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With the use of the general covariant matrix 10-dimensional Petiau—
Duffin—Kemmer formalism in cylindrical coordinates exact solutions of the
quantum-mechanical equation for a particle with spin-1 in the presence of
an external homogeneous magnetic field are constructed. Three linearly in-
dependent types of solutions are separated; in each case the formula for the
energy levels has been found. Within similar technique for the quantum-
mechanical equation for a particle with spin-1 and additional intrinsic elec-
tromagnetic characteristics — polarizability, exact solutions are found in
the presence of an external homogeneous magnetic field.

PACS numbers: 03.65.Ge, 02.30.Gp, 03.65.Pm, 13.40.Gp

1. Introduction

The problem of a quantum-mechanical particle in an external homoge-
neous magnetic field is well-known in theoretical physics. In fact, only two
cases are considered: a scalar (Schrodinger’s) non-relativistic particle with
spin-0, and fermions (non-relativistic Pauli’s and relativistic Dirac’s) with
spin-1/2 (the first investigation were [1-4]). In the case of spin-1 particle,
the most popular quantum-mechanical problem is the Coulomb one [4].

In the first part of the paper (Sections 1-3), exact solutions for an ordi-
nary vector particle will be constructed. In the second part (Sections 4-6),
the exact solutions for a particle with spin-1 and an additional intrinsic elec-
tromagnetic parameter (polarizability) will be also explicitly constructed. In
principle, these results provide us with a possibility for experimental testing
of this characteristics — polarizability of the spin-1 particle.

To treat the problem for an ordinary vector particle we take the matrix
Petiau—Duffin—Kemmer approach extended to a general covariant form on
the basis of the tetrad formalism (recent consideration and references see
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e.g., in [5,6]). The main equation in the tetrad form reads [6]

[iﬁo‘(m) (aa 4 B, — i%Aa) . ]‘éc] W(z) =0,
8°(a) = B%ely(2),  Bale) = $J, Vaeqys. (1)

e?‘a) (z) is a tetrad, J% stands for generators for 10-dimensional representa-

tion of the Lorentz group referred to 4-vector and anti-symmetric tensor (for
brevity we note Mc¢/h as M). The homogeneous magnetic field B = (0,0, B)

corresponds to 4-potential A* = (0, %E x 7); in the cylindric coordinates,
the last is given by

dS? = Fdt? —dr? —r?d¢® —d2?, Ay=-———. (2)

Choosing a diagonal cylindric tetrad
[0} (0% (03 1 o
6(0) = (17 07 07 O) ) 6(1) = (Oa 17 07 0) ) 6(2) = (03 07 ;7 0> ) 6(3) = (Oa Oa 07 1) )
after simple calculations, the main equation (1) reduces to the form
0 1 ? ieB o 12 3
i580+i58r+ir<8¢+2hr +J >+Zﬂaz—M:|W:0. (3)

For brevity we will note (eB/2h) as B. It is better to choose the matrices 3%
in the so-called cyclic form, where the generator J'2 has a diagonal structure.
These matrices are given in [6].

2. Separation of variables

With the use of a special substitution (it corresponds to diagonalization
of the third projections of momentum P3; and angular momentum J3 for a
particle with spin-1, specified to the cylindric tetrad basis)

W — e—zetezrmbezk:z

Tt e S
=

the main equation reads

2
e +ip'o, — — (m+ Br?* —S3) —kB* — M

eSS
Il
=
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after calculations we arrive at the radial system of 10 equations
—bm-1E1 — ami1E3 — ikEy = My,

—iby—1 Hy + idy g1 Hs + ieEy = M®y,
tamHs +ieFE —kHy = M®q,

—ibyHy +i€Es + kHy = M3, (5)
am®Po —1ed1 = ME7, —iQy P2 + k®1 = M H1
bn®@o — ieP3 = ME;, by ®s — kds = M Hs ,
—iePy — ikdy = MEy, by 1P — idms1P3 = MHo, (6)

where special abbreviations were used for first order differential operators

L (d maB2_ 1 d miBE g
V2 \dr r V2 \ dr r

From (5) and (6) it follows 4 equations for the components @,

(~Brn-1m 1 — 2 = M?) B ky-tic (b1 @1+ 11@3) =0,
(—Bm—ldm—dm+15m+€2—M2> Do +ekPg—ik (Bm—1¢1+&m+1¢3> =0,
(—amém_lJre?—k?—M?) B+ G 1 Dyt i€t Po+ ik Ps =0,

