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The question of the relative size of tree and penguin amplitudes is
analyzed using the data on B → ππ, B+ → π+K0, and B+ → K+K̄0

decays. Our discussion involves an estimate of SU(3) breaking in the final
quark-pair-creating hadronization process. The estimate is based on Regge
phenomenology, which many years ago proved very successful in the de-
scription of soft hadronic physics. Accepting the Regge prediction as solid,
it is then shown that the relative size and phase of the two parts of the
penguin amplitude can be unambiguously extracted from the data on the
decays considered. This enables fixing the C/T ratio of “true” tree ampli-
tudes, which — on the basis of the existing data — is shown to be small
(of the order of 0.2).

PACS numbers: 13.25.Hw, 12.15.Ji, 12.40.Nn, 14.40.Nd

1. Introduction

Rare charmless nonleptonic B meson decays provide us with a lot of
information on weak interactions of quarks and the Cabibbo–Kobayashi–
Maskawa (CKM) matrix. Yet, since quarks are forever confined, this infor-
mation is necessarily blended with strong interaction effects. Additionally,
there may be contributions from New Physics beyond the Standard Model.
Since this NewPhysics is by definition unknown, proper disentangling of all
three effects requires a thorough understanding of the strong interaction part.

Unfortunately, the calculation of low-energy quark-confining strong in-
teraction effects from first principles is at present impossible. Consequently,
the only way to achieve a reliable understanding of these effects is through
their parametrization and subsequent extraction of relevant parameters from
the experimental data. For example, simple quark-level arguments suggest
that the ratio C/T of the so-called colour-suppressed (C) and tree (T ) di-
agrammatic amplitudes (see e.g. [1]) should be small. Yet, since the time
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of the theoretically clean analysis of Ref. [2], it is known that the effective
tree and colour-suppressed amplitudes in B → ππ decays are roughly equal
in absolute magnitudes, thus contradicting simple quark-level expectations.
Hence, additional quark-level [3, 4] and/or hadron-level [5] effects must be
important.

In fact, as various authors have argued, the effective tree (T̃ ) and colour-
suppressed (C̃) amplitudes involve contributions from penguin diagrams as
well (see e.g. [2, 6]). Disentangling this “second” penguin contribution from
the “true” C and T amplitudes is not possible on the basis of B → ππ data
alone. For this reason, Ref. [7] considered B → ππ decays in conjunction
with B → πρ and B → πω processes. Since under very reasonable as-
sumptions it may be shown that both B → ππ and B → πρ, πω processes
depend on the same ratio of C/T , the number of equations constraining
C/T increases, thereby enabling extraction of the latter from the data. In
Ref. [7] it was then shown that the data allow a solution for C/T which is
in agreement with the simple quark-level expectations.

Alternatively, one may supplement the data on B → ππ decays with
those on B+ → K+K̄0. This was the route attempted in Ref. [8]. The
problem with that route is that one has to know how to treat SU(3) breaking.

In this paper, we analyse B→ππ and B+→K+K̄0 decays in conjunction
with B+→π+K0 processes, and under a specific assumption concerning the
pattern of SU(3) breaking. The assumption on SU(3) breaking adopted by
us has been experimentally known to be correct since the mid-seventies of
the last century. We show that the data on B → ππ,K+K̄0, π+K0 point
then unambiguously toward a small |C/T | ratio, of the order of 0.2.

The paper is organized as follows. In Sec. 2 our main definitions and
conventions are set and the basic analysis of the B → ππ sector [2, 7] is
repeated with the new, more precise data. Sec. 3 contains the analysis of
the B+→ π+K0, K+K̄0 decays. This involves a Regge estimate of SU(3)
breaking in the hadronization stage, which is crucial in bringing the ex-
tracted value of |C/T | into agreement with the expectations. We conclude
in Sec. 4.

