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Over the past two decades, electron scattering experiments have clearly
exposed the limits of the independent particle model description of atomic
nuclei. I will briefly outline the dynamics leading to the appearance of
strong correlation effects, and their impact on the electroweak nuclear cross-
sections in the impulse approximation regime.

PACS numbers: 24.10.Cn, 25.30.Fj, 61.12.Bt

1. Introduction

The theoretical description of nuclear structure and dynamics involves
severe difficulties, arising from both the nature of strong interactions and
the complexity of the quantum mechanical many-body problem.

In the absence of ab initio approaches, one has to resort to nuclear mod-
els, based on effective degrees of freedom, protons and neutrons, and phe-
nomenological effective interactions. The available empirical information
shows that the nucleon–nucleon (NN) potential exhibits a rich operatorial
structure, including spin–isospin dependent and non central components.

Due to the complicated nuclear Hamiltonian, the exact solution of the
many body Schrödinger equation turns out to be a highly challenging com-
putational task. On the other hand, nuclear systematics suggests that im-
portant features of nuclear dynamics can be described using the independent
particle model, based on the replacement of the NN potential with a mean
field. This is in fact the main tenet of the nuclear shell model, which proved
exceedingly successful in describing a variety of nuclear properties.
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The simplest implementation of the independent particle picture is the
Fermi gas (FG) model, in which the nucleus is seen as a degenerate Fermi
gas of neutrons and protons, bound with constant energy.

In spite of all the accomplishments of the shell model, it has to be kept
in mind that in their classic nuclear physics book, first published in 1952,
Blatt and Weisskopf warn the reader that “the limitation of any independent
particle model lies in its inability to encompass the correlation between the
positions and spins of the various particles in the system” [1].

In recent years, electron scattering experiments have provided over-
whelming evidence of correlations in nuclei, whose description requires the
use of realistic NN potentials within the formalism of nuclear many-body
theory.

In this lectures, after briefly recalling few basic facts on nuclear dy-
namics beyond the independent particle model, I will discuss the impact of
correlation effects on the electroweak nuclear cross-sections in the impulse
approximation regime.

2. Basic facts on nuclear structure and dynamics

One of the most distinctive features of the NN interaction can be inferred
from the analysis of the nuclear charge distributions, measured by elastic
electron–nucleus scattering experiments.

As shown in Fig. 1, the densities of different nuclei, normalized to the
number of protons, exhibit saturation, their value in the nuclear interior
(ρ0 ∼ 0.16 fm−3) being nearly constant and independent of the mass num-
ber A. This observation tells us that nucleons cannot be packed together
too tightly, thus pointing to the existence of NN correlations in coordinate
space.

Fig. 1. Radial dependence of the charge density distributions of different nuclei.
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Correlations affect the joint probability of finding two nucleons at posi-
tions x and y, usually written in the form

ρ(x,y) = ρ(x)ρ(y)g(x,y) , (2.1)

where ρ(x) is the probability of finding a nucleon at position x. In the
absence of correlations g(x,y) = 1. On the other hand, saturation of nuclear
densities indicates that

|x− y| <∼ rc =⇒ g(x,y)� 1 , (2.2)

rc being the correlation range.
Nucleons obey Fermi statistics, and may therefore repel one another even

in the absence of dynamical interactions. To see this, consider a degenerate
FG consisting of equal number of protons and neutrons at uniform density ρ.
In this case Eq. (2.1) reduces to

ρ(|x− y|) = ρ2gF(|x− y|) , (2.3)

with the correlation function gF(x) displayed by the dashed line in Fig. 2. It
clearly appears that the effects of statistical correlations, while being clearly
visible, is not too strong. The probability of finding two nucleons at relative
distance x� 1 fm is still very large.

Fig. 2. Spin–isospin averaged NN radial correlation function in isospin symmetric
nuclear matter at uniform density ρ0 = 0.16 fm−3. The solid line shows the full
result of the calculation of Ref. [4], while the dashed line only includes statistical
correlations.

