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Covariant Density Functional Theory (CDFT) is used to investigate
inclusive neutrino–nucleus cross-sections. The ground state of the even–
even nucleus (N,Z) is obtained as the static solutions of the Relativistic
Hartree–Bogoliubov (RHB) equations and the final states of the odd–odd
nucleus (N − 1, Z + 1) as well as the relevant transition probabilities are
calculated in the Relativistic Quasiparticle Random Phase Approximation
(RQRPA). The weak lepton–hadron interaction is expressed in the standard
current–current form.

PACS numbers: 21.30.Fe, 21.60.Jz, 23.40.Bw, 25.30.–c

1. Introduction

At low energies neutrino–nucleus reactions depend sensitively on the de-
tails of structure of the nuclear ground states and the excited states [1]. This
means that one needs a solution of the nuclear many-body problem that in-
cludes the strong and electromagnetic interactions. The exact solution of
the nuclear many-body problem is only possible for very light nuclei. In all
other cases one has to rely on approximations. Weak interaction rates at low
energies have been analyzed employing a variety of microscopic approaches,
principally in the frameworks of the shell model [2,3], the random phase ap-
proximation (RPA) [4], continuum RPA (CRPA) [5], hybrid models of CRPA
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and shell model [6,7]. Reliable prediction of weak interaction rates in nuclei
necessitates a fully consistent description of the structure of ground states
and multipole excitations. Among the relevant charge-exchange excitations,
the isobaric analog state (IAS) and Gamow–Teller resonance (GTR) have
been the subject of extensive experimental and theoretical studies. Much
more limited are the data and theoretical predictions for properties of exci-
tations of higher multipolarities at finite momentum transfer. In this work
we analyze charged-current neutrino–nucleus reactions by employing a fully
consistent microscopic approach based on relativistic energy density func-
tionals. An essential advantage over most current approaches is the use of
a single universal effective interaction in calculations of both ground-state
properties and multipole excitations of nuclei in various mass regions of the
chart of nuclides. Of particular interest for the present study are rates for
neutrino–nucleus reactions in the low-energy range below 100 MeV, which
play an important role in many astrophysical processes, including stellar
nucleosynthesis. A quantitative description of nucleosynthesis of heavy el-
ements during the r-process necessitates accurate predictions of neutrino–
nucleus cross-sections not only in stable nuclei, but also in nuclei away from
the valley of β-stability. Because nuclei are used as detectors for solar and
supernovae neutrinos, as well as in neutrino oscillation experiments, it is im-
portant to describe the neutrino detector response in a consistent and fully
microscopic theory. Finally, a quantitative estimate of neutrino–nucleus
reaction rates will provide information relevant for feasibility studies and
simulations of a low-energy beta beam facility, which could be used to pro-
duce neutrino beams of interest for particle physics, nuclear physics and
astrophysics [8].

2. Neutrino–nucleus cross-sections

We consider the charged-current neutrino–nucleus reactions:

νl +Z XN →Z+1 XN−1 + l− , (1)

where l denotes the charged lepton (electron, muon). Detailed expressions
for the reaction rates and the transition matrix elements can be found in
Refs [9, 10]. The charged-current neutrino–nucleus cross-section reads(

dσν
dΩ

)
=

1
(2π)2

V 2plEl
∑

lepton′s spin

1
2Ji + 1

∑
MiMf

|〈f |HW|i〉|2 , (2)

where pl and El are the momentum and the energy of the outgoing lepton,
respectively. The Hamiltonian HW of the weak interaction is expressed in
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the standard current–current form, and the transition matrix elements read

〈f |HW|i〉 =
G√

2
lλ
∫
d3r e−iqr〈f |Jλ(r)|i〉 . (3)

The multipole expansion of the leptonic matrix element lλe−iqr determines
the operator structure for the nuclear transition matrix elements [9], and the
expression for the neutrino–nucleus cross-section. In the extreme relativistic
limit (ERL), in which the energy of the outgoing lepton is considered much
larger than its rest mass, the differential neutrino–nucleus cross-section takes
the form(

dσν
dΩ

)
ERL

=
2GF cos2 θc

π
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2Re〈Jf ||T MAG
J ||Ji〉〈Jf ||T EL

J ||Ji〉∗

× cos2 θ

2

∑
J≥0

|〈Jf ||MJ −
q0
|q|
LJ ||Ji〉|2

 , (4)

where GF is the Fermi constant for the weak interaction, θc is the Cabibbo’s
angle, θ denotes the angle between the incoming and outgoing leptons, the
energy of the lepton in the final state is El, and the 4-momentum transfer
is q = (q0, q). The nuclear transition matrix elements between the initial
state and final state, correspond to the charge MJ , the longitudinal LJ ,
the transverse electric T EL

J , and transverse magnetic T MAG
J multipole oper-

ators. These are expressed in terms of spherical Bessel functions, spherical
harmonics, and vector spherical harmonics. Details are given in Refs [10,11].
They contain the standard set of form factors derived from the assumption
of conserved vector current (CVC) [10,12].

