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η bound states in nuclei are sensitive to the flavour-singlet compo-
nent in the η. The bigger the singlet component, the more attraction
and the greater the binding. η–η′ mixing plays an important role
in understanding the value of the η-nucleon scattering length aηN .
Working with the Quark Meson Coupling model, we find a factor of
two enhancement from mixing relative to the prediction with a pure
octet η.
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1. Introduction

Measurements of the pion, kaon and η-meson masses and their interac-
tions in finite nuclei provide new constraints on our understanding of dynam-
ical symmetry breaking in low energy QCD [1]. The η nucleon interaction
is attractive suggesting that η mesons may form strong-interaction bound-
states in nuclei. There is presently a vigorous experimental programme to
search for evidence of these bound states [2]. Here we explain that for the
η the in-medium mass m∗η is sensitive to the flavour-singlet component in
the η, and hence to the non-perturbative glue associated with axial U(1)
dynamics. An important source of the in-medium mass modification comes
from light-quarks coupling to the scalar σ mean-field in the nucleus [3, 4].
Increasing the flavour-singlet component in the η at the expense of the octet
component gives more attraction, more binding and a larger value of the
∗ Presented by Steven D. Bass at the International Symposium on Mesic Nuclei,
Kraków, Poland, June 16, 2010.

(2239)



2240 S.D. Bass, A.W. Thomas

η nucleon scattering length, aηN [5]. Since the mass shift is approximately
proportional to the η nucleon scattering length, it follows that the physical
value of aηN should be larger than if the η were a pure octet state.

2. QCD considerations

Spontaneous chiral symmetry breaking suggests an octet of would-
be Goldstone bosons: the octet associated with chiral SU(3)L ⊗ SU(3)R
plus a singlet boson associated with axial U(1) — each with mass squared
m2

Goldstone ∼ mq. The physical η and η′ masses are about 300–400 MeV
too big to fit in this picture. One needs extra mass in the singlet channel
associated with non-perturbative topological gluon configurations and the
QCD axial anomaly; for reviews and related phenomenology see Refs. [6–8]1.
The strange quark mass induces considerable η–η′ mixing. For free mesons
the η–η′ mass matrix (at leading order in the chiral expansion) is

M2 =

 4
3m
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K −

1
3m

2
π −2

3

√
2
(
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K −m2
π

)
−2
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√
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(
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) [
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η0
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 . (1)

Here m̃2
η0 is the gluonic mass term which has a rigorous interpretation

through the Witten–Veneziano mass formula [10,11] and which is associated
with non-perturbative gluon topology, related perhaps to confinement [12]
or instantons [13]. The masses of the physical η and η′ mesons are found by
diagonalizing this matrix, viz.

|η〉 = cos θ |η8〉 − sin θ |η0〉 , (2)
|η′〉 = sin θ |η8〉+ cos θ |η0〉 ,

where

η0 =
1√
3

(
uū+ dd̄+ ss̄

)
, η8 =

1√
6

(
uū+ dd̄− 2ss̄

)
. (3)

One obtains values for the η and η′ masses:
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The physical mass of the η and the octet mass mη8 =
√

4
3m

2
K −

1
3m

2
π are

numerically close, within a few percent. However, to build a theory of the
η on the octet approximation risks losing essential physics associated with
the singlet component.

1 The QCD axial anomaly also features in discussion of the proton spin puzzle [9].



η–η′ Mixing in η-Mesic Nuclei 2241

Turning off the gluonic term in Eq. (4) one finds the expressions mη′ ∼√
2m2

K −m2
π and mη ∼ mπ. That is, without extra input from glue, in

the OZI limit, the η would be approximately an isosinglet light-quark state
( 1√

2
|ūu+ d̄d〉) degenerate with the pion and the η′ would be a strange-quark

state |s̄s〉 — mirroring the isoscalar vector ω and φ mesons. Taking the
value m̃2

η0 = 0.73 GeV2 in the leading-order mass formula, Eq. (4), gives
agreement with the physical masses at the 10% level. This value is obtained
by summing over the two eigenvalues in Eq. (4): m2

η+m2
η′ = 2m2

K +m̃2
η0 and

substituting the physical values of mη, mη′ and mK [11]. The corresponding
η–η′ mixing angle θ ' −18◦ is within the range −17◦ to −20◦ obtained from
a study of various decay processes in [14, 15]. The key point of Eq. (4) is
that mixing and gluon dynamics play a crucial role in both the η and η′

masses and that treating the η as an octet pure would-be Goldstone boson
risks losing essential physics.