2. Decays B → ππ

Below we employ the notation used in Ref. [7]. The diagrammatic ap-
proach gives the following expressions for the amplitudes in the B → ππ
decays:

−
√

2A
(
B+ → π+π0

)
= T̃ + C̃ ,

−A (B0
d → π+π−

)
= T̃ + Pc ,

−
√

2A
(
B0
d → π0π0

)
= C̃ − Pc , (1)
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where we have kept the leading terms only, i.e. the contributions from ef-
fective tree T̃ , colour-suppressed tree C̃, and penguin amplitudes Pc. The
effective amplitudes present in Eq. (1) are related to “true” tree T and colour-
suppressed C amplitudes, as well as to two contributions to the total penguin
amplitude P :

P = −λ(d)
u Ptu − λ(d)

c Ptc , (2)

where

λ(k)
q = VqkV

∗
qb ,

Ptq = Pt − Pq , (3)

with Vqk being the CKM elements, and Pq being the contribution from
quark q running inside the penguin loop.

After introducing

Pq ≡ −λ(d)
c Ptq = Aλ3Ptq , (4)

where A and λ are Wolfenstein parameters, the relevant formulas for the
effective amplitudes are:

Pc = Aλ3Ptc ,
T̃ = eiγ(T −RbPu) ,

C̃ = eiγ(C +RbPu) , (5)

where the weak phase factor has been explicitly factored out from the “true”
tree amplitudes C, T , and Rb =

√
ρ̄2 + η̄2 = 0.37 ± 0.02 (all experimental

numbers are taken from HFAG [9]).
Following Refs. [2, 7], we define

deiθ = −eiγ Pc
T̃

=
Pc

RbPu − T ,

xei∆ =
C̃

T̃
=
C +RbPu
T −RbPu . (6)

Then, asymmetries Adir
π+π− , A

mix
π+π− , with experimental values of

Adir
π+π− = Cππ = −0.38± 0.06 ,

Amix
π+π− = −Sππ = +0.65± 0.07 (7)

are expressed in terms of d and θ as

Adir
π+π− = − 2d sin θ sin γ

1− 2d cos θ cos γ + d2
,

Amix
π+π− =

sin(2β + 2γ)− 2d cos θ sin(2β + γ) + d2 sin(2β)
1− 2d cos θ cos γ + d2

. (8)
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Using β = 21.2◦, γ = 65.5◦ (as in Ref. [8]), one then solves the above
equations for d and θ to find:

d = 0.51+0.10
−0.08 ,

θ = 140◦ ± 6◦ . (9)

When the following ratios of CP-averaged B → ππ branching ratios are
defined:

Rππ+− ≡ 2

〈B (B+ → π+π0
)〉

CP

〈B (Bd → π+π−)〉CP

τB0
d

τB+

,

Rππ00 ≡ 2

〈B (Bd → π0π0
)〉

CP

〈B (Bd → π+π−)〉CP

, (10)

they may be expressed in terms of the yet undetermined parameters x, ∆ as

Rππ+− =
1 + 2x cos∆+ x2

1− 2d cos θ cos γ + d2
,

Rππ00 =
d2 + 2dx cos(∆− θ) cos γ + x2

1− 2d cos θ cos γ + d2
. (11)

For the values τB+/τB0
d

= 1.073 ± 0.008, 〈B(B± → π±π0)〉CP = 5.59+0.41
−0.40,

〈B(Bd → π+π−)〉CP = 5.16 ± 0.22, and 〈B(Bd → π0π0)〉CP = 1.55 ± 0.19
(in units of 10−6) one finds

Rππ+− = 2.02± 0.17 ,
Rππ00 = 0.60± 0.08 . (12)

Using the central values for d and θ, Eqs. (11) then yield

x = 1.06+0.06
−0.07 ,

∆ = −59◦+120

−11◦ . (13)

A large (close to 1) value of x constitutes a problem in those approaches
in which the contribution of Pu is neglected since for small Pu we have
|C/T | ≈ x (Eq. (6)).

If Pu is not neglected, then — as proposed in Ref. [7] — using information
on B → πρ and B → πω decays and making a very reasonable physical
assumption concerning the creation of the qq̄ pair in the final hadronization
process, one can try to extract the true ratio C/T . In fact, it was shown
in Ref. [7] that there exists a solution with a small value of |C/T | (of the
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order of 0.3). Extraction of C/T is thus possible with the help of additional
information available from other data.