The calculations of the neutrino–nucleus cross-section in Eq. (4) requires
therefore the evaluation of the transition matrix elements of the various
operators between the initial and final states. The initial state is the ground
state of the even–even nucleus ZXN and the final states are the ground
state and the various excited states of the final nucleus Z+1XN−1. Here
we use a consistent microscopic theoretical framework for the evaluation of
these matrix elements, covariant density functional theory [13]. This will be
discussed in the next section.
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3. Covariant density functional theory

3.1. The relativistic energy density functional

Covariant density functional theory uses the Walecka model [14] as a ve-
hicle to implement a Lorentz invariant framework for the formulation of
the density functional. In this model the nucleus is described as a sys-
tem of Dirac nucleons coupled to the exchange mesons and the electromag-
netic field through an effective Lagrangian. The isoscalar scalar σ-meson,
the isoscalar vector ω-meson, and the isovector vector ρ-meson build the
minimal set of meson fields that together with the electromagnetic field is
necessary for a quantitative description of bulk and single-particle nuclear
properties [14–16]. The model is defined by the Lagrangian density

L = LN + Lm + Lint (5)

containing the Lagrangian of free nucleons, of free mesons and the minimal
set of interaction terms

Lint = −ψ̄Γσσψ − ψ̄Γµωωµψ − ψ̄ ~Γµρ ~ρµψ − ψ̄Γµe Aµψ (6)

containing the vertices

Γσ = gσ , Γµω = gωγ
µ , ~Γµρ = gρ~τγ

µ , Γµe = qγµ , (7)

with the coupling constants gσ, gω, gρ and q (e or 0 for protons or neutrons).
Modern versions of covariant density functional theory use density dependent
coupling constants gσ(ρ), gω(ρ), and gρ(ρ) where the density dependence is
carefully adjusted to properties of nuclear matter and finite nuclei [17].

Neglecting retardation effects for the meson fields, which is well justified
because of the large meson masses, and using the no-sea approximation, we
can express the energy derived from the Lagrangian (5) as a functional of
the relativistic single particle density matrix

ρ̂
(
r, r′, t

)
=

A∑
i=1

|ψi(r, t)〉
〈
ψi
(
r′, t

)∣∣ , (8)

and of various meson fields φm(r, t) ≡ {σ, ωµ, ~ρµ, Aµ}. We thus obtain
a covariant density functional

ERMF[ρ̂, φ] =
∫
d3rH(r, t) (9)

with the energy density

H(r, t) = Hkin(r, t)∓
∑
m

1
2

(
−φm∆φm +m2

mφ
2
m

)
+ Tr [(Γmφm)ρ̂(r, t)] ,

(10)
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where trace operations includes a summation over the Dirac indices and
the (−/+) sign holds for scalar/vector fields. The kinetic energy density is
given by

Hkin(r, t) = Tr
[
(−iα∇ + βM) ρ̂

(
r, r′, t

)]
|r=r′ (11)

and ρ̂(r, t) = ρ̂(r, r, t) is the local part of ρ̂. The energy density functional
in Eq. (9) depends on the meson fields, which obey the equations of motion(

−∆ +m2
m

)
φm(r, t) = ∓Tr [Γmρ̂(r, t)] , (12)

and, therefore, depend implicitly also on the density ρ̂. In this way we end
up with a relativistic energy density functional E[ρ̂] depending only on the
single particle density matrix ρ̂(t) in Eq. (8).

The equations of motion are obtained from the classical variational prin-
ciple

δ

t2∫
t1

dt {〈Φ|i∂t|Φ〉 − E [ρ̂]} = 0 (13)

and have the form of a time-dependent RMF equation

i∂tρ̂ =
[
ĥ(ρ̂), ρ̂

]
, (14)

where the single-particle Hamiltonian ĥ(ρ̂) is of Dirac form and is obtained
as the functional derivative of the energy with respect to the single-particle
density matrix ρ̂

ĥ =
δE

δρ̂
. (15)

3.2. The response of the system to the weak field of an incoming neutrino

Starting with the energy density functional (9) the ground state |0〉 of the
even–even system is derived as the static solution ρ̂0 of the DFT-equations
(14): [

ĥ0, ρ̂0

]
= 0 . (16)

The incoming neutrino induces transitions to the states |µ〉 in the neighbor-
ing (Z + 1, N − 1) nucleus and we calculate the transition matrix elements
|〈µ|OJ |0〉|2 of the electric and magnetic multipole operators OJ in Eq. (4) in
linear response approximation. This means, we consider the nuclear many-
body system in a time-dependent external field characterized by the operator
OJ oscillating with the frequency ω and solve the time-dependent relativistic
DFT-equations (14) in the limit of small amplitudes.



