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In certain new physics (NP) models, such as the Littlest Higgs model
with T-parity, a strict correlation between the KL→π0νν̄ and K+→π+νν̄
branching ratios has been observed, allowing essentially only for two bran-
ches of possible points, while in other NP frameworks, such as the general
MSSM or warped extra dimensional models, no visible correlation appears.
We analyse the origin of the correlation in question and show it to be a di-
rect consequence of the stringent experimental constraint on εK , provided
that the NP enters with comparable strength and a universal weak phase
in both ∆S = 2 and ∆S = 1 transitions. This happens in many NP sce-
narios with either only SM operators, or where the NP induces exclusively
right-handed currents while the left–right ∆S = 2 operators are absent.
On the other hand, if the NP phases in ∆S = 2 and ∆S = 1 processes are
uncorrelated, εK has no power to put constraints on the K → πνν̄ system.
The latter appears in particular in those NP models where K0–K̄0 mixing
receives contributions from the chirally enhanced left-right operators. We
discuss the stability of the correlation in question against small deviations
from the assumption of universal ∆S = 2 and ∆S = 1 weak phases, and in
the presence of non-negligible NP contributions to εK .

PACS numbers: 12.60.–i, 13.20.Eb, 13.25.Es

1. Introduction

The K → πνν̄ decays, being theoretically very clean and extremely
suppressed in the Standard Model (SM), are known to be one of the best
probes of new physics in the flavour sector. Recent reviews of these decays
both in and beyond the SM can be found in [1], here we just quote for
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completeness the presently available SM predictions, obtained at the NNLO
level [2]

Br(KL → π0νν̄)SM = (2.76± 0.40)× 10−11 (1)

and
Br(K+ → π+νν̄)SM = (8.5± 0.7)× 10−11 . (2)

Unfortunately the K → πνν̄ decays are experimentally very challenging,
so that for Br(KL → π0νν̄) only an upper bound [3]

Br(KL → π0νν̄)exp < 6.7× 10−8 (90% C.L.) (3)

is available, while the present measurement of Br(K+ → π+νν̄) [4]

Br(K+ → π+νν̄)exp =
(
17.3+11.5

−10.5

)
× 10−11 (4)

is still plagued by large uncertainties.
While observing one day these two branching ratios outside the ranges

(1), (2) predicted in the SM would clearly be a spectacular sign of new
physics, it is even more interesting to consider both decay rates simulta-
neously. In fact, while in some NP models like the Littlest Higgs model
with T-parity (LHT) [5–7] or the minimal 3–3–1 model [8] a stringent cor-
relation in the K → πνν̄ system has been found, in other NP frameworks
like the general MSSM [9, 10] or Randall–Sundrum (RS) models with bulk
fields [11, 12] any values of the decay rates in question consistent with the
model-independent Grossman–Nir (GN) bound [13] appear possible.

Stimulated by this observation, in the present paper we aim to reveal the
origin of the correlation in question and analyse the conditions under which
it appears. To this end let us briefly recall certain properties of the models
in question:

• Both the LHTmodel and the minimal 3–3–1model contain new sources
of flavour and CP violation and in particular new CP-violating phases
[8, 14, 15]. While in the minimal 3–3–1 model flavour transitions in
a given meson system are governed by a single weak phase, in the
LHT model a priori various contributions with different weak phases
are present. On the other hand it is common to both models that no
new flavour violating operators beyond the ones already present in the
SM appear.

• In the general MSSM and in RS models with bulk fields, both with and
without custodial protection, flavour changing neutral current (FCNC)
processes are mediated by new operators in addition to the usual
SM left-handed ones [11, 16–18]. Also in these models new sources
of flavour and CP violation are present.
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This observation raises the suspicion that the correlation in theK → πνν̄
system in question could be a remnant of the absence of new flavour violat-
ing operators. Indeed several probes of the NP operator structure through
correlations between various rare decay rates have been discussed extensively
in the literature. A unique probe of new flavour violating operators is given
by the Bs,d → µ+µ− decays, that can only receive large enhancements by
scalar operator contributions. Proposals to test the presence of new flavour
violating operators have also been made using theKL → π0`+`− decays [19],
the correlation between the K+ → π+νν̄ and KL → µ+µ− decay rates [11]
or the three body leptonic µ and τ decays, by comparing their branching
ratios to the ones of µ→ eγ and τ → `γ [20] or by performing a Dalitz plot
analysis [21].

However, the situation in theK → πνν̄ system is peculiar, as the relevant
effective Hamiltonian contains only the operators

(s̄d)V−A(ν̄ν)V−A , (s̄d)V+A(ν̄ν)V−A . (5)

Furthermore, as both K and π are pseudoscalar mesons, effectively only the
linear combination

(s̄d)V (ν̄ν)V−A (6)

contributes. Therefore, the correlation in question can clearly not be a result
of various contributions adding up in different ways in Br(K+ → π+νν̄) and
Br(KL → π0νν̄), as happens in most other cases mentioned above. Conse-
quently, the correlation within the K → πνν̄ system can not be induced by
the NP operator structure in ∆S = 1 transitions, which has to be tested by
other means [11,19].

On the other hand, the K → πνν̄ decays offer an excellent probe of
the weak phase appearing with the operator in (6) [22]. While K+ →
π+νν̄, being a CP-conserving decay, is sensitive to the absolute value of the
Wilson coefficient of (6), the CP-violating KL → π0νν̄ decay measures its
imaginary part. As generally the NP phase in ∆S = 1 is arbitrary and not
yet constrained by the data1, the strict correlation in the K → πνν̄ system
observed in some NP models must be due to other FCNC constraints.