(—Emdm+1+62—M2—k2) B+ bybym1P1 +i€bmPo+ikbmPs = 0. (7)

3. General analysis of the radial equations

Egs. (7) can be transformed to the form

[—Bm,lam—amﬂz}mjue?—M?—kﬂ (kdo+eds) =0,

[—Bm_l&m b € — k2 — MQ} (edp + kbs)

= (2 = k%) [(€@0 + k) — (b 11 + dlms13) | (8)
(—&mi)m_l re o k2—M2> B+ i1 D+ i€t B + ik Py =0,

<_

Let us introduce new variables

S

o —|—62—M2—/€2) By +-byb 1 B1 +ichmPo+ikbmP2=0.  (9)

F(r) = k®o(r) + ebo(r), G(r) = e@y(r) + kdo(r), (10)
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then Egs. (8) and (9) read
[~ — s 1bn + € = M2~ 2| F =0,
[—Bm,lam—amﬂz}m - Mﬂ G=—(—k?) (iém,lqﬁlﬂ'aml@g) . (11)
(—ami)m_l y g2 MQ) B + a1 ®s + iamG =0

(—z}m&mﬂ v M k2) By + bb—1B1 + ibyG = 0. (12)

For equations (12), let us multiply the first one (from the left) by bp,_1
and the second one by the a,,11, that results in

_gm—ldm (Bm—1@1> + (52 - k'2 - Mz) (i)m—lgpl)
+I;m—1&m (dm—l—l@i’)) + Z.Bm—l&mG( = 07
— G410 (am1P3) + (€2 — M? — k%) (a41D3)

Va1 (bm_lgzsl) FitmpbnG = 0. (13)
Again, let us introduce two new field variables
b 11 = Z1,  amp1P3 = Zs. (14)
Egs. (13) read as follows
~bm—1amZ1 + (€ — k* — M?) Zy + bin—1am Z3 + iby—1amG = 0,
Gt 1bm Zs + (€2 — M? — k?) Z3 + Gmg1bm Z1 + iGm11bmG = 0. (15)
With the help of new functions f(r), g(r)

Z1=¥, 232%, i+ Zz3=Ff, Zy—Zz=yg (16)
the system (15) is transformed to the following form
—bm—18mg + (€ — k* — M?) % +ibp_1amG = 0,
amt1bmg + (€2 — M?* — k?) % + ima1bmG = 0. (17)

Combining these equations we get

[_Bm—ldm - dm+113m+62_k2_M2] g+t (gm—ldm_&m—&—li)m

)Gzo,
(—Bm,1&m+am+13m) g+ (2 —K2—M?) f+i (Em,lammm“z}m)a —0.(18)
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In turn, Egs. (11) can be presented as

(—z}m_lam a1 €% — M2 — k2> F=0,

(“bm-1@m = ma1bm = M2) G = =i (& = k) | (19)
Further, with the use of identities
—bm—18m — Amaibm = A,  —bpm—1am + Ame1bm = 2B. (20)
Egs. (19) and (18) can be written as follows

(A+eE-M*-K)F=0,

AG = MG —i(e - k) f,

(A+€ —k*— M?) g =2iBG,

(e —k*—M?) f—iAG+2Bg=0. (21)
With the help of the second equation, from the forth one it follows

) 2B
f:—zG—i—Wg. (22)

Now, one excludes the function f in the second equation in (21) and gets
A+ -k -—M*)G=—i(e—k) —g. (23)

Thus, the general problem is reduced to the system of four equations

(A+e—M*—k)F=0,

., 2B
f:—lG‘f‘Wg,
(A+e—k*— M?)g=2iBG,
62—]€2
(A+e—k*— M?)G = -2iB g. (24)

M2

The structure of this system allows to separate an evident, linearly in-
dependent solution as follows

fr) =10, g(r)=0, H(r)=0,
F(r) # 0, (A-K —M*+€)F=0. (25)
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Corresponding functions and energy spectrum are known. We are to solve
the system of two last equations in (24); in the matrix form it reads (let
7= (2~ K2)/M?)