The method of Ref. [8] uses for that purpose the data on B → KK̄.
Under the assumption of exact SU(3) it shows that the true C/T may indeed
be small. However, when a specific way of SU(3) breaking is considered,
Ref. [8] predicts significantly increased central values of C/T (albeit the
corresponding errors also increase).

3. Decays B → πK,KK̄

The problem with the method of Ref. [8] is that it assumes either exact
SU(3), or — as we will show — an inadequate estimate of SU(3) breaking. In
the following, we show how SU(3) breaking in the hadronization stage should
be included, and how this affects the discussion of the tree and penguin
amplitudes (other studies of B → KK̄ decays may be found in Refs. [10,11]).
In order to present the problem with SU(3) breaking clearly, it is appropriate
to consider two different but closely related pure penguin processes, i.e. the
decays B+ → K0π+ and B+ → K+K̄0, and to discuss them in conjunction.

3.1. B+ → π+K0

When compared with the B → ππ amplitudes, the B+ → π+K0 ampli-
tude differs in that it is now an s quark and not a u or d quark that is being
produced. The relevant difference enters through the CKM factors λ(k)

q only.
When λ

(k)
q s are factored out, the remaining factors in penguin amplitudes

(i.e. Ptu, Ptc) should be the same in both B → ππ and B → πK (cf. [7]).
Thus, the B+ → π+K0 amplitude is given by

A
(
B+ → π+K0

)
= P ′ = −λ(s)

u Ptu − λ(s)
c Ptc . (14)

When the ratio of Ptu/Ptc is expressed in terms of Pu/Pc, one obtains

P ′ = − 1√
ε
Pc

(
1 + εRb

Pu
Pc

eiγ
)
, (15)

where

ε =
λ2

1− λ2
≈ 0.05 (16)

and the factor of 1/
√
ε takes care of the suppression of the term −λ(s)

c Ptc
when compared to Pc = −λ(d)

c Ptc (Eq. (4)).
It is convenient to introduce

zeiζ ≡ RbPu
Pc

= − xei∆ − C/T
deiθ(1 + C/T )

, (17)
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so that
P ′ = − 1√

ε
Pc

(
1 + εzei(ζ+γ)

)
. (18)

For C/T ≈ 0 one then expects

zeiζ ≈ x

d
ei(π+∆−θ) = (2.08± 0.38) ei(−19±13) . (19)

3.2. B+ → K+K̄0

In the SU(3) symmetric case, the B+ → K+K̄0 amplitude is given by P
of Eq. (2):

A
(
B+ → K+K̄0

)
= PKK = −λ(d)

u Ptu − λ(d)
c Ptc

= Pc

(
1−RbPu

Pc
eiγ
)

= Pc

(
1− zei(ζ+γ)

)
. (20)

We know, however, that SU(3) is broken. The main difference between the
B+ → π+K0 and B+ → K+K̄0 amplitudes stems then from the fact that
in the first decay the qq̄ pair created after the weak decay is composed of
light quarks, while in the other decay it is an ss̄ pair. Now, it is known that
processes, in which such newly produced quarks q and q̄ end up in different
(and separated by large rapidity gap) hadrons, are suppressed for strange
quarks more than for the light ones. Let us therefore write the B+ → K+K̄0

amplitude for the case of SU(3) breaking (parametrized by κ < 1) as

PKK = κPc

(
1− zei(ζ+γ)

)
. (21)

3.3. Estimate of SU(3) breaking

In order to estimate the size of κ consider quark line diagrams corre-
sponding to decays B+ → K+K̄0, π+K0 as visualized in Fig. 1. The decay
process starts from the short-distance penguin transition b̄→ s̄ (or b̄→ d̄),
in Fig. 1 denoted by crosses. As the highly energetic s̄ or d̄ quark recedes
from the spectator u quark, a complicated hadronization process sets in. The
additional qq̄ pair observed in the final state emerges only at the very end
of this soft process. The complicated nature of the latter is visualized in the
diagrams of Fig. 1 with the help of closed quark loops, which symbolize the
fact that the creation of the final qq̄ pair may in general go through various
many-body intermediate states. Thus, the diagrams depict a general situ-
ation with all final state interactions included. The difference between the
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Fig. 1. B decays to πK andKK̄ final states. Penguin b̄→ s̄ transitions are denoted
by crosses. Vertical dashed line symbolizes onset of long range dynamics. Loops
symbolize transition through many-body intermediate states.