Indeed in what follows we will demonstrate that in models in which NP
in ∆S = 2 and ∆S = 1 transitions is correlated to each other, i.e. the
CP-violating phases are equal in both cases (apart from a trivial factor 2)
and the NP amplitudes are of comparable relative size, the stringent exper-
imental constraint on CP violation in K0–K̄0 mixing, parameterised by εK ,

1 While there exist rather precise data on direct CP violation by means of the parameter
ε′′/ε, in this case the SM prediction is unfortunately only poorly known so that no
useful constraint on NP can be obtained. See [23] for a detailed discussion of the
present situation in the SM.
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constrains the K → πνν̄ decay rates to lie within the two branches observed
within the LHT model [5, 7].

We will see that the precise shape of the correlation in question depends
on the SM prediction for εK in comparison with the data. While at present
the SM appears to reproduce the data within present uncertainties, in par-
ticular if the so far relatively imprecise tree level value for the CKM angle γ
is used, recent studies [24–26] hint for the possibility that the SM cannot ac-
count for the measured value of εK and a NP contribution of roughly +20%
is required. As the situation is not conclusive at present, in our analysis we
will consider two scenarios:

(1) The SM is in good agreement with the data on εK , and the NP contri-
butions are allowed to amount to at most ±5% of the SM contribution.

(2) The SM alone cannot reproduce the measured value of εK , but a ∼
+20% NP contribution is required. Again in order to account for
unavoidable theoretical and parametric uncertainties, we take the NP
contribution to be (20± 5)% of the SM contribution.

Fortunately, the theoretical knowledge of εK will improve significantly in the
coming years, thanks to further improved lattice determinations of B̂K and
more precise measurements of the CKM parameters |Vcb| and γ at future
facilities. Therefore, when eventually the K → πνν̄ decays will be measured
with sufficient precision to test the correlation in question, we will already
know which of the above scenarios is satisfied in nature, and a ± 5% uncer-
tainty in the SM prediction for εK , while constituting an optimistic scenario,
could be achieved at that stage. In any case the correlation in question does
not depend qualitatively on this assumption.

If εK will indeed turn out to be well described by the SM prediction,
finding the K → πνν̄ branching ratios outside the correlation in question
would lead us to the insight that ∆S = 2 and ∆S = 1 transitions are not
strongly correlated. In particular the following possibilities appear:

(1) ∆S = 2 and ∆S = 1 transitions are not governed by a universal weak
phase. The origin of such a non-universality could be

• the presence of various contributions with different weak phases,
affecting ∆S = 2 and ∆S = 1 transitions in a different manner,

• the presence of new operators (in particular the chirally enhanced
left-right ones) in εK that spoil the direct correspondence between
∆S = 2 and ∆S = 1 physics. We note, however, that if NP effects
are dominantly induced by right-handed currents that generate
only (V + A) ⊗ (V + A) contributions to εK , the correlation in
question is still present.
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(2) NP effects in ∆S = 1 transitions are significantly enhanced over the
corresponding ∆S = 2 effects. This can appear e.g. in certain regions
of the MSSM parameter space, where the squarks are much lighter
than the gauginos [10].

On the other hand, if εK will indeed turn out to be significantly affected
by NP contributions, the correlation in question is weakend and its use is
shifted towards a better understanding of models with a universal phase
in ∆S = 2 and ∆S = 1 transitions. In this case the measurement of the
K → πνν̄ decay rates can be used to precisely determine the relative size
of NP amplitudes in K0–K̄0 mixing and the K → πνν̄ decays within this
specific NP scenario.

The paper is organised as follows. In Sec. 2 we introduce the general
framework to describe NP contributions to the εK parameter and to theK →
πνν̄ decays. Sec. 3 is devoted to the discussion of models with a universal
weak phase in ∆S = 2 and ∆S = 1 processes. In Sec. 3.2 we consider as
a simple analytic example the case in which εK is NP-free and show that the
allowed range in the K → πνν̄ plane reduces then to two straight lines. In
Sec. 3.3 we study the more realistic case of a possible small NP contribution
to εK , still finding a clear 2-branch correlation in the K → πνν̄ system,
provided that the ∆S = 1 NP amplitude is not significantly enhanced over
the ∆S = 2 one. In Sec. 3.4 we consider the case of relevant NP contributions
to εK , implying a partial loss of correlation depending on the relative sizes
of ∆S = 2 and ∆S = 1 amplitudes. Subsequently in Sec. 4 we soften the
assumption of a universal phase by allowing for a second contribution with
arbitrary phase to ∆S = 1 transitions. We will see that the correlation of
the K → πνν̄ decays gets partly lost in this case. Still, we find that under
the assumption that this new contribution is suppressed with respect to the
one entering also ∆S = 2 transitions, the correlation found previously is
still present, albeit weaker. In Sec. 5 we briefly discuss the impact of the NP
operator structure on the correlation in question. In models with only SM
operators ∆S = 2 and ∆S = 1 are often strongly correlated, which we show
explicitly for the Littlest Higgs model with T-parity. We then show that
the situation is analogous for models inducing only right-handed currents.
The situation is drastically different in the presence of the chirally enhanced
left-right operator contributions to K0–K̄0 mixing, and the correlation in
the K → πνν̄ system is completely lost in that case. These observations
can thus in principle be used to test the operator structure of NP once
both Br(K+ → π+νν̄) and Br(KL → π0νν̄) will be measured with sufficient
precision. We summarise our findings in Sec. 6.
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2. Basic framework

2.1. Preliminaries

For the model-independent discussion of NP contributions to K0–K̄0

mixing and the K → πνν̄ decays, it will turn out to be useful to work with
the parameterisation introduced in what follows.

