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Using the point canonical transformation method, we show that a large
class of solvable potentials with Position-Dependent Effective Mass (PDEM)
can be obtained by using the internal functions which are introduced by
Levai for solvable potentials with constant mass. We also obtain the ex-
plicit expressions for some of these solvable potentials and show that their
eigenfunctions can be obtained in terms of the known special functions such
as Jacobi, generalized Laguerre and Hermit polynomials.
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1. Introduction

In recent years, quantum mechanical systems with a Position-Dependent
Effective Mass (PDEM) have attracted a lot of attention due to their appli-
cations in condensed matter physics, nuclear physics, semiconductor theory
and other related fields [1–8]. In theoretical researches, many different meth-
ods have been used in the study of systems with constant mass such as the Lie
algebraic techniques [9, 10], point canonical transformation [11–13], factor-
ization method [14] and supersymmetric quantum mechanics together with
shape invariance techniques [11, 15–17]. During the last few years, some
of these developments have been generalized to the systems with PDEM
and a number of interesting results has been produced [18–29]. For systems
with constant mass, Levai used the point canonical transformation approach
and calculated eigen spectrum of a large class of exactly solvable potentials,
by transforming the Schrödinger equation into the second order differential
equation which has solutions of the special functions [12]. By using of the
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Levai approach in systems with PDEM, it is seen that there are two un-
known functions instead of only one unknown function in the constant mass
case, which complicate its study [21, 27–29]. The first unknown function is
the position dependent effective mass M(x) and the second is the coordi-
nate transformation function g(x) which is named as internal function. In
the above references, the authors have tried to obtain solvable potentials
with PDEM based on simplified choices between effective mass function and
internal function as M(x) = λg′2, M(x) = λg′ and M(x) = λ

g′ , where λ is
a constant parameter.

Now, the main purpose of this work is to obtain a large class of solv-
able potentials by introducing some choices between M(x) and g(x) such
that potential functions and energy spectrum for each specific choice can be
calculated by orthogonal polynomials where are the same as those involved
in constant mass formalism. In other word, we establish some connections
between the derived differential equation with position dependent effective
mass and the Schrödinger equation of constant mass by using of the corre-
sponding internal functions which introduced in Ref. [12] for constant mass.

This paper is organized as follows: in Section 2, we will show that the
Schrödinger equation with position-dependent effective mass can be solved
by solutions of the Schrödinger equation with constant mass which are as
orthogonal polynomials. We will introduce some relations between the ef-
fective mass M(x) and the internal function g(x) for obtaining a large class
of solvable potentials with PDEM. In the next sections, some of these po-
tentials will be obtained and the spectrum of them will be written in terms
of Jacobi general Laguerre and Hermit polynomials. The paper ends with a
brief conclusion in Section 6.

2. Position-dependent effective mass equation
and point canonical transformation

The general Hermitian PDEM Hamiltonian, initially proposed by Von
Roos [1], in terms of three ambiguity parameters α, β, γ and in natural units
(~ = 2m0 = 1) is given by[
−1

2

(
Mα(x)

d

dx
Mβ(x)

d

dx
Mγ(x) +Mγ(x)

d

dx
Mβ(x)

d

dx
Mα(x)

)
+ V (x)

]
×ψ(x) = Eψ(x) , (2.1)

whereM(x) is the dimensionless form of the function m(x) = m0M(x). The
ambiguity parameters are constrained by the condition α+ β + γ = −1 and
we get the following time-independent Schrödinger equation from (2.1)

Hψ(x) ≡
[
− d

dx

1
M(x)

d

dx
+ Veff(x)

]
ψ(x) = Eψ(x) , (2.2)
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where the effective potential

Veff(x) = V (x) +
1
2

(β + 1)
M

′′

M2
− [α(α+ β + 1) + β + 1]

M ′ 2

M3
(2.3)

depends on M(x) and its first and second derivatives. Using the following
coordinate transformation in (2.2) as [12]

ψ(x) = f(x)F (g(x)) , (2.4)

where F (g(x)) is some special function and satisfies the following second
order differential equation

d2F

dg2
+Q(g)

dF

dg
+R(g)F (g) = 0 , (2.5)

then we can calculate Q(x) and R(x), with respect to E − Veff(x),M(x),
f(x), g(x) and their derivatives by comparing (2.5) with the result of insert-
ing (2.4) into (2.2). The f(x) function can be also calculated by Q(x) and
R(x) expressions as [29]

f(x) ∝
(
M

g′

)1/2

exp
(

1
2

∫
(Q(u)du)

)
, (2.6)

where the usual square-integrablity condition for bound-state wave functions
should indeed be satisfied by the additional restriction |ψ(x)|2√

M(x)
→ 0 at the

end points of definition interval of V (x) to ensure the Hermiticity of H in the
Hilbert space spanned by its eigenfunction [25]. Therefore, the E − Veff(x)
is obtained as

E−Veff(x) =
g′ 2

M

(
R− 1

2
Q′ − 1

4
Q2

)
+

g′′′

2Mg′
− 3

4M

(
g′′

g′

)2

− M ′′

2M2
+

3M ′ 2

4M3
.