two soft processes shown in Fig. 1 is induced by the difference in the flavour
of the produced qq̄ pair only. The question is: can we establish the relative
size of these two complicated processes from the experimental knowledge of
other processes? This can be done if we can find other, purely soft, processes
(i.e. not involving B decays at all), which differ just like the two processes
shown in Fig. 1, and on which experimental data exist.

Imagine now that the s̄u or d̄u states — from which the soft hadroniza-
tion processes of Fig. 1 start — are generated not via a B-decay, but by
a different initial process, nearly identical for both q̄u states, as shown in
Fig. 2(b) (the following ideas lie at the foundations of the Regge-based es-
timates of strong decay widths as performed in Ref. [12]). This is a process
in which two mesons collide and form an intermediate s̄u or d̄u state. The
initial process, leading to the s̄u or d̄u state, and the final process, leading
to K0π+ or K̄0K+, may be redrawn together as shown in Fig. 2(a). In this
figure, the complicated nature of soft interactions, visualized in Fig. 2(b) by
quark loops, is not shown explicitly at all. Obviously, however, if we ex-
tract from experiment the amplitudes corresponding to the topology of the
diagrams shown in Fig. 2(a), the effect of all such soft interactions will be in-
cluded in our extracted amplitudes. At energy s = m2

B, which is relevant for
our case, these amplitudes are dominated by ρ and K∗ Regge exchanges in
the t-channel, and the experimental amplitudes may be expressed in terms of
the corresponding Regge parameters. Since these parameters are extracted
directly from high energy scattering experiments, their values take into ac-
count all final state interactions in the s-channel, even those generated by
Pomeron exchange (the so-called Reggeon–Pomeron cuts) — the only strong
interaction allowed after the final dd̄ or ss̄ pair is produced.
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Fig. 2. (a) Reggeon exchanges leading to πK and KK̄ final states. (b) Correspond-
ing product structure of initial and final soft hadron interactions. Loops symbolize
some of complicated intermediate hadronic states not shown in upper diagrams
explicitly.

The experimental amplitudes corresponding to Fig. 2(a) may be param-
eterized in terms of the product of Regge couplings and Regge propagators.
Thus, we have (for the left and right diagrams, respectively):

gρKKgρππ (s/s0)αρ(t) , (22)

gK∗πKgK∗πK (s/s0)αK∗ (t) , (23)

where αM (t) is the Regge trajectory for meson M , given in terms of its
intercept α0(M) and the universal slope α′ by:

αM (t) = α0(M) + α′t (24)

with s0 = (α′)−1 ≈ 1GeV2 being the scale parameter relevant for soft pro-
cesses. When one takes into account that the intercepts α0(M) are deter-
mined in soft processes, consistent application of Eq. (24) requires that one
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cannot use any other value for the scale parameter (like e.g. s0 = m2
B). The

scale s0 = 1GeV2 is fixed by the Regge behaviour as experimentally ob-
served in soft processes. It is irrelevant here that the true Regge behaviour
sets in at an energy much higher than s0 (in fact the Regge formula describes
also the region of low energies, albeit only in an average way).