3. The axial anomaly and m̃2
η0

What can QCD tell us about the behaviour of the gluonic mass con-
tribution in the nuclear medium?

The physics of axial U(1) degrees of freedom is described by the
U(1)-extended low-energy effective Lagrangian [11]. In its simplest form
this reads

L =
F 2
π

4
Tr
(
∂µU∂µU

†
)

+
F 2
π

4
TrM

(
U + U †

)
+

1
2
iQTr

[
logU − logU †

]
+

3
m̃2
η0F

2
0

Q2 . (5)

Here U = exp i
(
Φ/Fπ +

√
2
3η0/F0

)
is the unitary meson matrix where

Φ =
∑
πaλa denotes the octet of would-be Goldstone bosons associated

with spontaneous chiral SU(3)L ⊗ SU(3)R breaking and η0 is the singlet
boson. In Eq. (5)Q denotes the topological charge density (Q = αs

4πGµνG̃
µν);

M = diag[m2
π,m

2
π, 2m

2
K−m2

π] is the quark-mass induced meson mass matrix.
The pion decay constant Fπ = 92.4 MeV and F0 is the flavour-singlet decay
constant, F0 ∼ Fπ ∼ 100 MeV [14].

The flavour-singlet potential involving Q is introduced to generate the
gluonic contribution to the η and η′ masses and to reproduce the anomaly
in the divergence of the gauge-invariantly renormalised flavour-singlet axial-
vector current. The gluonic term Q is treated as a background field with
no kinetic term. It may be eliminated through its equation of motion to
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generate a gluonic mass term for the singlet boson, viz.

1
2 iQTr

[
logU − logU †

]
+ 3

m̃2
η0
F 2

0
Q2 7→ −1

2m̃
2
η0η

2
0 . (6)

The interactions of the η and η′ with other mesons and with nucleons
can be studied by coupling the Lagrangian Eq. (5) to other particles [16,17].
For example, the OZI violating interaction λQ2∂µπa∂

µπa is needed to gen-
erate the leading (tree-level) contribution to the decay η′ → ηππ [17]. When
iterated in the Bethe–Salpeter equation for meson–meson rescattering this
interaction yields a dynamically generated exotic state with quantum num-
bers JPC = 1−+ and mass about 1400 MeV [18]. This suggests a dynamical
interpretation of the lightest-mass 1−+ exotic observed at BNL and CERN.

To investigate what happens to m̃2
η0 in the medium we first couple

the σ (correlated two-pion) mean-field in nuclei to the topological charge
density Q through adding the Lagrangian term

LσQ = Q2 gQσ σ . (7)

Here gQσ denotes coupling to the σ mean field — that is, we consider an
in-medium renormalization of the coefficient of Q2 in the effective chiral
Lagrangian. Following the treatment in Eq. (6) we eliminate Q through
its equation of motion. The gluonic mass term for the singlet boson then
becomes

m̃2
η0 7→ m̃∗2η0 = m̃2

η0

1 + 2x
(1 + x)2

< m̃2
η0 , (8)

where
x = 1

3g
Q
σ σ m̃2

η0F
2
0 . (9)

That is, the gluonic mass term decreases in-medium independent of the sign
of gQσ and the medium acts to partially neutralize axial U(1) symmetry
breaking by gluonic effects.

This discussion motivates the existence of medium modifications to
m̃2
η0 in QCD2. However, a rigorous calculation of m∗η from QCD is beyond

present theoretical technology. Hence, one has to look to QCD motivated
models and phenomenology for guidance about the numerical size of the
effect. The physics described in Eqs. (1)–(4) tells us that the simple octet
approximation may not suffice.

2 In the chiral limit the singlet analogy to the Weinberg–Tomozawa term does not
vanish because of the anomalous glue terms. Starting from the simple Born term one
finds anomalous gluonic contributions to the singlet-meson nucleon scattering length
proportional to m̃2

η0 and m̃4
η0 [19].