2.2. εK in the presence of new physics

The off-diagonal mixing amplitude MK
12 governing K0–K̄0 oscillations

can generally be written as

MK
12 =

G2
F

12π2
F 2
KB̂KmKM

2
WM

K
12 , (7)

where MK
12 can generally be divided into a SM and a NP part,

MK
12 =

(
MK

12

)
SM

+
(
MK

12

)
NP

. (8)

The SM contribution is given by(
MK

12

)
SM

=
(
λ(K)∗
c

)2
η1Sc +

(
λ

(K)∗
t

)2
η2St + 2λ(K)∗

c λ
(K)∗
t η3Sct . (9)

Here, λ(K)
c = V ∗csVcd and λ

(K)
t = V ∗tsVtd are the relevant CKM factors,

η1, η2, η3 are QCD corrections evaluated at the NLO level in [27], and
Sc, St, Sct are the SM one-loop functions.

Any kind of NP contribution to MK
12 can be parameterised in terms of

its amplitude R∆S=2 and its CP-violating phase φ∆S=2 as(
MK

12

)
NP

=
(
R∆S=2 e

−iφ∆S=2

)2
, (10)

where the square will turn out to be useful later on.
The parameter εK , measuring the amount of mixing induced CP viola-

tion in the K → ππ decays, can then be written as

εK = κεe
iφε ImMK

12

∆MK
, (11)

where experimentally φε = (43.51± 0.05)◦, and the parameter κε = 0.92±
0.02 in the SM [24] and under mild assumptions also in the presence of
NP [25].

The experimental value |εK | = (2.229 ± 0.012) × 10−3 turns out to be
somewhat larger [24,25] than the SM prediction2, albeit still compatible due
to the uncertainty mainly in |Vcb| and the non-perturbative parameter B̂K ,
and in the tree level determination of the CKM angle γ.

2 See [26] for an alternative discussion.
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2.3. K → πνν̄ in the presence of new physics

The K → πνν̄ decay rates can very generally be written as [5, 11,22]

Br(K+ → π+νν̄) = κ+

(
r̃2A4R2

t |XK |2

+ 2r̃P̄c(x)A2Rt|XK | cosβKX + P̄c(x)2
)
, (12)

Br(KL → π0νν̄) = κLr̃
2A4R2

t |XK |2 sin2 βKX , (13)

with

XK = X0(xt) +
1

λ
(K)
t

RK→πνν̄ e
iφK→πνν̄

≡ |XK | eiθ
K
X , (14)

βKX = β − βs − θKX . (15)

Here X0(xt) is the SM loop function describing the s→ dνν̄ transition, and
the NP contribution is parameterised by its amplitude RK→πνν̄ and its weak
phase φK→πνν̄ . We note that due to the special structure of the K → πνν̄
decays, essentially only the operator

(s̄d)V (ν̄ν)V−A (16)

enters both branching ratios, so that the NP contributions to K+ → π+νν̄
and KL → π0νν̄ are strongly correlated and can be parameterised by the
single function XK . Furthermore [2, 28],

κ+ = (5.36± 0.03)× 10−11 , κL = (2.31± 0.01)× 10−10 , (17)

r̃ =
∣∣∣∣VtsVcb

∣∣∣∣ , P̄c(x) =
(

1− λ2

2

)
(0.42± 0.05) , (18)

A =
|VcdV ∗cb|
λ3

, Rt =
∣∣∣∣VtdV ∗tbVcdV

∗
cb

∣∣∣∣ , (19)

β = −arg(Vtd) , βs = −arg(−Vts) . (20)

In our numerical analysis we have used for the values of the relevant
input parameters the ones collected in Table 2 of [11].

3. A universal weak phase in K physics

3.1. Preliminaries

Let us first consider the simple scenario in which NP CP violation enters
∆S = 2 and ∆S = 1 processes in a universal manner, i.e.

φ∆S=2 = φK→πνν̄ ≡ φ . (21)
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While this assumption may seem an ad hoc one due to the a priori different
structures of particle–antiparticle mixing and rare decays, it generally arises
if only one NP source of flavour violation enters both ∆S = 2 and ∆S = 1
physics. As for the process of K0 − K̄0 mixing a double (s→ d)⊗ (s→ d)
transition is required, while the K → πνν̄ decays are mediated by a single
(s → d) transition, in this case the weak phases will differ only by a factor
of two, corresponding to the square in (10).

Indeed there exist NP models of this type, e.g. the minimal 3–3–1 model
[8,29] or the next-to-minimal flavour violating class of models [30], provided
no new operators are present.

3.2. Assuming no NP in εK — an analytic exercise

In order to get a notion for the implications of the universality assump-
tion (21), let us start by considering the case that no NP appears in εK . In
order to achieve this

Im
(
MK

12

)
NP

= 0 (22)

is required, implying

φ = n
π

2
(n = 0, 1, 2, 3) . (23)

Due to the experimental, parametric and theoretical uncertainties entering
εK we will of course never know whether (22) is exactly satisfied in nature.
Still it is useful to first consider this simplified toy scenario. As this case
can easily be treated analytically, we will get a better understanding of
how the 2-branch correlation in the K → πνν̄ system emerges. We note
that Eqs. (22) and (23) are phase convention dependent and valid only in
the standard phase conventions for the CKM matrix. While (22) and (23)
would look different if different phase conventions were chosen, the resulting
constraints on the K → πνν̄ are of course independent of this choice.

Inserting the possible solutions for φ in (23) into Eqs. (12), (13) and
writing Br(KL → π0νν̄) as a function of Br(K+ → π+νν̄), we find

Br(KL → π0νν̄) = Br(KL → π0νν̄)SM (24)

for n = 0, 2 independent of the value of Br(K+ → π+νν̄), i.e. a horizontal
line in the Br(K+ → π+νν̄)−Br(KL → π0νν̄) plane. As in this case the NP
contribution to the K → πνν̄ decay amplitude is real, it has no impact on
KL → π0νν̄ being a CP-violating mode but affects only the CP-conserving
K+ → π+νν̄ decay.