In the early days of nuclear physics, just after the neutron had been
discovered and the existence of neutron stars had been proposed, Tolman,
Oppenheimer and Volkoff [2, 3] carried out the first studies of the stability
of neutron stars, modeled as a gas of noninteracting particles at zero tem-
perature. Their work was aimed at determining whether the degeneracy
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pressure, resulting from the repulsion induced by Pauli exclusion principle,
could become strong enough to balance the gravitational pull, thus giving
rise to a stable star. These calculations led to predict a maximum neutron
star mass ∼ 0.8 M�, M� being the mass of the sun, to be compared to the
results of most experimental measurements yielding values ∼ 1.4 M�. The
observation of neutron stars with masses largely exceeding the upper limit
determined in Refs [2,3] can be regarded as a striking evidence of the failure
of the description of nuclear systems based on the FG model. To explain
the observed neutron stars masses, the effects of nuclear dynamics have to
be explicitly taken into account.

The strength of dynamical NN correlations is illustrated by the solid
line of Fig. 2, showing the NN radial correlation function in nuclear matter
at uniform density ρ0 = 0.16 fm−3, obtained from the variational approach
discussed in Section 4. Comparison with the dashed line, computed including
statistical correlations only, clearly shows that dynamical effects dominate.

3. The nucleon–nucleon interaction

The NN interaction can be best studied in the two-nucleon system. There
is only one NN bound state, the nucleus of deuterium, or deuteron, consisting
of a proton and a neutron coupled to total spin and isospin S = 1 and T = 0,
respectively. This is a clear manifestation of the fact that nuclear forces are
spin–isospin dependent.

Another important piece of information can be inferred from the observa-
tion that the deuteron exhibits a nonvanishing electric quadrupole moment,
implying that its charge distribution is not spherically symmetric. Hence,
the NN interaction is noncentral.

Besides the properties of the two-nucleon bound state, the large data
set of phase shifts measured in NN scattering experiments (∼ 4000 data
points, corresponding to energies up to pion production threshold) provides
valuable additional information on the nature of NN forces.

Back in the 1930s, Yukawa suggested that nuclear interactions were medi-
ated by a particle of mass ∼100 MeV, that was later identified with the pion.
The one pion exchange (OPE) mechanism provides a fairly accurate de-
scription of the long range behavior of the NN interaction, as it explains the
measured NN scattering phase shifts in states of high angular momentum.

At intermediate and short range more complicated processes, involving
the exchange of two or more pions (possibly interacting among themselves)
or heavier particles, like the ρ and ω mesons, have to be taken into account.
Moreover, when their relative distance becomes very small (<∼ 0.5 fm) nu-
cleons, being composite and finite in size, are expected to overlap. In this
regime, NN interactions should in principle be described in terms of inter-
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actions between nucleon constituents, i.e. quarks and gluons, as dictated by
quantum chromodynamics (QCD), which is believed to be the fundamental
theory of strong interactions.

Phenomenological potentials describing the full NN interaction are gen-
erally written in the form

v = vπ + vR , (3.1)

where vπ is the OPE potential, while vR describes the interaction at inter-
mediate and short range.

The spin–isospin dependence and the noncentral nature of the potential
can be properly accounted for rewriting Eq. (3.1) in the form

vij =
∑
ST

[vTS(rij) + δS1vtT (rij)Sij ]PSΠT , (3.2)

where S and T denote the total spin and isospin of the interacting pair, PS
and ΠT are the corresponding projection operators and

Sij =
3
r2ij

(σi · rij) (σj · rij)− (σi · σj) , (3.3)

reminiscent of the operator describing the interaction between two magnetic
dipoles, accounts for the presence of non central contributions.