(A+e— M? —k?)

g | 0 2B g
G1=] ey 0| &)
Let us construct the transformation changing the matrix on the right to a
diagonal form

/ /
2 a2 g 9 |_| M 0 g
(A+e M k) o —‘ 0 Ay ‘G’ ,
/
g | _ [Y _ | s s12
‘ G’ S} G |’ 5= 821 S22 (27)
The problem reduces to linear systems
—A1511 — 2tBys12 =0, —A2521 — 21Bvys22 =0,
2iBs11 — A1812 =0, 2iBs91 — Ag899 = 0.
The values of A1 and A9 are given by
AL = +2BV7, Ay = —2B,/7,
is11 — /512 = 0, 521 + /Y522 =0,
812:1, 822:1, S:‘ _Z\ﬁ 1 ‘ (28)

+iyy 1

In the new (primed) basis, Eq. (26) takes the form of two separated
differential equations

(A+eé —k*—M*>—2B\7)g =0,
(A+e—k*—M*+2B/)G = 0. (29)

Recalling the meaning of A, let us specify the second order differential
equation

2 1d (m+Br)®
<d7.2+74d74_742+)\ p(r) =0,

N

N = k2 — M?2E£2By, A= GM (30)
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It is convenient to introduce a new variable z = Br?, then Eq. (30)
reads!

de? " dr \4r 4 2 4B
With the substitution o(z) = 24~ f(x), for f(x) we get

&> f df

A? —m?/4 1 2
+[gj?l/+<02—4>x—2AC—C—m+A]f:0.

2o d : A2
v S0+¢—<m+‘%+m—)gp—o. (31)

2 4B

When A, C are taken as A =+ | m | /2, C = +1/2 the previous equation
becomes simpler

d’R dR 1 m A

which is of confluent hypergeometric type

Y+ (y—2)Y —aY =0,

m] 1y m_ X lm | +1
a=—+-4+—=——-— =|m .
2 2792 a7
To obtain polynomials we must impose an additional condition, o = —n,
which provides us with the following quantization rule for \?
1
)\2:4B<n+2+m‘2+m>. (32)

Thus, we have arrived at two formulas for the energy

m: +B + \/BQ+M2(M2+/\2)

M )
- B B2 1+ M2 (M2 1+ )\2
2 o BHVBI MM+ ) (33)
M
In turn, the energy spectrum for the case (25) is given by
e = M?* +Ek*+ )\, (34)

Thus, on the base of the use of general covariant formalism in the Petiau—
Duffin—-Kemmer theory of the vector particle, the exact solutions for such a
particle are constructed in the presence of an external homogeneous magnetic
field. There are separated three types of linearly independent solutions, and
the corresponding energy spectra are found.

L For definiteness let us consider B to be positive, which does not affect the generality
of the analysis. So, to infinite values of r correspond infinite and positive values of x.
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4. On a spin-1 particle with intrinsic structure — polarizability

In [7,13], it was described a generalized equation for spin-1 particle pos-
sessing in addition to electric charge the special electromagnetic character-
istics named polarizability. In the framework of the first order relativistic
wave equations, such a particle requires a 15-dimensional wave function,
consisting of a 4-vector @,(x), 4-tensor Pyp(z), and subsidiary scalar and
4-vector fields, C(z) and Cy(x).

To treat the problem, we take the matrix approach in the theory of the
generalized S = 1 particle extended to a general covariant form on the base
of tetrad formalism (recent consideration, notation and list of references
see in [15,16]). The use of cylindric tetrad permits to take account of the
cylindric symmetry of the problem. The main equation in tetrad form is [12]

0 1 Lo ieB o 12 3
I'’og+ 1 &A—;F <3¢+2h7’ +J )—i—F 8Z—M]W:O. (35)
It is better to choose the matrices 3¢ in the so-called cyclic form, where

the generator J'? has a diagonal structure. These matrices I'® are given
in [6].