(2.7)
Existing E in the left-hand side of (2.7) induces a constant value in the
right-hand side hence one should define the functions of M(x) and g(x)
simultaneously for ensuring the presence of a constant on the right-hand
side.

The choice of M(x) = λg′ 2(x) has been used in Refs. [21,27,28] where λ
is a constant parameter, also the possibilities ofM(x) = λg′(x) andM(x) =
λ

g′(x) have been studied in Ref. [29] for generating of exact and quasi-exact
solvable potentials, respectively. In present work, we use the constant mass
formalism according to [12], and show that for differential equation (2.5)
which can be solved in terms of known special functions, one can obtain
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the new relations between M(x) and g(x) such that a constant term is
induced in right-hand side of (2.7). Therefore, we can obtain a large class
of solvable potentials with PDEM by using the internal function which is
introduced in [12]. In other word, for each internal function g(x), we obtain
the related effective mass M(x), and then, the effective potential Veff(x),
energy spectrum and wave function ψ(x) can be calculated in terms of known
special functions. We will use this formalism for Jacobi, generalized Laguerre
and Hermit differential equation in Sections 3, 4 and 5, respectively.

3. Jacobi polynomial and solvable potentials

The expression of Q(x) and R(x) for differential equation (2.5) corre-
sponded to Jacobi polynomial P (α,β)

n are given by [12]

Q(g) =
−α+ β

1− g2
− (2 + α+ β)g

1− g2
, (3.1)

R(g) =
n(1 + α+ β + n)

1− g2
, (3.2)

where α, β > −1 and n = 0, 1, 2, . . . . Substituting (3.1) and (3.2) into (2.7),
we get

E − Veff(x) =
g′2

M(1− g2)
[n(n+ α+ β + 1)]

+
g′2

M(1− g2)2

[
1
2

(α+ β + 2)− 1
2

(β − α)2

]
+

gg′2

M(1− g2)2

[
1
2

(β − α)(β + α)
]

− g2g′2

M(1− g2)2

[
1
4

(α+ β)(α+ β + 2)
]

+
g′′′

2Mg′
− 3

4M

(
g′′

g′

)2

− M ′′

2M2
+

3M ′2

4M3
. (3.3)

In (3.3), as discussed before, we have to find some relations between M(x)
and g(x) for obtaining a constant term in right-hand side. For instance,
substituting M(x) = 1

1−g2(x)
in (3.3), we can generate a constant term on

right-hand side of (3.3) by assuming

g′2

(1− g2)
= C , (3.4)

where (3.4) is the same differential equation of type PI which is obtained by
Levai for constant mass solvable models [12].
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Here, by choosing C = −a2 in (3.4), where a is a real positive parameter
we get

g(x) = i sinh(ax) , −∞ < x < +∞ (3.5)

which leads us to an effective mass from M(x) = 1
1−g2(x)

as

M(x) =
1

cosh2(ax)
. (3.6)

Substituting the g(x) and M(x) into (3.3) we get

E − Veff(x) = a2
[

3
2 −

1
2(α+ β + 2)− 1

4(β − α)2 − n(n+ α+ β + 1)
]

+a2
[

3
4 − n(n+ α+ β + 1)− 1

4(α+ β)(α+ β + 2)
]

sinh2(ax)

−ia2
[

1
2(β − α)(β + α)

]
sinh(ax) . (3.7)

Now we will obtain a term in (3.7) that is independent of x, it should be also
noticed that the constant term has to contain n. When the constant term
in (3.7) is different from the one containing n, we have to shift the n depen-
dence to the constant term. This can be carried out by a transformation of
the parameters so that these transformations determine the n dependence
of the spectrum such that En=0 = 0. After some calculations, we obtain
the following expressions for energy eigenvalue and effective mass potential
from (3.7)

En = a2(s− n)2 +
λ2a2

(s− n)2
− a2s2 − λ2a2

s2
, (3.8)

Veff(x) =
(
s− 1

2

)
a2 − λ2a2

s2

+

[(
s+

1
2

)2

a2 − a2

]
sinh2(ax) + 2a2λ sinh(ax) , (3.9)

where α = s− n+ iā , β = s− n− iā and ā = λ
s−n . Also, substituting g(x),

M(x) and Q(x) associated to Jacobi differential equation in the Eq. (2.6), we
obtain the expression f(x), and then using the Eq. (2.4), the eigenfunction
of the above solvable potential based on Jacobi polynomials is given by