η–η′ Mixing in η-Mesic Nuclei 2243

4. The η in nuclei

4.1. QCD inspired models

Meson masses in nuclei are determined from the scalar induced contri-
bution to the meson propagator evaluated at zero three-momentum, ~k = 0,
in the nuclear medium. Let k = (E,~k) and m denote the four-momentum
and mass of the meson in free space. Then, one solves the equation

k2 −m2 = Re Π
(
E,~k, ρ

)
(10)

for ~k = 0 whereΠ is the in-medium s-wave meson self-energy. Contributions
to the in medium mass come from coupling to the scalar σ field in the nucleus
in mean-field approximation, nucleon–hole and resonance–hole excitations in
the medium. The s-wave self-energy can be written as [20]

Π
(
E,~k, ρ

) ∣∣∣∣
{~k=0}

= −4πρ

(
b

1 + b
〈

1
r

〉) . (11)

Here ρ is the nuclear density, b = a(1 + m
M ) where a is the meson-nucleon

scattering length, M is the nucleon mass and 〈1r 〉 is the inverse correlation
length, 〈1r 〉 ' mπ for nuclear matter density [20]. (mπ is the pion mass.)
Attraction corresponds to positive values of a. The denominator in Eq. (11)
is the Ericson–Ericson–Lorentz–Lorenz double scattering correction.

What should we expect for the η and η′?
This physics with η–η′ mixing has been investigated by Bass and

Thomas [5]. Phenomenology is used to estimate the size of the effect in
the η using the Quark Meson Coupling model (QMC) of hadron properties
in the nuclear medium [4]. Here one uses the large η mass (which in QCD is
induced by mixing and the gluonic mass term) to motivate taking an MIT
Bag description for the η wavefunction, and then coupling the light (up and
down) quark and antiquark fields in the η to the scalar σ field in the nu-
cleus working in mean-field approximation [4]. The coupling constants in
the model for the coupling of light-quarks to the σ (and ω and ρ) mean-
fields in the nucleus are adjusted to fit the saturation energy and density
of symmetric nuclear matter and the bulk symmetry energy. The strange-
quark component of the wavefunction does not couple to the σ field and η–η′
mixing is readily built into the model.

Increasing the mixing angle increases the amount of singlet relative to
octet components in the η. This produces greater attraction through in-
creasing the amount of light-quark compared to strange-quark components
in the η and a reduced effective mass. Through Eq. (11), increasing the
mixing angle also increases the η nucleon scattering length aηN . The model
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results are shown in Table I. The values of Re aη quoted in Table I are
obtained from substituting the in-medium and free masses into Eq. (11)
with the Ericson–Ericson denominator turned-off (since we choose to work
in mean-field approximation), and using the free mass m = mη in the ex-
pression for b 3. The QMC model makes no claim about the imaginary part
of the scattering length. The key observation is that η–η′ mixing with the
phenomenological mixing angle −20◦ leads to a factor of two increase in the
mass-shift and in the scattering length obtained in the model relative to
the prediction for a pure octet η8. This result may explain why values of
aηN extracted from phenomenological fits to experimental data where the
η–η′ mixing angle is unconstrained give larger values than those predicted in
theoretical models where the η is treated as a pure octet state — see below.

TABLE I

Physical masses fitted in free space, the bag masses in medium at normal nuclear-
matter density, ρ0 = 0.15 fm−3, and corresponding meson-nucleon scattering
lengths (calculated at the mean-field level with the Ericson–Ericson–Lorentz–
Lorenz factor switched off).

m (MeV) m∗ (MeV) Re a (fm)

η8 547.75 500.0 0.43
η (−10◦) 547.75 474.7 0.64
η (−20◦) 547.75 449.3 0.85

η0 958 878.6 0.99
η′ (−10◦) 958 899.2 0.74
η′ (−20◦) 958 921.3 0.47

The density dependence of the mass-shifts in the QMC model is dis-
cussed in Ref. [4]. Neglecting the Ericson–Ericson term, the mass-shift is
approximately linear For densities ρ between 0.5 and 1 times ρ0 (nuclear
matter density) we find

m∗η/mη ' 1− 0.17ρ/ρ0 (12)

for the mixing angle −20◦. The scattering lengths extracted from this anal-
ysis are density independent to within a few percent over the same range of
densities.

Present experiments [2] are focused on searches for η-mesic helium.
QMC model calculations for finite nuclei are reported in [4]. For an octet η,
η8, one finds a binding energy of 10.7 MeV in 6He. (This binding en-
ergy is expected to double with η–η′ mixing included.) Calculations of the

3 The effect of exchanging m for m∗ in b is a 5% increase in the quoted scattering
length.
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ρ-meson mass in 3He and 4He are reported in [21]. One finds that the av-
erage mass for a ρ meson formed in 3He and 4He is expected to be around
730 and 690 MeV.

4.2. Comparison with η phenomenology and other models

It is interesting to compare these results with other studies and the
values of aηN and aη′N extracted from phenomenological fits to experimental
data.

