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This paper is devoted to a comparison of various lower bounds, the so-
called optimized, naïve and improved lower bounds on the ground state en-
ergies of N -body systems with non-relativistic kinematics and translation-
ally invariant two-body interactions. The optimized lower bound proves,
in all cases, to be better than the improved and the naïve bounds.

PACS numbers: 03.65.–w

1. Introduction

As is generally admitted, the N -body problem is extremely difficult to
deal with. Even the most simple cases of a one-body problem in a central
potential or the two-body problem with translationally and rotationally in-
variant interaction can be solved only for particular forms of the interaction
potential. This leads to the development of approximate methods of reso-
lution of the Schrödinger equation. However, the things complicate quickly
with N , requiring considerable calculational facilities. An alternative to nu-
merical calculations are exact results. Among them, the lower bounds for the
ground state energy occupy a particular place. Recently, we have generalized
a lower bound initially derived for three- [1] and four-body [2] systems to
N -body systems [3–5], with arbitrary N , under the two assumptions of non-
relativistic kinematics and translationally invariant two-body interactions,
that is to N -body systems governed by Hamiltonians of the form
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H =
N∑
i=1

1
2mi

~p2
i +

N∑
i<j=1

V (ij)(~rij) , (1.1)

where mi, ~ri, ~pi stand, respectively, for the mass, the position and the linear
momentum of the ith particle. ~rij := ~ri −~rj , i 6= j = 1, . . . , N . This bound,
named optimized lower bound, proves to be very interesting. Among other
things, it proves to be saturated in the case of harmonic interactions, for all
mass configurations and all values of the coupling constants. This property
of saturability is something like a label of quality of the optimized lower
bound. Other lower bounds on the market, the so-called naïve and improved
lower bounds, do not satisfy this property of saturability. The objective of
this paper is to compare the optimized, the naïve and the improved lower
bounds for different forms of the two-body interaction potentials. This paper
is organized as follows. In Section 2 and 3 the naïve and the improved lower
bounds are presented in turn, and then compared to each other in Section 4.
The optimized lower bound is presented in Section 5. Section 6 is devoted
to numerical results and Section 7 to a general conclusion and perspectives.

2. Naïve lower bound

Historically, the naïve lower bound [6–11] was the first to be established.
Its starting point is the following decomposition of the kinetic energy term

N∑
i=1

~p2
i

2mi
=

1
N − 1

N∑
i<j=1

(
~p2
i

2mi
+

~p2
j

2mj

)
. (2.1)

The Hamiltonian H may then be rewritten as a sum of two-body Hamilto-
nians H ′(2)

ij

H =
N∑
i=1

H
′(2)
ij (2.2)

with

H
′(2)
ij =

1
N − 1

(
~p2
i

2mi
+

~p2
j

2mj

)
+ V (ij) (~rij) . (2.3)

H
′(2)
ij may be rewritten as

H
′(2)
ij =

~P2
ij

2(N − 1)(mi +mj)
+

~p2
ij

2µij
+ V (ij) (~rij) , (2.4)
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where ~Pij denotes the sum of the momenta ~pi and ~pj

~Pij := ~pi + ~pj , (2.5)

~pij is a conjugate momentum of ~rij := ~ri − ~rj

~pij :=
mimj

mi +mj

(
~pi
mi
− ~pj
mj

)
=
mj~pi −mi~pj
mi +mj

, (2.6)

and µij is the reduced mass of two particles of masses (N − 1)mi and
(N − 1)mj

µij = (N − 1)
mimj

mi +mj
. (2.7)

Thus

H =
N∑

i<j=1

~P2
ij

2(N − 1)mimj
+

N∑
i<j=1

H
(2)
ij , (2.8)

with

H
(2)
ij =

~p2
ij

2µij
+ V (ij) (~rij) . (2.9)

Let |Ψ〉 be the unknown normalized ground state of the system and E the
corresponding ground state energy. Then

E = 〈Ψ |H|Ψ〉 = 〈Ψ |
N∑

i<j=1

~P2
ij

2(N − 1)(mi +mj)
|Ψ〉+ 〈Ψ |

N∑
i<j=1

H
(2)
ij |Ψ〉 .