ψ(x) ∝ 1

(−a2)1/4
coshs−n−1/2(ax)

× exp
[
−iā tanh−1(i sinh(ax))

]
P (s−n+iā,s−n−iā)
n (i sinh(ax)) .(3.10)
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We have checked two conditions mentioned below the Eq. (2.6) and it is
seen that the eigenfunction of (3.10) is a square integrable function at the
end points of interval provided that s is restricted to the range of s < 0.
Therefore the effective mass potential (3.9) has bound states and the choice
ofM(x) function (3.6), yielding Eq. (3.10), ensures hermiticity of the Hamil-
tonian.

Of course, for M(x) = 1
1−g2(x)

, we can consider in (3.3) other terms as
a constant value and get different kinds of g(x) functions, but it should be
noticed that this does not mean that we can find all the possible functions,
in fact, this is a convenient way to find some of them. Besides, one can
deduce the other solvable models related to Jacobi polynomials by assuming
M(x) = 1 − g2(x), M(x) = g(x)

1−g2(x)
, M(x) = g2(x)

1−g2(x)
and M(x) = g(x).

However, it should be pointed out that not every choice of M(x) function,
inducing a constant term on the r.h.s. of Eq. (2.7), automatically produces
Hermitian solvable models. To see this, substituting M(x) = 1 − g2(x) in
(3.3), we can make sure that the first term in the right-hand side of (3.3)
gives a constant term as

g′2(x)
(1− g2(x))2

= C . (3.11)

This equation is the same differential equation of type PI for constant mass
cases [12], but it does not give an usual square-integral function or a Her-
mitian solvable model.

Therefore, a large class of solvable potentials with PDEM, corresponding
to Jacobi polynomials, can be obtained by g(x) functions listed in table 1 of
Ref. [12], and one can obtain the explicit expressions for effective massM(x),
effective potential Veff(x) , energy eigenvalue En and the eigenfunction of the
solvable potential corresponding to Jacobi polynomials in PDEM.

4. Generalized Laguerre polynomial and solvable potentials

When we choose F (g(x)) to be the generalized Lagurre polynomial
Lαn(x), the expressions of Q(g) and R(g) in (2.5) are given by [12]

Q(g) =
1− g(x) + α

g(x)
, R(g) =

n

g
, (4.1)

where n = 0, 1, 2, . . . and α > −1. As in previous section, substituting (4.1)
into (2.7), we obtain
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E − Veff(x) =
(2n+ α+ 1)

2M
g′ 2

g
− (α+ 1)(α− 1)

4M
g′ 2

g2

− g
′ 2

4M
+

g′′′

2Mg′
− 3

4M

(
g′′′

g′

)2

− M ′′

2M2
+

3M ′ 2

4M3
. (4.2)

One can make a constant term in the right-hand side of Eq. (4.2), when g(x)
satisfies the equation

g′ 2(x)
g2(x)

= C , (4.3)

with the assumption of M(x) = g(x). As a special example, if C = a2 with
a > 0, we have

g(x) = exp(−ax) , M(x) = exp(−ax) , −∞ < x < +∞ . (4.4)

Inserting (4.4) into (4.2) we get

E − Veff(x) =
a2(2n+ α+ 1)

2
− a2(α+ 1)(α− 1)

4 exp(−ax)
− a2 exp(−ax)

4
, (4.5)

by choosing l = α− 1
2 , the energy eigenvalue and potential of PDEM system

can be obtained as

En = na2 , (4.6)

Veff(x) = −
(
l +

3
2

)
a2

2
−
a2
(
l + 3

2

) (
l − 1

2

)
4 exp(−ax)

− a2 exp(−ax)
4

. (4.7)

After some calculations, we obtain

ψ(x) ∝ 1

(−a2)
1
2

exp

[
(−a)

(l + 3
2)

2
x

]
exp

(
−1

2
e−ax

)
L

(l+ 1
2

)
n (exp(−ax)).

(4.8)
Similarily to Eq. (3.16), we have checked two conditions mentioned below
the Eq. (2.6) and so, the Eq. (4.8) manifestly represents a square integrable
function at the end points of interval and the hermiticity of Hamiltonian is
also automatically satisfied, therefore the effective mass potential (4.7) has
bound states.

