hamiltonian has the form H = H0 + δH with δH = ~Ω · ~L [37] and
{Li,H0} = {ui,H0} = 0.

The Poisson brackets are easy to calculate by using the Leibniz rule
{f, gh} = {f, g}h + g{f, h} and the fundamental Poisson brackets

{ri, rj} = 0 , {Pi, Pj} = 0 , {ri, Pj} = δij ,

{Li, rj} = εijk rk , {Li, Pj} = εijk Pk , {Li, Lj} = εijk Lk ,

{Li, f(~r, ~p)} = 0 , {Pi, f(~r, ~p)} = −
∂f(~r, ~p)

∂ri
, (40)

where f(~r, ~p) is any scalar function of its arguments. It follows from (40)
that

{Li, Ωj} = 0 , {Li, eϕj} = εijk eϕk ,

{Ωi, eϕj} = 0 , {Pi, Ωj} = 3
Ωj

r
ni . (41)

Therefore,
L̇i = {Li, Ωj}Lj + {Li, Lj}Ωj = εijk LkΩj ,

which is equivalent to (29).
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Besides, for any vector of the form ~B = f1(~r, ~p)~r + f2(~r, ~p) ~P , with any
scalar functions f1 and f2, and in particular for vectors ~eϕ and ~u, we will
have

{Li, Bj} = εijk Bk ,

and we get immediately

u̇i = {ui, Lj}Ωj +
1

m
{Pi, Ωj}Lj = εijk ukΩj +

3ni

mr
~Ω · ~L ,

which is equivalent to (34).
As we see, in combination with some background in Hamiltonian mechan-

ics, the use of Hamilton vector again makes the exposition rather trivial, in
complete agreement with the Skovoroda’s principle.

In our discussions canonical variables played an important role, as they
are in accord with the intuitive physical picture of precessing orbital plane.
However, the use of canonical variables are not mandatory for the pertur-
bation theory discussion of the Lense–Thirring effect. The standard per-
turbation theory in celestial mechanics is based on variation-of-parameters
method which has some inherent gauge freedom [38]. Indeed, the unper-
turbed Keplerian ellipse is determined by six parameters

~r = ~f(C1, C2, C3, C4, C5, C6, t) . (42)

In the role of these parameters one can take, for example, three Euler an-
gles which determine the orbit plane orientation, the semi-major axis and
eccentricity of the orbit, and the so called mean anomaly at an epoch, which
determines the initial position of the body. Another obvious choice is the
initial values of the position and velocity vectors of the body, and many other
sets (Delaunay, Poincare, Jacobi, Hill) can be found in the literature [39].

To solve the perturbed equation

m~̈r = −
α

r2
~n + ~F , (43)

with ~F as a small perturbation, by the variation-of-parameters method,
one can assume that the solution still has the form (42) but Ci are no
longer constant. However, three scalar equations (43) are not sufficient to
determine six unknown functions Ci(t). We need three auxiliary conditions
on them and the freedom in choosing of these auxiliary conditions is just
the gauge freedom mentioned above. Usually the gauge fixing is achieved
by the Lagrange constraint

6
∑

i=1

Ċi
∂ ~f

∂Ci
= 0 . (44)



2376 O. Chashchina, L. Iorio, Z. Silagadze

Under this condition

~̇r =
∂ ~f

∂t
.

That is, the velocity is the same function of the parameters Ci as in the
absence of perturbations and the instantaneous ellipse, determined by these
parameters, is tangent to the real trajectory. Correspondingly, the instan-
taneous orbital parameters Ci so determined are called osculating.

However, not all choices of orbital parameters Ci are compatible to the
Lagrange constraint (44). For example, in previous chapters we have choose
the canonical angular momentum and the Hamilton vector to characterize
the orbit shape and orientation. When velocity dependent perturbations are
present, such parameters are not osculating, as is evident from the ascribed
physical picture of the combined motion.

The canonical perturbation theory in celestial mechanics was developed
in [8]. Again the corresponding orbital elements are not osculating if the
perturbation depends on velocity. In fact this is a general property: under
velocity-dependent disturbances, canonicity and osculation are not compat-
ible [38].

The problem of orbit perturbations can be solved in any gauge. At
that some gauges are more convenient, because if the gauge corresponds to
the real physical picture of the perturbed motion, the formalism simplifies.
Some examples are given in [8] when the standard perturbation theory with
osculating elements is cumbersome while the canonical perturbation theory
is more elegant.

The Lense–Thirring effect can be considered either in the canonical per-
turbation theory, or with the osculating orbital elements [8], or in any other
convenient gauge. At that the corresponding orbital elements can differ con-
siderably. Of course, the real physical quantities, like position and velocity,
do not depend on the gauge used after the initial values are accounted cor-
rectly [8]. However, sometimes the orbital elements, like inclination angle,
are also considered as physically real. In such cases care should be taken to
relate the measured quantities to the orbital parameters used in the pertur-
bation theory. Without this care a confusion can arise when two different
mathematically correct approaches give seemingly different results which are
in fact equivalent [6].

The work of Z.S. is supported in part by grants Sci. School-905.2006.2
and RFBR 06-02-16192-a.
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