The η-nucleon interaction is characterised by a strong coupling to the
S11(1535) nucleon resonance. For example, η-meson production in proton–
nucleon collisions close to threshold is known to proceed via a strong isovec-
tor exchange contribution with excitation of the S11(1535). Recent measure-
ments of η′ production suggest a different mechanism for this meson [22].
Different model procedures lead to different values of the η nucleon scatter-
ing length with real part between about 0.2 fm and 0.9 fm.

In quark models the S11 is interpreted as a 3-quark state: (1s)2(1p).
This interpretation has support from quenched lattice calculations [23] which
also suggest that the Λ(1405) resonance has a significant non 3-quark com-
ponent. In the Cloudy Bag Model the Λ(1405) is dynamically generated in
the kaon–nucleon system [24].

Phenomenological determinations of aηN and aη′N : Green and Wycech
[25] have performed phenomenological K-matrix fits to a variety of near-
threshold processes (πN → πN , πN → ηN , γN → πN and γN → ηN)
to extract a value for the η-nucleon scattering. In these fits the S11(1535)
is introduced as an explicit degree of freedom — that is, it is treated like
a 3-quark state — and the η–η′ mixing angle is taken as a free parameter.
The real part of aηN extracted from these fits is 0.91(6) fm for the on-shell
scattering amplitude.

From measurements of η production in proton–proton collisions close
to threshold, COSY-11 have extracted a scattering length aηN ' 0.7 +
i 0.4 fm from the final state interaction (FSI) based on the effective range
approximation [26]. For the η′, COSY-11 have deduced a conservative upper
bound on the η′-nucleon scattering length |Re aη′N | < 0.8 fm [27] with a
preferred a value between 0 and 0.1 fm [28] obtained by comparing the FSI
in π0 and η′ production in proton–proton collisions close to threshold.

Chiral Models: Chiral models involve performing a coupled channels
analysis of η production after multiple rescattering in the nucleus which is
calculated using the Lippmann–Schwinger [29] or Bethe–Salpeter [30] equa-
tions with potentials taken from the SU(3) chiral Lagrangian for low-energy
QCD. In these chiral model calculations the η is taken as pure octet state
(η = η8) with no mixing and the singlet sector turned off. These calcula-
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tions yield a small mass shift in nuclear matter m∗η/mη ' 1−0.05ρ/ρ0. The
values of the η-nucleon scattering length extracted from these chiral model
calculations are 0.2 + i 0.26 fm [29] and 0.26 + i 0.24 fm [30] with slightly
different treatment of the intermediate state mesons. Chiral coupled chan-
nels models with an octet η = η8 agree with lattice and Cloudy Bag model
predictions for the Λ(1405) and differ for the S11(1535), which is interpreted
as a KΣ quasi-bound state in these coupled channel calculations [31].

5. Conclusions

η–η′ mixing plays a vital role in the η-nucleon and -nucleus interac-
tions. The greater the flavour-singlet component in the η, the greater the η
binding energy in nuclei through increased attraction and the smaller the
value of m∗η. Through Eq. (11), this corresponds to an increased η-nucleon
scattering length aηN , greater than the value one would expect if the η were
a pure octet state. Measurements of η bound-states in nuclei are therefore
a probe of singlet axial U(1) dynamics in the η.

We thank K. Tsushima for helpful communications. S.D.B. thanks
P. Moskal for the invitation to talk at this stimulating meeting. The re-
search of S.D.B. is supported by the Austrian Science Fund, FWF, through
grant P20436, while A.W.T. is supported by the Australian Research Council
through an Australian Laureate Fellowship and by the University of Ade-
laide.

REFERENCES

[1] P. Kienle, T. Yamazaki, Prog. Part. Nucl. Phys. 52, 85 (2004).
[2] P. Moskal, Acta Phys. Pol. B Proc. Supp. 2, 379 (2009); A. Budzanowski et al.

[COSY-GEMCollaboration], Phys. Rev. C79, 012201 (2009); see other articles
in this volume: H. Machner, Acta Phys. Pol. B 41, 2221 (2010); B. Krusche,
Acta Phys. Pol. B 41, 2249 (2010); S. Afanasiev, talk at the International
Symposium on Mesic Nuclei, 2010; H. Fujioka, Acta Phys. Pol. B 41, 2261
(2010); A. Khoukaz, Acta Phys. Pol. B 41, 2271 (2010); P. Moskal, Acta Phys.
Pol. B 41, 2281 (2010).