Let us now discuss the issue of SU(3) symmetry breaking. Regge am-
plitudes result from the summation over exchanged resonances (the sums
being performed either in the s- or in the t-channel). In principle, the cou-
plings of external π, K mesons to these individual resonances may break
SU(3). One may then wonder if such SU(3) breaking effects could not add
up in the summation procedure in an uncontrolled way and lead to unknown
SU(3) breaking in Reggeon couplings. Yet, please note that in fact we are
talking not about the calculation of SU(3) properties of Regge amplitudes
from those of the resonances, but about the parametrization of experimen-
tal flavour-exchange amplitudes at such energies at which Regge behaviour
is observed. It is the experimentally observed energy dependence of these
amplitudes as well as their absolute and relative magnitudes that determine
Regge parametrization. These things are known from the fits to the cross-
sections’ data: the observed energy dependence fixes the intercepts, while
their absolute size fixes Reggeon couplings. In fact, from the relative mag-
nitude of the amplitudes it is known that the extracted couplings of the
leading non-Pomeron Reggeons to the external particles (i.e. π,K) sat-
isfy SU(3) symmetry well [13] (see also [14]). An analogous statement is
true for various hadronic couplings (c.f. the successes of SU(3)-symmetric
parametrization of theMBB′ couplings of ground-state mesons and baryons
in terms of SU(3) parameters F and D, and many other similar examples).
In fact, SU(3) breaking in hadronic couplings at low energies is much weaker
than in hadron masses. A corresponding statement in Regge phenomenol-
ogy is that SU(3) breaking in Regge residues is much less important than in
the intercepts. In the following we shall therefore accept SU(3) of Reggeon
couplings which means that gρKKgρππ = gK∗πKgK∗πK

1.
At s = m2

B the size of the K∗-exchange Regge amplitude relative to that
of the ρ exchange is then clearly given by

(m2
B/s0)α0(K∗)−α0(ρ). (25)

The fact that the initial stage of the collision process, leading to the
intermediate s̄u or d̄u state, is the same in both cases (see Fig. 2(b)) means
that Eq. (25) provides also a good estimate of κ in B meson decays. The

1 Although SU(3) symmetry is not satisfied by Pomeron couplings, this does not affect
our estimates at all, as our scheme does not use these couplings, but only those
of the non-leading Reggeons, as required by the topology of the diagrams under
consideration and extracted from experiments relevant for these topologies.
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irrelevance of the initial process leading to s̄u or d̄u may be seen in a yet
another way. Namely, the intercepts of the leading Regge trajectories depend
on the flavour of the exchanged quarks, and it is known that this dependence
is approximately additive, i.e.

α0(ρ) = α0n + α0n , (26)
α0(K∗) = α0n + α0s , (27)
α0(φ) = α0s + α0s , (28)

where subscripts n, s correspond to nonstrange and strange quarks. The
difference α0(K∗)−α0(ρ)) = α0s−α0n originates from the difference in the
q̄u decay phase only. The dependence on the factor describing the production
phase cancels out. With α0s < α0n we obtain suppression of strange quark
exchange in the decay phase relative to that of the nonstrange quark.

In conclusion, the ratio of the two amplitudes in Fig. 1 is given by

κ = (m2
B/s0)α0(K∗)−α0(ρ) . (29)

Obviously, even though in the above formula there appears an expression
resembling the K∗ and ρ Reggeon propagators, no K∗ or ρ mesons are
actually exchanged. The formula simply provides an estimate of the relative
size of effective quark exchanges, all soft interactions included.

In Refs. [13,15] it was estimated that

α0(K∗)− α0(ρ) ≈ −0.20 . (30)

Thus, at m2
B = 27.9GeV2 one expects

κ ≈ 0.50 . (31)

If one accepts α0(K∗)−α0(ρ) = −0.15 as sometimes used, one gets κ ≈ 0.60.
One may wonder why the above method of estimating SU(3)-breaking