(2.10)
Since ~P2

ij/ (2(N − 1)mimj) is a positive definite operator, then

〈Ψ |
~P2
ij

2(N − 1)mimj
|Ψ〉 ≥ 0 . (2.11)

This is on one hand. On the other hand, by virtue of the variational principle

〈Ψ |H(2)
ij |Ψ〉 ≥ E(2)

ij (µij) , (2.12)

where E(2)
ij (µij) denotes the ground state energy of the two-body Hamilto-

nian H(2)
ij . Hence

E ≥
N∑

i<j=1

E
(2)
ij (µij) . (2.13)
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The right-hand side of the inequality (2.13) is called the naïve lower bound
and is denoted Enaïve, namely

Enaïve =
N∑

i<j=1

E
(2)
ij (µij) . (2.14)

One easily sees that one default of the naïve lower bound is to replace
the expectation value of each one of the positive definite operators
~P2
ij/ (2(N − 1)mimj) by zero, which is a rather crude approximation. This

has lead to the development of another lower bound, known in the literature
as the improved lower bound. We will present this bound in the next section,
but before that let us consider the important particular case of a two-body
power law potential

V (ij) (~rij) = λijr
νij
ij , (2.15)

where λij , the coupling constant, and νij the exponent of the power law
potential are of the same sign. By virtue of the scaling laws [12,13]

E(2) (a, |λ|, ν) = a
ν

2+ν |λ| 2
2+νE(2) (1, 1, ν) , (2.16)

where E(2) (a, |λ|, ν) and E(2) (1, 1, ν) stand respectively for the ground state
energies of the two Hamiltonians

H(2)(a, |λ|, ν) := a~p2 + sign(ν)|λ|rν (2.17)

and
H(2)(ν) := ~p2 + sign(ν)rν . (2.18)

The naïve lower bound may then be put in the form

Enaïve =
N∑

i<j=1

(2µij)
−νij
2+νij |λij |

2
2+νij E(2) (1, 1, νij) . (2.19)

Let us consider now in turn, mass configurations up to three distinct masses.
Throughout this paper, we will restrict ourselves to the case where λij and
νij depend only on the masses mi and mj of the two involved particles.

2.1. Configuration (N ×m)

This is the case of a system with all masses equal. Thus

µij = (N − 1)
m

2
, i < j = 1, . . . , N , (2.20)
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is independent of the pair under consideration. Moreover, we have one cou-
pling constant λij = λ and one power νij = ν. Therefore, the naïve lower
bound simplifies to

Enaïve =
N (N − 1)

2
((N − 1)m)

−ν
2+ν |λ| 2

2+ν E(2)(1, 1, ν) . (2.21)

2.2. Configuration (n1 ×m1, n2 ×m2)

This is the case of systems constituted of n1 (n1 < N) particles of mass
m1 and n2 (n2 = N−n1) particles of mass m2. We have then three different
reduced masses

µij = µm1m1 =(N−1)
m1

2
, i<j = 1, . . . , n1 ,

µij = µm2m2 =(N−1)
m2

2
, i<j = n1+1, . . . , N ,

µij = µm1m2 =(N−1)
m1m2

m1+m2
, i=1, . . . , n1 , j = n1+1, . . . , N , (2.22)

three coupling constants

λij = λm1m1 , i < j = 1, . . . , n1 ,

λij = λm2m2 , i < j = n1 + 1, . . . , N ,

λij = λm1m2 , i = 1, . . . , n1 , j = n1 + 1, . . . , N , (2.23)

and three exponents

νij = νm1m1 , i < j = 1, . . . , n1 ,

νij = νm2m2 , i < j = n1 + 1, . . . , N ,

νij = νm1m2 , i = 1, . . . , n1 , j = n1 + 1, . . . , N . (2.24)

The general expression of the naïve lower bound simplifies to

Enaïve =
n1 (n1 − 1)

2
(2µm1m1)

−νm1m1
2+νm1m1 |λm1m1 |

2
2+νm1m1 E(2)(1, 1, νm1m1)

+
n2 (n2 − 1)

2
(2µm2m2)

−νm2m2
2+νm2m2 |λm2m2 |

2
2+νm2m2 E(2)(1, 1, νm2m2)

+n1n2 (2µm1m2)
−νm1m2
2+νm1m2 |λm1m2 |

2
2+νm1m2 E(2)(1, 1, νm1m2) , (2.25)

where µm1m1 , µm2m2 and µm1m2 are given by (2.22).
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2.3. Configuration (n1 ×m1, n2 ×m2, n3 ×m3)

Here we consider systems where three distinct masses m1, m2 and m3

are involved. The particles with masses m1, m2 and m3 are in numbers of
n1, n2 and n3 respectively with n1 + n2 + n3 = N . For this configuration,
we have 6 reduced masses, 6 exponents and 6 coupling constants