The functions vTS(rij) and vtT (rij) describe the radial dependence of
the interaction in the different spin–isospin channels, and reduce to the cor-
responding components of the OPE potential at large rij . Their shapes are
chosen in such a way as to reproduce the available NN data (deuteron bind-
ing energy, charge radius and quadrupole moment and the NN scattering
phase shifts).

As an example, Fig. 3 shows the potential acting between two nucleons
with S = 0 and T = 1. The presence of the repulsive core inducing strong
short range correlations (compare to Fig. 2) is apparent.

Fig. 3. Radial dependence of the NN potential describing the interaction between
two nucleons in the state of total spin and isospin S = 0 and T = 1.
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Although state-of-the-art parameterizations of the NN potential [5] have
a more complex operatorial structure, including non static and charge sym-
metry breaking components, the simple form (3.2) has the advantage of being
easily applicable, and still allows one to obtain a reasonable description of
the two-nucleon bound and scattering states.

4. Nuclear many body theory

According to the paradigm of nuclear many-body theory (NMBT) the
nucleus can be viewed as a collection of A pointlike protons and neutrons,
whose dynamics are described by the nonrelativistic Hamiltonian

H =
∑
i

p2
i

2m
+
∑
j>i

vij +
∑
k>j>i

Vijk , (4.1)

where pi and m denote the momentum of the i-th nucleon and its mass,
respectively. The determination of the two-body potential vij has been out-
lined in the previous section. The inclusion of the three-nucleon interaction,
whose contribution to the energy satisfies 〈Vijk〉 � 〈vij〉, is required to ac-
count for the measured binding energy of the three-nucleon systems [6].

It is very important to realize that in NMBT the dynamics is fully speci-
fied by the properties of exactly solvable system, having A ≤ 3, and does not
suffer from the uncertainties involved in many body calculations. Once the
nuclear Hamiltonian is fixed, calculations of nuclear observables for a variety
of systems, ranging from the deuteron to neutron stars, can be carried out
without making use of any adjustable parameters.

The predictive power of the dynamical model based on the Hamiltonian
of Eq. (4.1) has been extensively tested by computing the energies of the
ground and low-lying excited states of nuclei with A ≤ 12. The results of
these studies, in which the many body Schrödinger equation is solved ex-
actly using stochastic methods, turn out to be in excellent agreement with
experimental data [7].

Accurate calculations can also be carried out for uniform nuclear matter,
exploiting translational invariance and using the stochastic method [8], the
variational approach [9], or G-matrix perturbation theory [10].

In the variational approach, the nuclear states are written in such a way
as to incorporate the correlation structure induced by NN interactions. In
the case of uniform nuclear matter, they can be obtained from the states of
the noninteracting FG through the transformation

|n〉 = F |nFG〉 , (4.2)
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with F written in the form

F = S
∏
ij

fij . (4.3)

The structure of the two-body correlation operator fij reflects the complex-
ity of the NN potential, described by Eq. (3.2), while the symmetrization
operator S is needed to account for the fact that [fij , fjk] 6= 0. The shapes of
the radial functions fTS(rij) and ftT (rij) are determined by functional min-
imization of the expectation value of the Hamiltonian (4.1) in the correlated
ground state.

The formalism based on correlated wave functions is ideally suited to
carry out calculations of nuclear matter properties strongly affected by cor-
relation effects.

The hole spectral function Ph(k, E), yielding the probability of removing
a nucleon of momentum k from the nuclear ground state leaving the residual
system with excitation energy E [11], can be written in the form

Ph(k, E) =
1
π

Z2
k ImΣ(k, εk)

(E + εk)2 + [ZkIm Σ(k, εk)]2
+ PBh (k, E) , (4.4)

with εk defined by the equation

εk = ε0k + Re Σ(k, εk) , (4.5)

where ε0k = |k|2/2m and Σ(k, E) is the nucleon self energy.
The first term in the right hand side of Eq. (4.4) describes the spectrum of

a system of independent quasiparticles of momentum |k| < kF, kF being the
Fermi momentum, moving in a complex mean field whose real and imaginary
parts determine the quasiparticle effective mass and lifetime, respectively. In
the FG model this term shrinks to a δ-function and Zk = 1. The presence of
the second term is a pure correlation effect. In the FG model PBh (k, E) = 0,
while in the presence of interactions the correlation term is the only one
providing a nonvanishing contribution at |k| > kF.