For n = 1, 3 instead the NP contribution is purely imaginary, so that
Br(KL → π0νν̄) is maximally affected. Solving then Eqs. (12), (13) for
Br(KL → π0νν̄), we find:
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Br(KL → π0νν̄) =
κL

κ+
Br(K+ → π+νν̄)

−κL

[
r̃2A4R2

tX0(xt)2 cos2(β − βs)

+ 2r̃P̄c(x)A2RtX0(xt) cos(β − βs) + P̄c(x)2
]
. (25)

This relation is represented by a straight line in the Br(K+ → π+νν̄)–
Br(KL → π0νν̄) plane parallel to the Grossman–Nir bound [13]

Br(KL → π0νν̄) ≤ κL

κ+
Br(K+ → π+νν̄) , (26)

but shifted downwards due to the subtrahend in (25), so that it crosses the
SM prediction. We note that the slope of this second branch, similarly to the
one of the GN-bound, does not depend on any model-specific assumptions,
but is a universal prediction for purely imaginary NP contributions to the
K → πνν̄ system.

The two branches (24) and (25) are shown in Fig. 1. Their crossing point
indicates the SM predictions for Br(K+ → π+νν̄) and Br(KL → π0νν̄). We
note that the only uncertainties in the precise position of the two branches
under consideration arise from the SM predictions for the K → πνν̄ decay
rates and the small parametric uncertainties in κL and κ+.

Fig. 1. Br(KL → π0νν̄) as a function of Br(K+ → π+νν̄) in the scenario φ = nπ/2
(n = 0, 1, 2, 3). The thin (blue) line shows the GN-bound, while the experimental
1σ range for Br(K+ → π+νν̄) is displayed by the grey band.
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3.3. Small NP effects in εK

Unfortunately, due to the experimental, parametric and theoretical
uncertainties in the determination of εK , we will never know whether εK =
(εK)SM is exactly satisfied in nature. While at present the uncertainties in
the SM prediction for εK are still sizable, mainly due to the errors in the tree
level determinations of |Vcb| and γ, further improved lattice determinations
of B̂K and more precise measurements of the relevant CKM parameters at
future facilities will improve the situation significantly before the K → πνν̄
branching ratios will precisely be measured.

Therefore, rather than including the effect of the present uncertainties
in εK into our analysis, we will now assume a future accuracy of 5% for
the SM prediction and a good agreement with the data3. More precisely,
we allow for a NP contribution to εK of at most ± 5% of the SM contri-
bution4. The impact of this constraint on the allowed parameter space in
the (R∆S=2, φ∆S=2) plane, as defined in (10), is displayed by the orange
area in Fig. 2. We will now study how this constraint translates into the
Br(K+ → π+νν̄)−Br(KL → π0νν̄), provided that the universality assump-
tion (21) holds.

Fig. 2. Allowed ranges in the (R∆S=2, φ∆S=2) plane. Darker grey (orange) area:
assuming a NP contribution to εK of at most ± 5% of the SM contribution; lighter
grey (blue) area: assuming a NP contribution to εK of +(20 ± 5)% of the SM
contribution.

3 The case in which the SM cannot account for the measured value of εK , as hinted at
in [24–26], will be discussed in Sec. 3.4.

4 While a future 5% accuracy of (εK)SM may seem optimistic, we would like to stress
that the correlation pointed out here does not depend crucially on this assumption
— rather it should be considered as a numerical example.
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While in the scenario under consideration, the simple relation φ∆S=2 =
φK→πνν̄ holds by assumption, the same is in general not true for the NP
amplitudes R∆S=2 and RK→πνν̄ . In order to measure the relative strength
of ∆S = 2 and ∆S = 1 transitions, we therefore introduce the ratio

ε =
RK→πνν̄
R∆S=2

. (27)

Thus in the scenario in question, the NP effects in K0− K̄0 mixing and the
K → πνν̄ decays are described by the three independent parameters R∆S=2,
φ and ε. While R∆S=2 and φ are severely constrained by the data on εK ,
see Fig. 2, generally nothing can be said about the size of ε. The larger ε,
the bigger is the NP effect on K → πνν̄ relative to its effect on ∆S = 2
observables.

While in specific scenarios in which NP enters at very different scales,
its effects in ∆S = 1 transitions can significantly dominate over the ones
in ∆S = 2 transitions [10], in the case of only one relevant NP scale it is
natural to assume ε ∼ O(1), i.e. that the influence of NP is roughly of equal
size in ∆S = 2 and ∆S = 1 observables. Therefore, in order to quantify
the dependence of the actual size of ε, we will consider different cases for its
size.

In Fig. 3 we show the implication of the εK constraint on the Br(K+ →
π+νν̄) − Br(KL → π0νν̄) plane. To this end we scan over the parameters
R∆S=2 and φ and allow εK to deviate by at most ± 5% from its SM predic-
tion. The result of this scan is shown in Fig. 2. Once the allowed ranges for

Fig. 3. Br(KL → π0νν̄) as a function of Br(K+ → π+νν̄) in the scenario of
universal phases, for different values of ε, and assuming a NP contribution to εK of
at most ± 5% of the SM. Black: ε = 1, dark grey (blue): ε = 2, lighter grey (red):
ε = 3. The thin (blue) line shows the GN-bound, while the experimental 1σ range
for Br(K+ → π+νν̄) is displayed by the light grey band.
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R∆S=2 and φ are fixed, the only degree of freedom entering the K → πνν̄
decays is the parameter ε in (27), that measures the relative size of NP con-
tributions to K0 − K̄0 mixing and to the K → πνν̄ decays. We study its
impact on the observed correlation by considering three scenarios: ε = 1
(black region in Fig. 3), ε = 2 (blue region) and ε = 3 (red region). We
clearly see again the two branches of Fig. 1, although the straight lines got
broadened by the uncertainty in the εK constraint, and depending on the
value of ε chosen. As could be expected the largest allowed range appears
in the case ε = 3, as here the NP effects are largest and the εK constraint
is least severe. Generally, while in the vicinity of the SM value the strict
correlation is diluted for ε > 1, in case of large deviations from the SM the
two branches appear still narrow and well separated from each other.