5. Separation of variables

With the use of special substitution

v = {C’, C’O,C_",GPO,QE, E,ﬁ} , Cx)= e*iEt/heikzeimd)C(r),

o P ()
Co = e—zet/hezkzez'rmi) Co (7") , G = e—zet/hezkzezm(b Cs (T) ’
Cs(r)
o I I 1 Cy
@0 _ e_ZEt/hBZkZ€Zm¢¢O(T) ’ & — e—zst/ﬁezkzezm¢ Py (7,) ’
P3(r)
; | Bl L ()
E = e—zet/hezkzemw) EQ(T‘) ’ H= e—lft/ﬁelkzelm¢ HQ(T) 7 (36)
Es(r) Hj(r)
after calculations we arrive at the radial system of 15 equations
—i€Cy — b_1C1 — ams1C3 — ik Coy = M C, (37)

~bm—1E1 — a1 B3 — ik By =
i€ B1 + i, Ho —ikH1 = M C1,
i€ By — ibm_1Hy + iami1Hs = M Csy,

|
S
S
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i€ B3 — iby Hy + kHs = M Cs, (38)
—iecC — by 1E1 — amy1F3 — ik By = M®y,
i€ By — 0amC + iamHy — kH, = M®, ,
i€ By — iby_1Hy + iy 1 Hs + i koC = M®y,

i€ B3 — 0y, C — by Hy + kH3z = M®s, (39)
—ie®y + amPy = ME —ie Py — ikdy = ME;,
—ie Py + by®y = MEs, —iay Py + kP, = MHy ,
ibym—1P1 — i1 D3 = M Hy ibm®y — kds = M Hs. (40)

6. Solution of the radial system

With the use of (38), Egs. (39) give

€0 g
= Py +i2 — &)+ anC,
Cy 0—|—ZMC, 1 1—|—Ma C
,]CO' O ~
Cy = @2—ZMC, 03:@3+Mbm0. (41)

Substituting these formulas for C, into (37)
—ie (00 +i57C) = bnt (@1 + -mC)

A k
_&m+1 <¢3 + %bm0> — 1k <@2 — ’LJ\ZC) = MC’

we further get

M (Em_lqsl n am+1q53) — M (edp + kDs)
to (—z}m,lam — Gy 1bp + €2 — k2) C — M2C. (42)

This equation will be required below.
Note that Egs. (39) and (40) include the main field variables, 4-vector
and 4-tensor, and also the scalar C' obeying Eq. (42)

—iecC — byy_1Ey — amy1 B3 — ikEy = M®y,
ek — 04 C + iay Hy — kH,
i€By — ibm_1Hi + amy1Hs + ikaC
i€By — obyC — iby Hy + kHy = M&s. (43)

I
= =
5 5
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—iedP1 + 0Py = M Eq, —iedPy — ikdg = M Es ,
—ie®s + b®y = M Es,  —iam®s + kd; = M Hy ,
ibm—1P1 — iGmy1Ps = M Ho, ibm®y — ks = M Hy.  (44)

By means of (44), we are to eliminate tensor components in (43). Then
we obtain two equations

—iecoM C + (—Bm,lam e 1bm — K2 — M2) @y
tie (Bm_1d51 F a1 P+ il@g) —0, (45

ikoM C + (62 — D18 — G 1bym — M2) By
ik (ie@o F b1+ &m+1q§3) — 0.  (46)

Multiplying the first one (45) by +ik, and the second one (46) by ie, and
summing the results, we get

~

(—bm_ldm — g1l — K2 — M2 + 62) (ko + edy) =0.  (47)

In the same manner, combining Eqs. (45) and (46) with other coefficients,
we arrive at

(—Bm_lam g 1bm — M2> (eBo + kbs)
= —1 (62 — kQ) (i)m_ldjl + &m+1@3> + oM (62 — k2) C. (48)
Thus, two second order equations have been found

(“bm-1m = @msabm — K2 = M2+ €) (ko + e@2) =0, (49)
(“bm-1m = @ms1b — M2) (g + kebs)
=i (= 1) (bn1 @1 + a1 @) +ioM (E— k) C. (50)
Now, let us turn to equations in (43), containing functions m®, and m®s
(~ambm1 + €2 = K2~ M?) @y
+amam11P3 + 1, (6P + kP2) — Moa,C =0 (51)
and
(—Bmamﬂ I M2) By
+bimbm_1D1 + by, (€Bg + kby) — Mob,,C = 0. (52)