Figure 4 illustrates the energy dependence of the hole spectral function of
nuclear matter, calculated in Ref. [11] using the correlated basis approach.
Comparison with the FG model clearly shows that the effects of nuclear
dynamics and NN correlations are large, resulting in a shift of the quasipar-
ticle peaks, whose finite width becomes large for deeply-bound states with
|k| � kF. In addition, NN correlations are responsible for the appearance
of strength at |k| > kF.

The results of nuclear matter calculations have been extensively em-
ployed to obtain the hole spectral functions of heavy nuclei within the local
density approximation (LDA) [12].
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Fig. 4. Energy dependence of the hole spectral function of nuclear matter at equilib-
rium density, corresponding to kF = 1.33 fm−1. The solid, dashed and dot-dashed
lines correspond to |k| = 1, 0.5 and 1.5 fm−1, respectively. The FG spectral func-
tion at |k| = 1 and 0.5 fm−1 is shown for comparison.

5. Nuclear response to a scalar probe

Within NMBT, the nuclear response to a scalar probe delivering mo-
mentum q and energy ω can be written in terms of the imaginary part of
the particle-hole propagator Π(q, ω) according to [13,14]

S(q, ω) =
1
π

Im Π(q, ω) =
1
π

Im
〈

0
∣∣∣∣ρ†q 1

H − E0 − ω − iη
ρq

∣∣∣∣ 0〉 , (5.1)

where η = 0+, ρq =
∑

k a
†
k+qak is the operator describing the fluctuation

of the target density induced by the interaction with the probe, a†k and ak

are nucleon creation and annihilation operators, and |0〉 is the target ground
state, satisfying the Schrödinger equation H|0〉 = E0|0〉.

In general, the calculation of the response requires the knowledge of
the spectral functions associated with both particle and hole states, as well
as of the particle-hole effective interaction [14, 15]. The spectral functions
are mostly affected by short range NN correlations (see Fig. 4), while the
inclusion of the effective interaction, e.g. within the framework of the Tamm
Dancoff and Random Phase Approximation [15, 16], is needed to account
for collective excitations induced by long range correlations, involving more
than two nucleons.

At large momentum transfer, as the space resolution of the probe be-
comes small compared to the average NN separation distance, S(q, ω) is no
longer significantly affected by long range correlations [16]. In this kinemat-
ical regime the zero-th order approximation in the effective interaction, is
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expected to be applicable. The response reduces to the incoherent sum of
contributions coming from scattering processes involving a single nucleon,
and can be written in the simple form

S(q, ω) =
∫
d3kdE Ph(k, E)Pp(k + q, ω − E) . (5.2)

The widely employed impulse approximation (IA) can be readily obtained
from the above definition replacing Pp with the prediction of the FG model,
which amounts to disregarding final state interactions (FSI) between the
struck nucleon and the spectator particles. The resulting expression reads

SIA(q, ω) =
∫
d3kdE Ph(k, E)θ(|k + q| − kF)δ

(
ω − E − ε0|k+q|

)
. (5.3)

Figure 5, showing the ω dependence of the nuclear matter response func-
tion at |q| = 5 fm−1, illustrates the role of correlations in the target initial
state. The solid and dashed lines have been obtained from Eq. (5.3), using
the spectral function of Ref. [11], and the from the FG model, respectively.
It is apparent that the inclusion of correlations produces a significant shift
of the strength towards larger values of energy transfer.