Having at hand these findings and the experimental result for Br(K+ →
π+νν̄) in (4), we can deduce the rough upper bound

Br(KL → π0νν̄) . 9× 10−10 (28)

within the scenario in question. While this bound is by roughly 30% stronger
than the model-independent GN-bound, in contrast to the latter it depends
on the additional assumptions discussed above. Therefore, in contrast to the
GN-bound, the bound in Eq. (28) is valid only in models that predict equal
∆S = 2 and ∆S = 1 phases and NP contributions that are comparable in
size.

We note that even more restrictive bounds can be obtained in specific
models that predict in addition a non-trivial correlation between K and
B physics, as e.g. in models with universally enhanced electroweak pen-
guin contributions considered in [22] or in models with constrained minimal
flavour violation [31,32].

3.4. Sizable NP contributions to εK
While the experimentally observed amount of CP violation in K0–K̄0

mixing appears to be in rather good agreement with the SM prediction, re-
cent studies [24–26] hint at the possibility that the SM alone cannot account
for the full amount of CP violation in this system, but that a NP contri-
bution of roughly +20 % is required to account for the data. While the
situation is certainly not conclusive at present, improved determinations of
B̂K and the CKM parameters |Vcb| and γ will tell us whether indeed (εK)SM

is smaller than the data. Consequently, once the K → πνν̄ branching ratios
will be determined experimentally, we will know whether the NP effects in
εK are small, as analysed in Sec. 3.3, or sizable, as analysed in what follows.
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Therefore, instead of allowing εK to deviate by at most ± 5% from its
SM prediction, as done in Sec. 3.3, we will now assume a +(20 ± 5)% NP
contribution to εK . The numerical analysis is then performed in an analo-
gous way as in Sec. 3.3: the allowed ranges in the (R∆S=2, φ∆S=2) parameter
space are determined from constraining

Im(MK
12)NP = (20± 5)%× Im(MK

12)SM . (29)

The result is displayed by the light grey (blue) bands in Fig. 2. In order to
analyse the impact of this constraint on the Br(K+ → π+νν̄) − Br(KL →
π0νν̄) plane, we again consider various scenarios for the parameter ε, defined
in (27): ε = 0.5 (purple region), ε = 1 (black region) and ε = 2 (blue region).

In Fig. 4 we show the constraints obtained on the K → πνν̄ decays in
the scenarios in question. We find that the two branches observed previously
now split up into four sub-branches, moving further away from the branches
in Fig. 1 with increasing values of ε. While for ε ≤ 1 the stringent correlation
between K+ → π+νν̄ and KL → π0νν̄ is still maintained, for ε > 1 the
allowed range in the Br(K+ → π+νν̄) − Br(KL → π0νν̄) plane quickly
moves away from these branches, so that the stringent model-independent
correlation gets lost in that case.

Fig. 4. Br(KL → π0νν̄) as a function of Br(K+ → π+νν̄), for different values of ε,
and assuming a +(20±5)% NP contribution in εK . Lighter grey (purple): ε = 0.5,
black: ε = 1, dark grey (blue): ε = 2. The thin (blue) line shows the GN-bound,
while the experimental 1σ range is displayed by the light grey band.

While it seems at first sight that these findings weaken the power of
the correlation analysed, one should keep in mind that sufficiently precise
measurements of K+ → π+νν̄ and in particular KL → π0νν̄ will not be
available within the next few years. The situation in εK on the other hand
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is much more promising, so that we will already know whether εK ' (εK)SM

is satisfied in nature with high accuracy when the experimental situation in
the K → πνν̄ system can, finally, help us to disentangle the NP flavour
structure. So from today’s point of view, basically two future scenarios are
possible:

(1) We will know at that stage that εK ' (εK)SM with high precision.
Then the measurement of bothK→πνν̄ decay rates will show whether
the correlation is satisfied in nature, and will thus provide a powerful
test of the assumption of universal weak phases in ∆S = 2 and ∆S = 1
transitions.

(2) It will turn out that εK > (εK)SM so that the difference has to be
accounted for by NP. Then the correlation in question cannot be used
to completely rule out the assumption of universal weak phases, but
can on the other hand give precise information on the relative size of
NP effects in ∆S = 2 and ∆S = 1 transitions within this specific
scenario.

4. Non-universal phases in ∆S = 2 and ∆S = 1

Let us now go beyond the simple assumption of universal weak phases in
∆S = 2 and ∆S = 1 processes and allow φ∆S=2 and φK→πνν̄ to differ from
each other. Clearly, if we abandon any correlation between ∆S = 2 and
∆S = 1 NP contributions and treat in particular their phases φ∆S=2 and
φK→πνν̄ as completely independent of each other, the constraint from εK
has no more power to restrict the possible ranges in the Br(K+ → π+νν̄)−
Br(KL → π0νν̄) plane. In this general case all values of Br(K+ → π+νν̄)
and Br(KL → π0νν̄) consistent with the GN-bound are possible.

However, one should bear in mind that in most NP scenarios K0–K̄0

mixing and rareK decays cannot be considered as completely independent of
each other, as the former is induced by a double (s→ d)⊗(s→ d) transition,
while the latter requires a single (s → d) transition. While in the case of
universal weak phases, ∆S = 2 and ∆S = 1 transitions were induced by only
one new source of flavour violation, generally more than one contribution to
each of these processes is present. If these contributions come along with
independent weak phases, the resulting phases governing CP violation in
K0–K̄0 mixing and in the rare K decays are generally different from each
other. However, in the case that the NP contributions display a similar
hierarchy in both ∆S = 2 and ∆S = 1 systems, i.e. one dominating over
the others, the universality relation (21) is only weakly violated. Therefore,
the aim of the present section is to quantify how stable the correlation in
the K → πνν̄ system discussed in Sec. 3.3 is against small deviations from
the universality assumption (21).
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In order to achieve this, we model the present case by setting

RK→πνν̄e
iφK→πνν̄ = R∆S=2e

iφ∆S=2 + Peiψ , (30)

i.e. by splitting the NP contribution to K → πνν̄ into a part equal to the
∆S = 2 contribution and a second part parameterised by P and ψ. The
assumption of similar hierarchies in ∆S = 2 and ∆S = 1 is then fulfilled by
the requirement P � R∆S=2, while 0 ≤ ψ < 2π is chosen independently of
φ∆S=2. Clearly in the limit P → 0 the case of a universal phase with ε = 1
is recovered.