Ezact Solutions for a Quantum-mechanical Particle with Spin 1 and ... 2357

In two last equations, (51) and (52), multiplying the first one by by,—1 (from
the left) and the second one by @y,11 (from the left), we produce

(—Bm,lam TSy - M2) b 191
b 1mm s 193 + iy 16, (€Pg + kDo) — Maby,_18,mC = 0, (53)
(—amHBm rE k2o M2> i s1P3
+lim 10 b 1P1 + iy 10 (€Pg + kDo) — MGt y1bmC = 0. (54)
It is better to introduce new field variables

F(T) = kg + Do, G(T):€@0+k¢2,
bn1®1 = 71, amy1Ps = Zs (55)

then the system (53)—(54) reads

(—Em_lam - M2> 7

+bim—1m Z3 + ibm—14m G — Moby_16mC = 0, (56)
(—am+16m Ty = MZ) Zs
g 1bm Z1 + Gams1bmG — Moamy1bmC = 0. (57)

Again, it is convenient to define new variables f(r), g(r)

f+yg f-yg
2 2 7

then Eqgs. (56) and (57) give

Zy = , Z3 = I+ Z3=f, Zy—Z3=g, (58)

( — 1dm+62—k2—M2)%

IE A . I 4 ibm16mG — Mabp_1amC = 0, (59)
(—am+1ém Ty = M2> %

Faimg1bm ftg + it bnG — Moami1bmC = 0. (60)

After simple manipulation, from two last equations it follows that
[—Bm_lam by €2 — K2 — Mﬂ g

(bt + b ) (—IG + MaC) =
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<—6m,1am n am+16m) g+ (&K — M?) f
n (—ém_lam . am+113m) (=i G+ MoC) =
With the use of identities
b1 — Amp1bm = A,  —bpm_18m + Gmi1bm = 2B
Egs. (61) can be written as

[A+e - M?) g +2B(—iG + MoC) = 0,
2Bg+(e2 M?) f+ A(—iG + MoC) = 0.

In turn, Egs. (47), (48) will read (in the new variables)
(A—k — M +e )

(A= M?*)G=—i(e k:2)f+wM(e —-k?)C.

Let us collect results together
(A-kK -M*+)F=0,
(A—MQ)G:—i(EQ—kz)f+iJM(€2—k2)C,
(A+ e —k*— M?) g+2B(—iG+ MoC) =0,
2Bg+ (¢ —k* — M?) f + A(—iG + MoC) = 0.

(62)

(63)

(64)
(65)
(66)
(67)

It is possible to eliminate the function C'(r) in the above equation. To
show how it can be done, let us turn to a couple of equations in (39),

containing the terms M @1, M @3, and find the combination

by 1 M® + 1 D3

= ieby_1E1 — 0bp—16mC + ibp— 16 Ho — kb1 Hy
ti€tmi1 3 — 0tmy1bmC — iGms1bm Hy + ka1 Hs
= ie (bn 1By + i1 B ) = 0 (bt + b)) C

+i (Em,lam - amﬂz}m) Hy—k (zém,lH1 — amHHg)

from whence, with the help of the first and third equations in (39) in the

form
(i)m—lEl + mi1Fs ) = —iecC — ik By — Mdg,

(i)m,lHl - deHg) = ¢By + koC + iM&,
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we obtain

~

b1 M®P1 + Gy 19P3

= i€ (—iecC — ikEy — M®y) — o (l;m_lém + dm+1l;m) C

+i (z}m_lam . am+16m) Hy — k (¢Ba + koC + iM&s) .
From this, after evident calculation, we arrive at

~

b1 M®1 + 1Dy = —iM (B + ko)
Yo (—Bm,lam — Gy 1by + €2 — I<:2> C —2%BH,. (68)
Comparing (42) and (68), we conclude that there exists a linear relation
2iB Ho(r) = M?C(r). (69)
Due to Eq. (40), it holds

iby_1D1 — 1am+1P3 = M Hy — ig =M Hj, (70)

therefore, the function C(r) is expressed through g(r)

Olr) =~ 2 glr). (1)