[3] P.A.M. Guichon, K. Saito, E. Rodionov, A.W. Thomas, Nucl. Phys. A601,
349 (1996); K. Saito, K. Tsushima, A.W. Thomas, Prog. Part. Nucl. Phys.
58, 1 (2007).

[4] K. Tsushima, D.H. Lu, A.W. Thomas, K. Saito, Phys. Lett. B443, 26 (1998);
K. Tsushima, Nucl. Phys. A670, 198c (2000).

[5] S.D. Bass, A.W. Thomas, Phys. Lett. B634, 368 (2006).



η–η′ Mixing in η-Mesic Nuclei 2247

[6] S.D. Bass, Acta Phys. Pol. B Proc. Supp. 2, 11 (2009)
[arXiv:0812.5047 [hep-ph]].

[7] S.D. Bass, Phys. Scr. T99, 96 (2002).
[8] G.M. Shore, hep-ph/9812354.
[9] S.D. Bass, Rev. Mod. Phys. 77, 1257 (2005); arXiv:1004.4977 [hep-ph];

A.W. Thomas, Prog. Part. Nucl. Phys. 61, 219 (2008).
[10] G. Veneziano, Nucl. Phys. B159, 213 (1979); E. Witten, Ann. Phys. 128, 363

(1980).
[11] P. Di Vecchia, G. Veneziano, Nucl. Phys. B171, 253 (1980).
[12] J. Kogut, L. Susskind, Phys. Rev. D11, 3594 (1975); E. Witten, Nucl. Phys.

B149, 285 (1979); I. Horvath, N. Isgur, J. McCune, H.B. Thacker, Phys. Rev.
D65, 014502 (2001); R. Alkofer, C.S. Fischer, R. Williams, Eur. Phys. J.
A38, 53 (2008).

[13] G. ’t Hooft, Phys. Rev. Lett. 37, 8 (1976); Phys. Rev. D14, 3432 (1976).
[14] F.J. Gilman, R. Kauffman, Phys. Rev. D36, 2761 (1987); (E) D37, 3348

(1988).
[15] P. Ball, J.M. Frere, M. Tytgat, Phys. Lett. B365, 367 (1996).
[16] S.D. Bass, Phys. Lett. B463, 286 (1999); hep-ph/0006348.
[17] P. Di Vecchia, F. Nicodemi, R. Pettorino, G. Veneziano, Nucl. Phys. B181,

318 (1981).
[18] S.D. Bass, E. Marco, Phys. Rev. D65, 057503 (2002); A.P. Szczepaniak,

A.R. Dzierba, S. Tiege, Phys. Rev. Lett. 91, 092002 (2003).
[19] S.D. Bass, S. Wetzel, W. Weise, Nucl. Phys. A686, 429 (2001).
[20] T.E.O. Ericson, W. Weise, Pions and Nuclei, Oxford University Press, 1988.
[21] K. Saito, K. Tsushima, A.W. Thomas, Phys. Rev. C56, 566 (1997).
[22] P. Moskal, hep-ph/0408162; P. Moskal et al. [COSY 11 Collaboration], Phys.

Rev. C79, 015208 (2009); J. Klaja et al. [COSY 11 Collaboration], Phys. Rev.
C81, 035209 (2010).

[23] W. Melnitchouk et al., Phys. Rev. D67, 114506 (2003); D. Brömmel et al.,
Phys. Rev. D69, 094513 (2004); N. Mathur et al., Phys. Lett. B605, 137
(2005).

[24] E.A. Veit, B.K. Jennings, A.W. Thomas, R.C. Barrett, Phys. Rev. D31, 1033
(1985).

[25] A.M. Green, S. Wycech, Phys. Rev. C60, 035208 (1999); C71, 014001 (2005).
[26] P. Moskal et al. [COSY-11 Collaboration], Phys. Rev. C69, 025203 (2004).
[27] P. Moskal et al. [COSY-11 Collaboration], Phys. Lett. B474, 416 (2000).
[28] P. Moskal et al. [COSY-11 Collaboration], Phys. Lett. B482, 356 (2000).
[29] T. Waas, W. Weise, Nucl. Phys. A625, 287 (1997).
[30] T. Inoue, E. Oset, Nucl. Phys. A710, 354 (2002); C. Garcia-Recio, T. Inoue,

J. Nieves, E. Oset, Phys. Lett. B550, 47 (2002).
[31] N. Kaiser, T. Waas, W. Weise, Nucl. Phys. A612, 297 (1997).