As in Sec. 3.3 we consider again the case that εK receives an at most± 5%
correction from NP. Thus the constraint on the (R∆S=2, φ∆S=2) parameter
space is the same as in Sec. 3.3 and displayed by the darker grey (orange)
region in Fig. 2. When analysing the impact of this constraint on the K →
πνν̄ system, we have now two free parameters, namely P and ψ.

In Fig. 5 we show the case P = 0.2R∆S=2 and the phase ψ varied ran-
domly between 0 and 2π. This corresponds to φ∆S=2 and φK→πνν̄ differing
by at most ∼ 10◦. We observe that even in this well-restricted scenario the
two branches observed in the case of universal phases now broaden signif-
icantly, although they can still be distinguished from each other. Interest-
ingly, this effect is largest in the case of large deviations from the SM, i.e.
when KL → π0νν̄ and/or K+ → π+νν̄ are strongly enhanced over their SM

Fig. 5. Br(KL → π0νν̄) as a function of Br(K+ → π+νν̄), assuming a NP con-
tribution to εK of at most ± 5% of the SM. Black: P = 0, i.e. the NP phases
in ∆F = 2 and ∆F = 1 are assumed to be equal. Deep gray (green) points:
P = 0.2R∆S=2 and 0 ≤ ψ < 2π chosen randomly, breaking the universality of NP
phases in ∆F = 2 and ∆F = 1. The thin (blue) line shows the GN-bound, while
the experimental 1σ range is displayed by the light grey band.
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prediction. Clearly, if we allow for larger P the correlation becomes even
weaker and is completely lost already for P ' 0.35R∆S=2, corresponding to
a ∼ 20◦ difference in φ∆S=2 and φK→πνν̄ .

These findings tell us two things:

(1) The correlation in question depends crucially on the universality of
weak phases in εK and in the K → πνν̄ decays. Already if the phases
differ by 10◦, the correlation is significantly weakend, albeit still visible,
and completely lost once the weak phases φ∆S=2 and φK→πνν̄ differ
by more than 20◦.

(2) On the other hand, if in a model with a priori arbitrary weak phases
a stringent correlation in the Br(K+ → π+νν̄) − Br(KL → π0νν̄)
plane is observed, we know immediately that the weak phases entering
K0–K̄0 mixing and rare K decays must be very close to equal. This
happens indeed in the LHT model [5, 7], one of the most prominent
representatives of the class of models with new sources of flavour and
CP violation but only SM operators.

Let us mention the case of a non-SM-like εK . As in the former case of
universal weak phases and ε ≤ 1, we have checked that the impact of a rel-
evant NP contribution to εK is minor, in particular as the strict correlation
between the NP phases in ∆S = 2 and ∆S = 1 transitions is partly washed
out anyway in the present NP scenario.

Last but not least, we note that the requirement of similar hierarchies in
∆S = 2 and ∆S = 1 amplitudes is more generally also fulfilled for

RK→πνν̄e
iφK→πνν̄ = εR∆S=2e

iφ∆S=2 + Peiψ (31)

for arbitrary ε, provided P � εR∆S=2 is satisfied. It is easy to see that such
parameterisation effectively results in combining the results of this and the
previous section. In particular, for ε > 1 the correlation in question would be
further weakened. Therefore, in a model like the LHT model, where a strong
correlation in the K → πνν̄ system is observed, it is unlikely that NP affects
more strongly the rare K decays than the process of K0–K̄0 mixing.

5. The NP operator structure

5.1. Preliminaries

After the model-independent considerations of Secs 3 and 4, we will
now consider various possibilities for the NP operator structure and discuss
the K → πνν̄ system and its possible correlation to εK in these scenarios.
Specifically we discuss various NP prototypes: models in which FCNC pro-
cesses are mediated by SM operators only, models in which NP dominantly
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induces right-handed currents and the only new ∆S = 2 operator is the
(V + A) ⊗ (V + A) one, and models which induce left- and right-handed
and/or scalar currents and thus the chirally enhanced left-right ∆S = 2
operators are present.

5.2. Models without new flavour violating operators

In this section we consider models with arbitrary new sources of flavour
and CP violation, but only SM operators mediating FCNCs. A prime rep-
resentative of this class of models is the Littlest Higgs model with T-parity
(LHT), as discussed in detail in [5, 15].

As we have found in the previous section, already a relatively small
deviation from the universality of CP-phases (21) of O(10◦) significantly
dilutes the correlation in the K → πνν̄ system implied by the εK constraint.
Therefore, without any additional knowledge on the flavour structure of
a given NP model of this class, we cannot restrict the allowed ranges in the
K → πνν̄ system, and one is tempted to think that in such kind of models
no correlation between Br(K+ → π+νν̄) and Br(KL → π0νν̄) is visible.

However, the findings in the LHT model, that can be considered as
a prototype of this class of models, tell us a different story. Also in that
model, in spite of the presence of several independent weak phases, the
stringent 2-branch-correlation, that we have encountered in Sec. 3.3, exists
[5,7]. This in turn leads us to the conclusion that even in this more general
scenario the weak phases in ∆S = 2 and ∆S = 1 transitions are in fact
quite strongly correlated. From the discussion in the previous section, we
can thus expect that in spite of various NP contributions entering ∆S = 2
and ∆S = 1 physics, the same contribution is dominant in both cases.