should be preferred to calculations based on effective field theories (and the
factorization approach in particular). Indeed, it is known that QCD factor-
ization and hadron-level S-matrix predictions in general do not lead to the
same asymptotics as mb → ∞ (see, e.g. [16]). Yet, in Ref. [16] Donoghue
et al. give preference to the arguments based on S-matrix theory, as stated in
their concluding section: “For large mb, there is hope that one can directly
calculate the weak matrix elements through variants of the factorization
hypothesis or by pertubative QCD. Final state interactions will impose lim-
its on the accuracy of such methods, as no existing technique includes the
effect of inelastic scattering. There must exist, in every valid theoretical cal-
culation, a region of the parameter space where the nonperturbative Regge
physics is manifest”.
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While the S-matrix approach imposes theoretical requirements on any
calculation performed at quark level, these requirements may or may not
be satisfied by existing quark-level techniques. For example, in [17] it was
argued, in a QCD-based model, that factorization in B decays to two pseu-
doscalars holds exactly at the leading order. These arguments do not apply
to our case, however. The point is that we have receding colour triplets,
while Ref. [17] deals with receding colour octets. While gluon exchanges —
as discussed in [17] — may turn octets into singlets, they cannot change
colour triplets into singlets. The only way to turn colour triplet into a sin-
glet is through an exchange of a colour triplet, i.e. a quark (not considered
in [17]). Such an exchange necessarily involves flavour exchange as well.
In the abstract of [16] we read: “flavour off-diagonal FSI are suppressed by
a power of mB, but are likely to be significant at mb ≈ 5GeV”. It is the
SU(3) breaking in such flavour exchanges that is estimated in our approach
with the help of Regge arguments.

3.4. Constraint from branching ratios

The CP-averaged branching ratios for the B+ → π+K0,K+K̄0 decays
are given by〈B (B+ → π+K0

)〉
CP
≈ 1

ε
|Pc|2 (1 + 2 ε z cos ζ cos γ) ,〈B (B+ → K+K̄0

)〉
CP

= κ2|Pc|2
(
1 + z2 − 2z cos ζ cos γ

)
. (32)

Thus, we find that

RKKπK ≡
〈B (B+ → K+K̄0

)〉
CP

〈B (B+ → π+K0)〉CP

= ε κ2 1 + z2 − 2z cos ζ cos γ
1 + 2 ε z cos ζ cos γ

. (33)

The experimental branching ratios for B+ → π+K0,K+K̄0, and B0 →
K0K̄0 decays are (in our approximation the amplitudes for B+ → K+K̄0

and B0 → K0K̄0 are identical):〈B (B+ → π+K0
)〉

CP
= 23.1± 1.0 ,〈B (B+ → K+K̄0

)〉
CP

= 1.36+0.29
−0.27 ,〈B (Bd → K0K̄0

)〉
CP

= 0.96+0.21
−0.19 . (34)

Thus, one finds

RKKπK = 0.059± 0.012 , (35)

or

RKKπK = 0.049± 0.008 , (36)
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where the first (second) line is obtained if the B+ → K+K̄0 (the average
of the B+ → K+K̄0 and Bd → K0K̄0) branching ratio(s) is used. For
illustration purposes, let us accept RKKπK ≈ 0.055. Solving Eq. (33) for this
value of RKKπK yields one positive solution only, a constraint on z and ζ:

z = (1 + εr) cos γ cos ζ +
√
r − 1 + ((1 + εr) cos γ cos ζ)2 , (37)

where

r =
RKKπK
εκ2

≈
{

1.1 for exact SU(3) ,
4.4 for κ = 0.50 . (38)

The analysis of [7] indicates that for small C/T the value of ζ is of the order
of −15◦ to −45◦ (see also Eq. (19)). If, as might be expected, the relative
strong phase of Ptu with respect to Ptc is indeed that small (say |ζ| < 30◦),
one estimates that for exact SU(3)

z ≈ 0.9− 1 , (39)

while if SU(3) is broken, one gets (for κ = 0.50)

z ≈ 2.3 . (40)

In both cases, for larger values of |ζ| one obtains smaller z, with the minima
(0.1 for exact SU(3), 1.4 for κ = 0.50) achieved for |ζ| = 180◦.
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Fig. 3. Constraints on C/T and Pu/Pc = zeiζ/Rb. Thick lines: branching ratio
constraint from Eq. (33) for κ = 0.5, 0.6, 1.0. Dashed lines: curves of constant
asymmetry ACP(B+ → K+K̄0) equal to −0.06, 0.12, 0.29. Borders of shadowed
areas: |C/T | = 0.1, 0.2, 0.5. Lines of constant Arg(C/T ) are also shown.
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The constraint on z and ζ (Eqs. (33), (37)) depends on SU(3) break-
ing and is shown in Fig. 3 with thick lines (for κ = 0.5, 0.6, 1.0). Their
positioning depends also somewhat on the size of the B+ → K+K̄0 exper-
imental branching ratio. An increase (decrease) in the value of the latter
by 0.10 corresponds roughly to a decrease (increase) in the size of κ by 0.02
(cf. Eq. (38)).