Fig. 5. Nuclear matter SIA(q, ω) (see Eq. (5.3)), as a function of ω at |q| = 5 fm−1.
The solid and dashed lines correspond to the spectral function of Ref. [11] and to
the FG model, respectively.

Obviously, at large q the calculation of Pp(k+q, ω−E) cannot be carried
out using a nuclear potential model. However, it can be obtained from
the measured NN scattering amplitude within the eikonal approximation.
A systematic scheme to include corrections to Eq. (5.3) and take into account
FSI has been developed in Ref. [17]. The main effects of FSI on the response
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are (i) a shift in energy, due to the mean field of the spectator nucleons and
(ii) a redistributions of the strength, due to the coupling of the one particle-
one hole final state to n particle–n hole final states.

Figure 6 shows the ω dependence of the nuclear matter response of
Eqs (5.2) and (5.3) at |q| = 5 fm−1. The solid and dashed lines have been
obtained using the spectral function of Ref. [11], with and without inclusion
of FSI according to the formalism of Ref. [17], respectively. For reference,
the results of the FG model are also shown by the dot-dashed line. The two
effects of FSI, energy shift and redistribution of the strength from the region
of the peak to the tails, clearly show up in the comparison between solid
and dashed lines.

Fig. 6. Nuclear matter S(q, ω) as a function of ω at |q| = 5 fm−1. The solid and
dashed lines have been obtained from the spectral function of Ref. [11], with and
without inclusion of FSI, respectively. The dot-dashed line corresponds to the FG
model.

6. Electron–nucleus cross-section

The differential cross-section of the process

e+A→ e′ +X , (6.1)

in which an electron of initial four-momentum ke ≡ (Ee,ke) scatters off
a nuclear target to a state of four-momentum k′e ≡ (Ee′ ,ke′), the target
final state being undetected, can be written in Born approximation as

d2σ

dΩe′dEe′
=
α2

Q4

Ee′

Ee
LµνW

µν , (6.2)
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where α = 1/137 is the fine structure constant, dΩe′ is the differential solid
angle in the direction specified by ke′ , Q2 = −q2 and q = ke − ke′ ≡ (ω, q)
is the four momentum transfer.

The tensor Lµν is fully specified by the measured electron kinematical
variables. All the information on target structure is contained in the ten-
sor Wµν , whose definition involves the initial and final nuclear states |0〉
and |X〉, carrying four-momenta p0 and pX , as well as the nuclear current
operator Jµ:

Wµν =
∑
X

〈0|Jµ|X〉〈X|Jν |0〉δ(4)(p0 + q − pX) , (6.3)

where the sum includes all hadronic final states. Note that the tensor of
Eq. (6.3) is the generalization of the nuclear response, discussed in the pre-
vious section, to the case of a probe interacting with the target through
a vector current. To see this, insert the complete set of eigenstates of the
nuclear Hamiltonian in the definition of Eq. (5.1). The result is

S(q, ω) =
∑
n

〈
0
∣∣∣ρ†q∣∣∣n〉 〈n|ρq|0〉δ(ω + E0 − En) , (6.4)

to be compared to Eq. (6.3).
In the IA regime, the nuclear current appearing in Eq. (6.3) can be

written as a sum of one-body currents

Jµ →
∑
i

jµi , (6.5)

while |X〉 reduces to the direct product of the hadronic state produced at
the electromagnetic vertex, carrying four momentum px ≡ (Ex,px), and the
state describing the residual system, carrying momentum pR = q − px.