Having a closer look at the flavour structure of the LHT model and at
the formulae describing K0–K̄0 mixing and the K → πνν̄ decays within this
model [5–7], we see that there are two independent contributions entering
rare K decays, of the structure

ξ
(K)
2 f1

(
(m2

H)2 − (m1
H)2
)
, ξ

(K)
3 f1

(
(m3

H)2 − (m1
H)2
)
. (32)

Here ξ(K)
i = V is

Hd
∗
V id
Hd, and VHd is the new mixing matrix parameterising

the mirror quark interactions with the usual SM quarks. Furthermore, f1 is
a loop function induced by the mirror quarks and heavy gauge bosons being
exchanged in Z-penguin and box diagrams. As f1 grows with increasing
mirror quark mass splitting (mi

H)2 − (m1
H)2, for m1

H < m2
H < m3

H the
second contribution dominates over the first one, unless the ξ(K)

i exhibit
a special hierarchy.
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On the other hand, there are three distinct LHT contributions to ∆S = 2
physics, that can be described by

ξ
(K)
2

2
f2

(
(m2

H)2 − (m1
H)2
)
, (33)

ξ
(K)
3

2
f2

(
(m3

H)2 − (m1
H)2
)
, (34)

ξ
(K)
2 ξ

(K)
3 f̃2

(
(m2

H)2 − (m1
H)2, (m3

H)2 − (m1
H)2
)
, (35)

where f2, f̃2 are the loop functions emerging from mirror quarks and heavy
gauge bosons running in the ∆S = 2 box diagrams. Also here in the case
of non-degenerate mirror quark masses5, m1

H < m2
H < m3

H , one obtains
a clear hierarchy between the various ∆S = 2 contribution, and the term
proportional to ξ(K)

3

2
turns out to be generally dominant.

Altogether we thus find that in spite of a priori various contributions
to ∆S = 2 and ∆S = 1 processes in the LHT model, the same contribu-
tion, characterised by the largest mass splitting in the mirror quark sector,
is dominant. As the loop functions f1 and f2 are real and flavour univer-
sal, CP-violating phases enter only through the ξ(K)

3 , ξ(K)
3

2
factors in front.

Therefore, the relation φ∆S=2 = φK→πνν̄ is indeed satisfied with good ap-
proximation in the LHT model, and the strict correlation in the K → πνν̄
system can be understood.

5.3. NP inducing only right-handed currents

After discussing an explicit example of a model with new sources of
flavour and CP violation but no new operators, we now turn our attention
to a simple scenario in which NP dominantly induces right-handed (V +A)
operators in addition to the SM left-handed ones. Such a scenario could
emerge for instance in models with a heavy Z ′ whose flavour violating cou-
plings are purely right-handed, or in models in which the SM Z boson cou-
plings to right-handed quarks become flavour violating. Note however that
at this stage we assume that the NP right-handed currents can not generate
the chirally enhanced left-right operators contributing to K0–K̄0 mixing.
Specifically we consider the following structure for the effective ∆S = 2 and
∆S = 1 Hamiltonians:

Heff(∆S=2) = C∆S=2
SM (s̄d)V−A(s̄d)V−A + C∆S=2

NP (s̄d)V+A(s̄d)V+A , (36)

Heff(∆S=1) =
[
C∆S=1

SM (s̄d)V−A + C∆S=1
NP (s̄d)V+A

]
(ν̄ν)V−A . (37)

5 Note that in the case of two quasi-degenerate mirror quark generations, m1
H ' m2

H ,
effectively only one contribution is present in both ∆S = 2 and ∆S = 1 transitions.
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As QCD is a non-chiral theory, the matrix elements of the operators
(s̄d)V−A(s̄d)V−A and (s̄d)V+A(s̄d)V+A are equal, and we find that the SM
and NP contributions to MK

12 are simply additive,

MK
12 ∝ C∆S=2

SM + C∆S=2
NP . (38)

Similarly, as the K → πνν̄ decays are sensitive only to the vectorial (s̄d)V
current, also in this case the SM and NP parts are additive.

Altogether thus, the situation is completely analogous to the case of NP
scenarios with only SM operators. Consequently, also in the present case,
the correlation in the K → πνν̄ system can be used to test the universality
of the phases of C∆S=2

NP and C∆S=1
NP , and the previously made statements

apply to this case. We note though that in specific NP models the allowed
room in the K → πνν̄ plane can be further restricted by other ∆F = 1
constraints, in particular from B decays. In order to keep our analysis as
model-independent as possible, we do, however, not consider such additional
constraints here.

On the other hand, our findings show that combining the data on εK
with the data on the K → πνν̄ branching ratios cannot help to distinguish
this class of models from the case with only SM operators. Additional infor-
mation from other decays is required. In fact, in [11] it has been found that
the correlation between Br(K+ → π+νν̄) and the short distance contribu-
tion to Br(KL → µ+µ−) offers an excellent probe of the handedness of new
flavour violating currents. While the K → πνν̄ decays are sensitive to the
vector part of the current, (s̄d)V , the KL → µ+µ− mode measures its axial
component, (s̄d)A. Therefore, while in models with only SM operators a lin-
ear correlation between the two branching ratios is found [7], in models with
right-handed NP contributions the correlation between Br(K+ → π+νν̄)
and Br(KL → µ+µ−) is an inverse one, as observed in the context of the
custodially protected RS model [11]. We note that although in the latter
model the tree level flavour changing Z coupling to right-handed down-type
quarks dominates the rare K decays in question, this model does not belong
to the class of models discussed in this section, as K0–K̄0 mixing is dom-
inated by tree level exchanges of Kaluza–Klein (KK) gluons that sizably
affect the chirally enhanced left-right operators [16–18]. A detailed descrip-
tion of the custodially protected RS model, including a set of Feynman rules
relevant for the study of FCNC processes, can be found in [33].