3.5. Constraint from asymmetry

While the ACP(B+ → π+K0) asymmetry should be very small, its B+ →
K+K̄0 counterpart may be significant, as it results from an interference of
two penguin contributions of comparable sizes (see Eq. (20)). Thus, the
analysis of this asymmetry, given by

ACP

(
B+ → K+K̄0

)
= − 2z sin ζ sin γ

1 + z2 − 2z cos ζ cos γ
, (41)

may provide us with important information on z and ζ.
The experimental data on the ACP(B+ → K+K̄0) asymmetry impose

another condition (via Eq. (41)) on the allowed values of z and ζ. The
curves along which the asymmetry is constant (for the experimental val-
ues of 0.12+0.17

−0.18) are shown in Fig. 3 as dashed lines. Their positioning is
independent of SU(3) breaking.

In the SU(3)-breaking case the two constraints cross in the region:

z ≈ 1.8 to 2.3 (for κ = 0.6 to 0.5) , ζ ≈ −15◦ to 0◦ . (42)

3.6. Implications for C/T

Let us now return to B → ππ. In the following we accept the central val-
ues of x, d, ∆, and θ. From Eqs. (9),(13),(17), one then gets (independently
of θ)

z = 2.08
∣∣∣∣1− 0.94 ei59◦C/T

1 + C/T

∣∣∣∣ . (43)

For real C/T , approaching z ≈ 1 (which for small ζ is equivalent to the SU(3)
case), requires large positive values of C/T (around 0.8–1.0). On the other
hand, the SU(3) breaking case (for small ζ corresponding to z ≈ 1.8–2.3)
clearly needs C/T close to zero. Thus, inclusion of SU(3) breaking in the
hadronization stage is very important.

The fit of Ref. [8] does not produce large |C/T | in the case of exact SU(3)
since it does not take into account the condition of Eq. (33) (imposed by
the relative size of the B+ → π+K0 and B+ → K+K̄0 branching ratios),
which forces z ≤ 1 for any ζ. Clearly, the fit should be reconsidered with
the SU(3)-breaking expression of Eq. (21) and κ ≈ 0.5.
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For any z and ζ, the value of C/T may be evaluated from Eq. (17),
provided the B → ππ parameters are known sufficiently well. For central
values of x, d, ∆, and θ, the relevant contour plot of |C/T | is presented
in Fig. 3, with the borders of the shadowed areas coresponding to |C/T | =
0.1, 0.2, 0.5. Lines of constant Arg(C/T ) are also shown.

Fig. 3 explicitly demonstrates that for central values of B → ππ pa-
rameters, the data on the B+ → K+K̄0 branching ratio and asymmetry
indicate that |C/T | is small. If present errors in B → ππ parameters are
taken into account, the point C/T = 0 (small central blob in the figure) is
shifted by ∆z = ±0.38, ∆ζ = ±13◦ (Eq. (19)). The qualitative conclusion
is not changed. Further improvement in the accuracy of the measurement
of the B+ → K+K̄0 and B → ππ decay parameters could provide us with
more detailed information on C/T .

Although our analysis of B+ → π+K0,K+K̄0 does not need or use the
size of Pc, the latter may be estimated from the B+ → π+K0 branching
ratio. Assuming small C/T , one gets

Pc = 1.03± 0.02 , (44)

an update on the estimate given in [7].

4. Conclusions

We have adopted the old Regge model for high-energy soft processes in
the description of SU(3) breaking in the hadronization stage of B decays. We
have pointed out that in an analysis of the relative size of C, T and penguin
amplitudes the decay B+ → π+K0 provides important information which
has to be taken into account in addition to that obtained from B → ππ and
B → KK̄. We have shown that the data on B → ππ, π+K0, and K+K̄0

consistently point to a small value of |C/T |. Further improvement in the
accuracy of the relevant measurements could tell us more about the actual
value of C/T .
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