µij = µm1m1 = (n1 − 1)
m1

2
, i < j = 1, . . . , n1 ,

µij = µm2m2 = (n2 − 1)
m2

2
, i < j = n1 + 1, . . . , n1 + n2 ,

µij = µm3m3 = (n3 − 1)
m3

2
, i < j = n1 + n2 + 1, . . . , N ,

µij = µm1m2 = (N − 1)
m1m2

m1 +m2
, i = 1, . . . , n1 ,

j = n1 + 1, . . . , n1 + n2 ,

µij = µm1m3 = (N − 1)
m1m3

m1 +m3
, i = 1, . . . , n1 ,

j = n1 + n2 + 1, . . . , N ,

µij = µm2m3 = (N − 1)
m2m3

m2 +m3
, i = n1 + 1, . . . , n1 + n2 ,

j = n1 + n2 + 1, . . . , N , (2.26)

νij = νm1m1 , i < j = 1, . . . , n1 ,

νij = νm2m2 , i < j = n1 + 1, . . . , n1 + n2 ,

νij = νm3m3 , i < j = n1 + n2 + 1, . . . , N ,

νij = νm1m2 , i = 1, . . . , n1 , j = n1 + 1, . . . , n1 + n2 ,

νij = νm1m3 , i = 1, . . . , n1 , j = n1 + n2 + 1, . . . , N ,

νij = νm2m3 , i = n1 + 1, . . . , n1 + n2 ,

j = n1 + n2 + 1, . . . , N , (2.27)

and

λij = λm1m1 , i < j = 1, . . . , n1 ,

λij = λm2m2 , i < j = n1 + 1, . . . , n1 + n2 ,

λij = λm3m3 , i < j = n1 + n2 + 1, . . . , N ,

λij = λm1m2 , i = 1, . . . , n1 , j = n1 + 1, . . . , n1 + n2 ,

λij = λm1m3 , i = 1, . . . , n1 , j = n1 + n2 + 1, . . . , N ,

λij = λm2m3 , i = n1 + 1, . . . , n1 + n2 ,

j = n1 + n2 + 1, . . . , N . (2.28)
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The naïve lower bound then reduces to

Enaïve =
n1 (n1 − 1)

2
(2µm1m1)

−νm1m1
2+νm1m1 |λm1m1 |

2
2+νm1m1 E(2)(1, 1, νm1m1)

+
n2 (n2 − 1)

2
(2µm2m2)

−νm2m2
2+νm2m2 |λm2m2 |

2
2+νm2m2 E(2)(1, 1, νm2m2)

+
n3 (n3 − 1)

2
(2µm3m3)

−νm3m3
2+νm3m3 |λm3m3 |

2
2+νm3m3 E(2)(1, 1, νm3m3)

+ n1n2 (2µm1m2)
−νm1m2
2+νm1m2 |λm1m2 |

2
2+νm1m2 E(2)(1, 1, νm1m2)

+ n1n3 (2µm1m3)
−νm1m3
2+νm1m3 |λm1m3 |

2
2+νm1m3 E(2)(1, 1, νm1m3)

+ n2n3 (2µm2m3)
−νm2m3
2+νm2m3 |λm2m3 |

2
2+νm2m3 E(2)(1, 1, νm2m3) . (2.29)

3. Improved lower bound

A default of the naïve lower bound is that the centre of mass energy is not
separated from the Hamiltonian and this leads, as we have already noticed,
to the replacement of the expectation values of positive definite operators by
zero, a rather crude approximation. This fact motivated the development of
another lower bound, the so-called improved lower bound [14–16] which we
will present in what follows. Here the starting point is the following identity

N∑
i=1

~p2
i

2mi
=
P 2

2M
+

N∑
i<j=1

(mj~pi −mi~pj)
2

2mimjM
, (3.1)

where P 2/(2M) stands for the centre of mass kinetic energy (M =
∑N

i=1mi).
The Hamiltonian of the system may then be rewritten as

H =
P 2

2M
+

N∑
i<j=1

H̃
(2)
ij , (3.2)

where H̃(2)
ij is a two-body Hamiltonian

H̃
(2)
ij =

(mj~pi −mi~pj)
2

2mimjM
+ V (ij) (~rij) . (3.3)