As a result, Eq. (6.3) can be rewritten in the form (k ≡ (E,k))

Wµν(q, ω) =
∫
d4k

(
m

Ek

)[
ZPp(k)wµνp (q̃) +NPn(k)wµνn (q̃)

]
, (6.6)

where Z and N = A − Z are the number of target protons and neutrons,
while Pp and Pn denote the proton and neutron hole spectral functions,

respectively. In Eq. (6.6), Ek =
√
|k2|+m2 and

wµνN =
∑
x

〈
k,N

∣∣jµN ∣∣x,k + q
〉
〈k + q, x |jνN |N,k〉 δ(ω̃ + Ek − Ex) . (6.7)
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The tensor wµνn describes the electromagnetic structure of a nucleon of initial
momentum k in free space. The effect of nuclear binding is accounted for
by the replacement ω → ω̃, with [18]

ω̃ = Ex − Ek = ω − E +mN − Ek . (6.8)

The above equations show that within the IA scheme, the definition of
the electron–nucleus cross-section involves two elements: (i) the tensor wµνN ,
that can be extracted from electron–proton and electron–deuteron data, and
(ii) the spectral function, discussed in Section 4.

The formalism of NMBT has been extensively employed in the analysis
of a variety of electron–nucleus scattering observables. In Ref. [19], it has
been employed to calculate the inclusive electron scattering cross-sections off
oxygen, at beam energies ranging between 700 and 1200 MeV and electron
scattering angle 32◦. In this kinematical region single nucleon knock out
is the dominant reaction mechanism and both quasi-elastic and inelastic
processes, leading to the appearance of nucleon resonances, must be taken
into account.

The comparison between theory and the experiment, in Fig. 7, shows that
the data in the region of the quasi-elastic peak are accounted for with an
accuracy better than ∼ 10%. The discrepancies observed at larger electron
energy loss, where ∆ production dominates, can be ascribed to deficiencies
in the description of the nucleon structure functions [21]. For reference, the
predictions of the FG model are also displayed by dashed lines. A realistic
description of nuclear dynamics clearly appears to be needed to explain the
measured cross-sections.

Fig. 7. Cross-section of the process 16O(e, e′) at scattering angle 32◦ and beam
energy 700 MeV (left panel) and 1200 MeV (right panel), as a function of the elec-
tron energy loss ω. Solid lines: full calculation, including FSI. Dot-dashed lines:
IA calculation. Dashed lines: FG model. The data are taken from Ref. [20].
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7. Charged current neutrino–nucleus cross-section

The cross-section of the weak charged current process ν` +A→ `− +X
can be written in the form (compare to Eq. (6.2))

d2σ

dΩ`dE`
=
G2

F V
2
ud

16π2

|k`|
|k|

LµνW
µν
A , (7.1)

where GF is the Fermi constant, Vud is the CKM matrix element coupling u
and d quarks and k and k` denote the momenta of the incoming neutrino
and the outgoing charged lepton, respectively.

The formalism outlined in the previous section can be readily generalized
to the case of neutrino–nucleus interactions, the required nuclear physics
input being the same in the two instances. On the other hand, while the
vector form factors entering the definition of the electron–nucleus cross-
section can be measured with great accuracy using proton and deuteron
targets, the experimental determination of the nucleon axial form factor
is still somewhat controversial, as different experiments report appreciably
different results [22–25]. In these lectures, I will focus on the role of nuclear
dynamics, and will not discuss the uncertainty associated with the weak
form factor.

In order to gauge the magnitude of nuclear effects, in Fig. 8 the energy
dependence of the quasi elastic contribution to the total cross-section of the
process νe +16 O → e− + X computed using different approximations are

0.0 0.5 1.0 1.5
Eν(GeV)

0

2

4

6

8

10

σ 
(1

0−3
8 cm

2 )

quasi−elastic inclusive cross section

8 x elementary
RFGM, no PB
SF−no PB
SF−PB

Fig. 8. Total quasi-elastic cross-section of the process νe+16O → e− + X. The
dot-dashed line represents eight times the elementary cross-section; the dashed line
is the result of the FG model; the dotted and solid lines have been obtained using
the spectral function of Ref. [12], with and without inclusion of Pauli blocking,
respectively.
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compared [26]. The dot-dashed line represents the result obtained describ-
ing oxygen as a collection of noninteracting stationary nucleons, while the
dashed and solid lines have been obtained from the FG model and using the
spectral function of Ref. [12], respectively. It is apparent that replacing the
FG with the approach based on a realistic spectral function leads to a sizable
suppression of the total cross-section. Comparison between the dot-dashed
line and the dotted one, obtained taking into account the effect of Pauli
blocking [19], shows that the overall change due to nuclear effect is ∼ 20%.