The system (64)—(67), after excluding C(r), takes the form
(A-K-M*+&)F=0, (72)
(A= M) G =i (@R[ —io (&~ k) g, (73)
A+62—k2—M2—0<2]5>2 g—2iBG =0, (74)
2Bg+(62—k2—M2)f+A<—iG—a]2\zg):0. (75)

The structure of the system allows to separate evident, linearly indepen-
dent solution as follows

fr) =0, g(r)=0, H(r)=0,
F(r) #0, (A-K¥-M*+&)F=0, (76)

corresponding functions and the energy spectrum are known (also see below).
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We are to solve the system of three last equations in (73)—(75). With
the help of (74)

, . 2B
AG = MQG—Z(E2—k2)f—ZO'(€2—k‘2) 27
2B
Ag = — [62—kz2—M2—0()2]g—2iBG,
M
Eq. (75) takes the form of the linear relation
4B? o? 4B?

Now, returning to Eqs. (73)—(74), after excluding the function f and using
the notation

€2 — k2 4B2 4B2%52
M2 520Wa a=7p, le—wa

we arrive at two equations

(A+62 —k? - M2)g = Bg(r)+2iBG(r),

’y:

(A+ e —k* - M?)G = —2iBag(r) + ByG(r). (78)
In the matrix form they read
2 2 2| 9(r) | _ p 2iB || g(r)
(A+ €~ M* — ) G(r) | ‘ —2iBa By ’ G(r) |’ (79)

Let us construct the transformation changing the matrix on the right to a
diagonal form

/ /
2 a2 12 g A0 g
(A + € M k ) G/ — ‘ 0 )\2 G/ ’
/
g | _ g _ | s11 s12 |,
G- &) s ), (50)
the problem is reduced to a couple of linear systems
(ﬁ — )\1) S11 — QiBCJéSu = O, (ﬁ — )\2) S$91 — QiBCJéSQQ = 0,
2iBs11 + (By — A1)12 =0, 2iBsg1 + (87 — A2)s22 = 0.
The eigenvalues A1, Ao are
) +\/ﬁ2 1 -7 +16B%y
B(1 2 1 — 16 B2
A, = B+ = VB =7)? + 1682y (81)

2 )
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let it be

— By S Ao — By
2B 21 2B '

Ao — By
2iB

si2=1, S92 =1, s11 =

A1 — By
/I !/ __
g=—gp5 976 &=

g+G. (82)

In the new (primed) basis, Eqgs. (80) take the form of two separated
differential equations

(A+eE -k —M>—)\)g =0,
(A+e -k —M>— X)) G = 0. (83)

Recalling the meaning of A, let us specify the second order equation

@ 1d (m+Br2)?
(2 tra— "l ) et =0, (84

This equation was examined above. We obtain two possibilities for the
energy spectrum:

qd #0, k=X 4+ M2+ )\,
G #0, E—-kF=XN+M+),. (85)

Both Egs. (85) can be written as

B(147) £ /B2(1 — )2 + 16B2py
> .

M?*y = X2+ M? + (86)

It is convenient to introduce new variable x = v — 1, and also with the
help of

4B? ) 4B%0? (2

we P =1

e ~ 15 16pB% = 16 B% — 452

B=c0

to eliminate the parameter p

(2M? — B)z —2(\? + B) = £/B%22 + (16B2 — 44%) (v +1).  (87)
Thus, we get the second order equation

M2 (M? = B) 2 — [(M +B) (2M? — B) + (4B* - §°)] =
+ (N4 8)7 - (4B - %) =0, (88)
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its solutions read

s [0+ 0) @02 - 5) + (482 - )

£ [(+8) 2M2 - B) + (4B% - %)
—AM? (M2 = B) (W +9)" - (4B2 = ) |} (39)

62—M2—k'2 _

Note, that the case (25) gives the following spectrum €2 = M? + k% + \?,
so for these solutions the polarizability does not manifest itself in a magnetic
field.

Thus, on the base of general covariant formalism in the vector particle
with polarizability, the exact solutions for such a particle are constructed
in the presence of an external homogeneous magnetic field. There are sepa-
rated three types of linearly independent solutions, and corresponding energy
spectra are found.

The authors are grateful to the participants of the seminar of the Lab-
oratory of Theoretical Physics, Institute of Physics, National Academy of
Sciences of Belarus, for stimulating discussion.
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