It is clear that

~pij :=
mj~pi −mi~pj
mi +mj

, i < j = 1, . . . , N (3.4)
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is a conjugate momentum of ~rij and it is more judicious to rewrite H̃(2)
ij by

explicitly showing ~pij

H̃
(2)
ij =

~p2
ij

2µ̃ij
+ V (ij) (~rij) (3.5)

with
µ̃ij =

mimjM

(mi +mj)
2 , i < j = 1, . . . , N . (3.6)

Denoting again by |Ψ〉 the normalized ground state of the system and E the
corresponding energy we have

E = 〈Ψ |H|Ψ〉 = 〈Ψ | P
2

2M
|Ψ〉+

N∑
i<j=1

〈Ψ |H̃(2)
ij |Ψ〉 . (3.7)

Since |Ψ〉 is invariant under translations, it follows that P |Ψ〉 = 0 and

〈Ψ | P
2

2M
|Ψ〉 = 0 . (3.8)

Applying the variational principle

〈Ψ | H̃(2)
ij |Ψ〉 ≥ E(2)

ij (µ̃ij) , (3.9)

where E(2)
ij (µ̃ij) stands for the ground state energy of the two-body Hamil-

tonian H̃(2)
ij . Thus

E ≥
N∑

i<j=1

E
(2)
ij (µ̃ij) . (3.10)

We obtain in this way a lower bound, the right hand side of the previous
inequality, called improved lower bound and denoted Eimproved, i.e.,

Eimproved =
N∑

i<j=1

E
(2)
ij (µ̃ij) . (3.11)

As in the case of the naïve lower bound, let us consider the interesting case of
a two-body power law potential, (2.15). Making use of scaling laws, (2.16),
we have in this case

Eimproved =
N∑

i<j=1

(
2mimjM

(mi +mj)
2

) −νij
2+νij

|λij |
2

2+νij E(2)(1, 1, νij) , (3.12)
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where E(2)(1, 1, νij) stands for the ground state energy of the Hamiltonian
H(2)(νij), (2.18). As in the case of the naïve lower bound, let us consider in
turn the mass configurations (N×m), (n1×m1, n2×m2) and (n1×m1, n2×
m2, n3 ×m3) with always the same assumptions on the exponents νij and
the coupling constants λij , that is νij and λij depending uniquely on the
masses of the two involved particles.

3.1. Configuration (N ×m)

We have one reduced mass

µ̃ij = µ̃ =
Nm

4
, (3.13)

one exponent νij = ν and one coupling constant λij = λ, in which case the
improved lower bound, (3.12), reduces to

Eimproved =
N (N − 1)

2

(
Nm

2

) −ν
2+ν

|λ| 2
2+ν E(2)(1, 1, ν) . (3.14)

3.2. Configuration (n1 ×m1, n2 ×m2)

We have three values of the exponents, (2.24), three coupling constants,
(2.23), and three reduced masses

µ̃ij = µ̃m1m1 =
n1m1 + (N − n1)m2

4
, i < j = 1, . . . , n1 ,

µ̃ij = µ̃m2m2 =
n1m1 + (N − n1)m2

4
, i < j = n1 + 1, . . . , N ,

µ̃ij = µ̃m1m2 =
m1m2(n1m1 + (N − n1)m2)

(m1 +m2)2
,

i = 1, . . . , n1 , j = n1 + 1, . . . , N . (3.15)

The improved lower bound then reduces to

Eimproved = n1(n1−1)
2 (2µ̃m1m1)

−νm1m1
2+νm1m1|λm1m1 |

2
2+νm1m1 E(2)(1, 1, νm1m1)

+n2(n2−1)
2 (2µ̃m2m2)

−νm2m2
2+νm2m2|λm2m2 |

2
2+νm2m2 E(2)(1, 1, νm2m2)

+n1n2(2µ̃m1m2)
−νm1m2
2+νm1m2|λm1m2 |

2
2+νm1m2 E(2)(1, 1, νm1m2) .(3.16)
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3.3. Configuration (n1 ×m1, n2 ×m2, n3 ×m3)

We have six reduced masses

µ̃ij = µ̃m1m1 =
n1m1 + n2m2 + n3m3

4
, i < j = 1, . . . , n1 ,

µ̃ij = µ̃m2m2 =
n1m1 + n2m2 + n3m3

4
, i < j = n1 + 1, . . . , n1 + n2 ,

µ̃ij = µ̃m3m3 =
n1m1 + n2m2 + n3m3

4
, i < j = n1 + n2 + 1, . . . , N ,

µ̃ij = µ̃m1m2 = m1m2
(n1m1 + n2m2 + n3m3)