As mentioned before, we can consider the other terms in Eq. (4.2), as
a constant for M(x) = g(x). Therefore we can obtain other solvable models
with PDEM corresponding to generalized Lagurre polynomial. Other possi-
bilities such as M(x) = 1

g(x) , M(x) = 1
g2(x)

and M(x) = g2(x) can also be
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chosen which induce a constant term in right-hand side of (4.2). Of course, it
should be noticed that, some of choices lead to the same differential equation
for g(x). For example, when M(x) = 1

g(x) is chosen and the second term in
(4.2) is a constant, then the differential equation (4.3) is the same as for the
choice M(x) = g(x), or as the differential equation g′ 2(x) = C obtained for
both assumptionsM(x) = 1

g(x) andM(x) = 1
g 2(x)

when the first and the sec-
ond term in (4.2) are constant, respectively. Hence in the reminding of this
section, we obtain another example of solvable potential with PDEM asso-
ciated to generalized Lagurre polynomial by assuming M(x) = 1

g(x) . When
the second term in right-hand side of Eq. (4.2) suppose to be a constant
value then we have

g′2(x)
g(x)

= C , (4.9)

where for C = 2ω (ω is a real positive parameter), it yields

g(x) =
1
2
ωx2 , M(x) =

2
ωx2

, −∞ < x < +∞ . (4.10)

Substituting Eqs. (4.10) into (4.2) we get

E−Veff(x) =
17
8
ω+

(2n+ α+ 1)
2

ω2x2− (α+ 1)(α− 1)ω
2

− 1
8
ω3x4 . (4.11)

Using the parameter definition s = n+ 1
2α, we have

En = 2ω
[
s2 − (s− n)2

]
, (4.12)

Veff(x) =
17
8
ω + 2ωs2 −

(
2s+ 1

2

)
ω2x2 +

1
8
ω3x4 , (4.13)

ψ(x) ∝ 1
(ωx)1/2

(
ωx2

2

)s−n
exp

(
−1

4
ωx2

)
L(2s−2n)
n

(
1
2
ωx2

)
. (4.14)

By checking two conditions mentioned below the Eq. (2.6), it is seen that
the square integrability is satisfied for (4.14), therefore there are the bound
states for (4.13).

5. Hermit polynomials and solvable potentials

In Eq. (2.5), the expressions of Q(g) and R(g) correspondent to Hermit
polynomials Hn(g) are given by [12]

Q(g) = −2g , R(g) = 2n , (n = 0, 1, 2, . . .) . (5.1)
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Substituting (5.1) into (2.7) we get

E − Veff(x) =
(2n+ 1)g′ 2

M
− g2g′ 2

M
+

g′′′

2Mg′
− 3

4M

(
g′′

g′

)2

− M ′′

2M2
+

3M ′ 2

4M3
.

(5.2)
By assuming M(x) = 1

g2(x)
and the first term in the right-hand side of

Eq. (5.2) to be a constant value, we have the following differential equation

g2g′ 2 = C . (5.3)

Solving this equation yields

g(x) =
√

2xC1/4 , (5.4)

M(x) =
1

2
√
Cx

, 0 < x < +∞ . (5.5)

Inserting the Eqs. (5.4) and (5.5) into (5.2) we get

E − Veff(x) = (2n+ 1)C − 2C3/2x− C1/2

8x
. (5.6)

Therefore energy eigenvalue, effective mass potential and its eigenfunction
for C = ω, where ω is a real positive parameter, are obtained as

En = 2nω , (5.7)

Veff(x) = 2ω3/2x+
ω1/2

8x
− ω , (5.8)

ψ(x) ∝ 1(
2ω3/2x

)1/4 exp(−
√
ωx)Hn

[
ω1/4
√

2x
]
. (5.9)

In the same way, ifM(x) = g2(x) and the second term in the right-hand side
of the Eq. (5.2) suppose to be a constant value then the obtained effective
potential does explicitly depend on quantum number n and we cannot obtain
one solvable model.

6. Conclusion

Here, we have used the point canonical transformation method to obtain
the solvable potentials with PDEM by assuming some relations between
the effective mass M(x) and the internal function g(x) which is introduced
for the constant mass case. We have shown that the eigenfunctions of all
these potentials can be expressed in terms of known special functions. We
have also shown that for ensuring the presence of a constant term on the
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right-hand side of Eq. (2.7), the possibilities such as M(x) = 1 − g2(x),
M(x) = 1

1−g2(x)
, M(x) = g(x)

1−g2(x)
, M(x) = g2(x)

1−g2(x)
and M(x) = g(x)

for Jacobi polynomials, M(x) = 1
g(x) , M(x) = 1

g2(x)
, M(x) = g(x) and

M(x) = g2(x) for generalized Laguerre polynomials, and M(x) = g2(x),
M(x) = 1

g2(x)
for Hermit polynomials must be chosen. By choosing these

relations, the internal function g(x) is obtained by those differential equa-
tions which are given for the constant mass case.
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