Note that FSI between the nucleon produced at the elementary weak
interaction vertex and the spectator particles have not been taken into ac-
count, as they do not contribute to the total cross-section.

To see how much the description of nuclear dynamics may affect the data
analysis of neutrino oscillation experiments, consider reconstruction of the
incoming neutrino energy in charged current quasi elastic events νµ + A→
µ+ p+ (A− 1), in which the muon energy, Eµ, and angle, θµ, are measured.

From the requirement that the elementary scattering process be elastic,
it follows that the neutrino energy is given by

Eν =
m2
p −m2

µ − E2
n + 2EµEn − 2kµ · pn + |pn|2

2(En − Eµ + |kµ| cos θµ − |pn| cos θn)
, (7.2)

where mp and mµ denote the proton and muon mass, respectively, kµ is the
muon momentum and pn and En are the momentum and energy carried by
the struck neutron.

Setting |pn| = 0 and fixing the neutron removal energy to a constant
value ε, i.e. setting En = mn − ε, mn being the neutron mass, Eq. (7.2)
reduces to

Eν =
2Eµ(mn − ε)−

(
ε2 − 2mnε+m2

µ + ∆m2
)

2 (mn − ε− Eµ + |kµ| cos θµ)
, (7.3)

with ∆m2 = m2
n − m2

p. In the analysis of Refs [23, 24] the energy of the
incoming neutrino has been reconstructed using the above equation.

The differences between the Eν predicted by the approach based on a re-
alistic spectral function and that obtained from the FG model is illustrated
in Fig. 9, where the values obtained from Eq. (7.3) are also shown by ar-
rows. The appearance of the tail extending to large Eν , to be ascribed to
NN correlations not included in the FG model, leads to a sizable increase of
the average neutrino energy.

8. Conclusions

Dynamical correlation effects, which are long known to play a critical
role in shaping the nuclear response to electromagnetic probes, are also
important in neutrino–nucleus interactions.



How Much Nuclear Physics Do We Need to Understand the Neutrino . . . 2403

Fig. 9. Right panel: Differential cross-section of the process νµ+A→ µ+p+(A−1),
at Eµ = 600 MeV and θµ = 60◦, as a function of the incoming neutrino energy. The
solid line shows the results of the full calculation, carried out within the approach
of Refs [19,26], whereas the dashed line has been obtained neglecting the effects of
FSI. The dot-dashed line corresponds to the FG model. The arrow points to the
value of Eν obtained from Eq. (7.3). Left panel: The same as the right panel, but
for Eµ = 1 GeV and θµ = 35◦.

Although the answer to the question addressed in the title of these lec-
tures is somewhat context dependent, as not all the observables measured
in neutrino experiments are equally sensitive to NN correlations, there are
instances in which a realistic description of nuclear structure and dynamics
is badly needed. For example, analyses aimed at extracting nucleon proper-
ties, such as the axial form factor, from nuclear cross-sections require a fully
quantitative control of nuclear effects.

The formalism based on NMBT, which proved very effective in theoret-
ical studies of electron–nucleus scattering, can be easily generalized to the
case of weak interactions. The implementation of realistic spectral functions
in the Monte Carlo simulation codes, which would significantly improve the
description of the initial state, does not involve severe difficulties. As far as
final states are concerned, a consistent description of FSI effects is available
for the case of quasielastic scattering, which is the dominant reaction mech-
anism at beam energies around 1 GeV. The extension to the case of pion
production and deep inelastic scattering is certainly possible, and is being
actively investigated.
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