(m1 +m2)
2 ,

i = 1, . . . , n1 , j = n1 + 1, . . . , n1 + n2 ,

µ̃ij = µ̃m1m3 = m1m3
(n1m1 + n2m2 + n3m3)

(m1 +m3)
2 ,

i = 1, . . . , n1 , j = n1 + n2 + 1, . . . , N ,

µ̃ij = µ̃m2m3 =m2m3
(n1m1 + n2m2 + n3m3)

(m2 +m3)
2 ,

i = n1+1, . . . , n1+n2 , j=n1+n2+1, . . . , N , (3.17)

six values of the exponent νij , (2.27), and six coupling constants λij , (2.28).
The improved lower bound then reduces to

Eimproved =
n1 (n1 − 1)

2
(2µ̃m1m1)

−νm1m1
2+νm1m1 |λm1m1 |

2
2+νm1m1 E(2)(1, 1, νm1m1)

+
n2 (n2 − 1)

2
(2µ̃m2m2)

−νm2m2
2+νm2m2 |λm2m2 |

2
2+νm2m2 E(2)(1, 1, νm2m2)

+
n3 (n3 − 1)

2
(2µ̃m3m3)

−νm3m3
2+νm3m3 |λm3m3 |

2
2+νm3m3 E(2)(1, 1, νm3m3)

+ n1n2 (2µ̃m1m1)
−νm1m2
2+νm1m2 |λm1m2 |

2
2+νm1m2 E(2)(1, 1, νm1m2)

+ n1n3 (2µ̃m1m3)
−νm1m3
2+νm1m3 |λm1m3 |

2
2+νm1m3 E(2)(1, 1, νm1m3)

+ n2n3 (2µ̃m2m3)
−νm2m3
2+νm2m3 |λm2m3 |

2
2+νm2m3 E(2)(1, 1, νm2m3) .(3.18)

4. Comparison of the naïve and improved lower bounds

In reality, the goal at the origin of the introduction of the improved
lower bound is only partially reached. Let us content ourselves with two
examples. One example where the improved lower bound is better than the
naïve lower bound and a counter-example where it is the naïve lower bound
that is better than the improved one.
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First example

Let us consider the case of masses all equal m1 = . . . = mN = m. The
naïve and improved lower bounds then reduce respectively to

Enaïve =
N (N − 1)

2
E(2)

(
(N − 1)m

2

)
, (4.1)

Eimproved =
N (N − 1)

2
E(2)

(
Nm

4

)
. (4.2)

It is clear that the reduced mass, Nm/4, involved in Eimproved is lower
than the reduced mass, (N − 1)m/2, involved in Enaïve. Making use of the
Feynman–Hellmann theorem [17] which states that for a Hamiltonian H
depending on a parameter

H = H(α) , (4.3)

the corresponding energy levels depend on α according to

∂E(α)
∂α

= 〈Ψ(α)|∂H(α)
∂α

|Ψ(α)〉 , (4.4)

with
H(α)|Ψ(α)〉 = E(α)|Ψ(α)〉 , (4.5)

to the case of the Hamiltonian H(2) = ~p2/(2µ) + V (~r), with the reduced
mass µ as a parameter, one obtains

∂E(µ)
∂µ

= −〈Ψ(µ)| ~p
2

2µ2
|Ψ(µ)〉 . (4.6)

Since ~p2/(2µ) is a positive definite operator

∂E(µ)
∂µ

≤ 0 , (4.7)

then E(µ) decreases with µ. This is nothing else but the translation of the
intuitively well understood property that the inertia favors binding. Hence

E(2)

(
Nm

4

)
> E(2)

(
(N − 1)m

2

)
(4.8)

and
Eimproved > Enaïve . (4.9)
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Second example

Let us consider the mass configuration ((N − 1)×m1, 1×m2), where
the naïve and the improved lower bounds reduce respectively to

Enaïve = (N−1)(N−2)
2 E(2)

(
(N−1)m1

2

)
+ (N − 1)E(2)

(
(N−1)m1m2

m1+m2

)
and

Eimproved = (N−1)(N−2)
2 E(2)

(
(N−1)m1+m2

4

)
+ (N − 1)E(2)

(
m1m2

(N−1)m1+m2

(m1+m2)2

)
.