2542 P. Ring et al.

The cross-section is determined by the strength functions:

SO(ω) =
∑
µ

|〈µ|O|0〉|2δ(ω−Eµ) = − 1
π

Im
∑
αβα′β′

Oαβ∗Rαβα′β′(ω)Oα′β′ , (17)

for the various operators O and Rαβγδ(ω) is the response function defined
as:

Rαβα′β′(ω)=
∑
µ

{
〈0|a+

β aα|µ〉〈µ|a
+
α′aβ′ |0〉

ω − Eµ + E0 + iη
−
〈µ|a+

β aα|0〉〈0|a
+
α′aβ′ |µ〉

ω + Eµ − E0 + iη

}
. (18)

It contains the transition densities:

δρ̂µ = 〈0|a+a|µ〉 , (19)

which can be deduced by Fourier transformation from the time-dependent
density matrix ρ̂(t) = ρ̂0 + δρ̂(t) in Eq. (8). In the small amplitude limit of
Eq. (14) we obtain, therefore, the linearized Bethe Salpeter equation for the
response function

R(ω) = R0(ω) +R0(ω)V R(ω) . (20)

The residual interaction is found as the second derivative of the energy
density functional (9) with respect to the density matrix:

V =
δ2E[ρ̂]
δρ̂δρ̂

. (21)

and R0(ω) is the response of the free system, considering only uncorrelated
(ph)-excitations in Eq. (18) and neglecting the residual interaction (21).
More details are given in Refs [18,19].

4. Applications: Cross-sections for neutrino detector response

The theoretical framework described in the previous two sections has
been applied in studies of charged-current neutrino reaction rates with target
nuclei of arbitrary mass. The inclusive cross-sections, summing up the con-
tributions from transitions to all possible final states, are given as functions
of neutrino energy. One of the most extensively studied neutrino–nucleus
reactions is 12C(νe, e−)12N. This reaction is particularly important because
12C is used in liquid scintillator detectors. In order to illustrate the con-
tributions of different multipole excitations, we plot in Fig. 1 the inclusive
cross-section for the 12C(νe, e−)12N the reaction as function of the neutrino
energy, obtained by successively increasing the maximal allowed angular
momentum in the sum over J in Eq. (4): from Jmax = 0± to Jmax = 7±.
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One notices that the largest contributions arise from J = 1± and J = 2±,
and that the contribution of higher multipolarities gradually decreases. In
fact, in this figure one cannot distinguish the cross-sections calculated with
Jmax = 6± and Jmax = 7± , for the whole interval of neutrino energies.
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Fig. 1. The RHB plus PN-RQRPA inclusive neutrino–nucleus cross-sections for the
12C(νe, e

−)12N reaction. The different curves correspond to cross-sections evalu-
ated by successively increasing the maximal allowed angular momentum in the sum
over J in Eq. (4): from Jmax = 0± to Jmax = 7±.

5. Concluding remarks

Detailed microscopic calculations of charged-current and neutral-current
neutrino–nucleus reaction rates are of crucial importance for models of neu-
trino oscillations, detection of supernova neutrinos, and studies of the
r-process nucleosynthesis. Covariant density functional theory with a rel-
ativistic Hartree–Bogoliubov (RHB) description of nuclear ground states
and a quasiparticle RPA (QRPA) treatment of the excited states is applied
for a consistent microscopic description of neutrino–nucleus cross-sections.
Since it is based on the self-consistent mean-field approach to nuclear struc-
ture, the model can be applied to neutrino reactions with target nuclei of
arbitrary mass throughout the chart of nuclides. By employing universal
effective interactions, with parameters adjusted to global nuclear properties,
the calculation of neutrino–nucleus cross-sections is essentially parameter
free.

Except at relatively low neutrino energies E ≤ 30 MeV, for which the
reactions are dominated by transitions to IAS and GTR states, at higher en-
ergies the inclusion of spin-dipole transitions, and also excitations of higher
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multipolarities, is essential for a quantitative description of neutrino–nucleus
cross-sections. The results for the test cases are in good agreement with
the few available data, and with the cross-sections calculated in the shell
model for reactions on light nuclei. The advantage of the RHB plus
PN-RQRPA model over the shell model approach is, of course, the pos-
sibility of performing calculations for higher neutrino energy, for reactions
on heavier nuclei, and for reactions on nuclei in regions far from stability.

This work has been supported in part by MZOS— project 1191005-1010,
and by the DFG Cluster of Excellence Origin and Structure of the Universe
(www.universe-cluster.de).
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