5.4. NP inducing left- and right-handed or scalar currents

Finally, let us briefly consider how our results change in the presence of
NP left- and right-handed or scalar currents contributing to FCNC processes.
This happens for instance in a general MSSM or in models with bulk fields
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in a warped extra dimension. It is common to both models that flavour vi-
olating effects can now also be mediated by right-handed currents, implying
the presence of new operators beyond the left-handed SM ones. In particular
K0–K̄0 mixing is then generally dominated by the left-right operators that
receive strong chiral and QCD enhancements. The results of phenomeno-
logical analyses performed in the general MSSM [9,10] and in the RS model
with custodial protection of flavour diagonal and non-diagonal ZdiLd̄

j
L cou-

plings [11] let us anticipate that the correlation between KL → π0νν̄ and
K+ → π+νν̄ gets completely lost in that case, so that in principle every
point in the Br(K+ → π+νν̄) − Br(KL → π0νν̄) plane consistent with the
GN-bound can be reached.

It is not difficult to understand how this loss of correlation occurs. For
the moment let us focus on the case of the custodially protected RS model;
the situation in the general MSSM is similar albeit more complicated due to
many different contributions competing with each other.

The dominant NP contribution to εK in the custodially protected RS
model arises due to tree level exchanges of KK gluons that sizably affect
the chirally enhanced left-right operators [16–18]. As the Wilson coefficients
of these operators are in general most severely costrained by the data [34],
the NP contribution to εK is thus fully dominated by the product of a left-
handed and a right-handed transition. The K → πνν̄ decays on the other
hand, being ∆S = 1 transitions, can be mediated either only by a left- or
by a right-handed transition, but not by a product of both, as is the case
for the ∆S = 2 left-right operators, and the relevant ∆S = 1 amplitude is
given by the sum of these contributions. We see immediately that different
parts of the NP flavour sector enter εK and the K → πνν̄ decays, so that a
correlation between the relevant weak phases φ∆S=2 and φK→πνν̄ cannot be
expected. The result of the numerical analysis [11] confirms these findings:
No correlation between Br(K+ → π+νν̄) and Br(KL → π0νν̄) appears.

A similar situation is to be expected in all models where flavour changing
neutral currents are mediated by both left- and right-handed currents and/or
by scalar currents. Due to their strong chiral and QCD enhancement, the
induced left-right operator contribution will very likely dominate the NP
contribution to K0–K̄0 mixing, so that no correlation of weak phases in
∆S = 2 and ∆S = 1 processes appears. Consequently, the εK constraint
cannot be used to restrict the K → πνν̄ decay rates.

6. Conclusions

In the present paper we have studied the impact of the constraint from
εK on the allowed range in the Br(K+ → π+νν̄)−Br(KL → π0νν̄) plane in
various NP scenarios. The main messages from this analysis are as follows:
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(1) In NP scenarios in which a single new weak phase affects universally
both K0–K̄0 mixing and the K → πνν̄ decays, the experimental con-
straint from εK implies a strict correlation between the K+ → π+νν̄
and KL → π0νν̄ decay rates. This correlation consists basically of
two branches, one parallel to the Br(K+ → π+νν̄) axis and one par-
allel to the GN-bound, and crossing each other in the SM prediction.
While the broadness of the observed branches depends on the exper-
imental and theoretical error on εK as well as the relative size of NP
contributions in K0–K̄0 mixing and the K → πνν̄ decays, the general
prediction appears to be stable against O(1) modifications of the latter
ratio.

(2) If the assumption of a universal new phase is relaxed, the above cor-
relation gets softened, so that in the case of completely uncorrelated
∆S = 2 and ∆S = 1 NP phases, no visible correlation in the Br(K+ →
π+νν̄)− Br(KL → π0νν̄) plane exists.

(3) The correlation in question is also softened if εK is affected by relevant
NP contributions. In the scenario of universal weak phases its power
will then be shifted towards giving precise information on the relative
size of the NP amplitudes in K0–K̄0 mixing and the K → πνν̄ system
within the specific NP scenario of a universal ∆S = 2 and ∆S = 1
phase.

(4) On the other hand in many NP scenarios with only SM operators, with
the LHT model being a famous example, it appears that even in the
presence of more than one weak phase, ∆S = 2 and ∆S = 1 NP are
correlated, leading in particular to roughly equal phases inK0–K̄0 and
K → πνν̄. Then the correlation of (1) is partially recovered, albeit
not as stringent as in the case of strictly equal phases.

(5) The situation changes drastically once the chirally enhanced left-right
operators are allowed to contribute toK0–K̄0 mixing. As such a struc-
ture cannot appear in the K → πνν̄ decays, it is natural to assume
in this case completely independent phases in these two processes, as
the various flavour violating transitions enter ∆S = 2 and ∆S = 1
transitions in a very different manner. Consequently, no correlation in
the K → πνν̄ system appears.

TheK → πνν̄ decays serve as a unique probe of the NP flavour structure.
The correlation observed and analysed in the present paper offers a powerful
tool to test the universality of NP in ∆S = 2 and ∆S = 1 transitions. While
it is possible to obtain independent phases already in NP scenarios with
only SM operators, we argued that a very likely scenario for different phases
entering ∆S = 2 and ∆S = 1 transitions is the presence of new flavour
violating operators contributing to K0–K̄0 mixing, with the most plausible
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possibility being the chirally enhanced left–right operators contributing to
εK . In that sense, the present analysis suggests to consider the observed
correlation as a test of the operator structure of the NP flavour sector.

I would like to thank Andrzej Buras and Paride Paradisi for very useful
discussions and comments on the manuscript. This research was partially
supported by the DFG Cluster of Excellence “Origin and Structure of the
Universe”.
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