In the case of a power law potential with the same exponent ν and the same
coupling constant λ for all the pairs of particles, Enaïve and Eimproved reduce
respectively to

Enaïve = |λ| 2
2+ν

(
(N − 1) (N − 2)

2
((N − 1)m1)

−ν
2+ν

+ (N − 1)
(
2 (N − 1) m1m2

m1+m2

) −ν
2+ν

)
E(2)(1, 1, ν) (4.10)

and

Eimproved = |λ| 2
2+ν

(
(N − 1) (N − 2)

2

(
(N−1)m1+m2

2

) −ν
2+ν

+ (N − 1)
(
2m1m2

(N−1)m1+m2

(m1+m2)2

) −ν
2+ν

)
E(2)(1, 1, ν) . (4.11)

Let us now consider the limit m2 → ∞. For −2 < ν < 0 and thus
−ν/(2 + ν) > 0, it is easy to find out, if one bears in mind that E(2)(1, 1, ν)
is negative for negative powers ν, that Eimproved → −∞, while

Enaïve → |λ| 2
2+ν

(
(N−1)(N−2)

2 ((N − 1)m1)
−ν
2+ν

+ (N − 1) (2 (N − 1)m1)
−ν
2+ν

)
E(2)(1, 1, ν) (4.12)

remains finite. Therefore,

Enaïve > Eimproved . (4.13)

In other words, the naïve lower bound is better than the improved one.
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5. Optimized lower bound

Since the goal behind the introduction of the improved lower bound has
been only partially reached, this has lead to the development of a new lower
bound: the optimized lower bound [1–5]. The starting point is the following
decomposition of the kinetic energy term

N∑
i=1

1
2mi

~p2
i =

 N∑
j=1

bj~pj

( N∑
i=1

~pi

)
+

N∑
i<j=1

aij~p2
ij , (5.1)

involving the parameters bj and the necessary positive parameters aij , i <
j = 1, . . . , N . The ~pij are linear combinations of the momenta ~pk

~pij =
N∑
k=1

xij,k
2
~pk . (5.2)

The factor 1/2 in the expression of ~pij is a matter of convenience. Without
loss of generality, one can take xij,i = 1. Then imposing to ~pij to be a conju-
gate momentum of ~rij , one ends with xij,j = −1. The decomposition of the
kinetic energy term thus involves N parameters bk, N(N − 1)/2 parameters
aij and N(N −1)(N −2)/2 parameters xij,k. Identifying both sides of (5.1),
one gets N + N(N − 1)/2 constraints among the parameters, which one
can consider as a system of N + N(N − 1)/2 linear equations with the bk
and the aij as unknowns and the xij,k as parameters. One can then express
the aij and the bk in terms of the xij,k and the masses m1, . . . ,mN . From
now on, the aij and the bk should be considered as implicit functions of the
parameters xij,k. To the decomposition of the kinetic energy term, (5.1),
corresponds the following decomposition of the Hamiltonian of the system

H =

 N∑
j=1

bj~pj

( N∑
i=1

~pi

)
+

N∑
i<j=1

(
aij~p2

ij + V (ij)(~rij)
)
. (5.3)

Let |Ψ〉 denotes the normalized ground state of the system, with E the
corresponding energy. Since |Ψ〉 is invariant under translations, then(

N∑
i=1

~pi

)
|Ψ〉 = 0 . (5.4)

This on one hand. On the other hand, applying the variational principle
results in

〈Ψ |
(
aij~p2

ij + V (ij)(~rij)
)
|Ψ〉 ≥ E(2)

ij [aij(xk`,m)] , (5.5)
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where E(2)
ij [aij(xk`,m)] stands for the ground state energy of the two-body

Hamiltonian
H

(2)
ij [aij(xk`,m)] = aij~p2

ij + V (ij)(~rij) . (5.6)

It follows that

E ≥
N∑

i<j=1

E
(2)
ij [aij(xk`,m)] . (5.7)

We obtain in this way a family of lower bounds for E, a lower bound

N∑
i<j=1

E
(2)
ij [aij(xk`,m)] , (5.8)

for each set of values of the parameters xk`,m. The best of these bounds,
denoted Eolb, and called optimized lower bound, corresponds obviously to
the values of xk`,m which maximize

∑N
i<j=1E

(2)
ij [aij(xk`,m)]

Eolb := max
{xk`,m}

N∑
i<j=1

E
(2)
ij [aij(xk`,m)] . (5.9)

As for the two cases of naïve and improved lower bounds, let us consider the
case of a two-body power law potential, (2.15). We have in this case, using
scaling laws, (2.16),

Eolb = max
{xk`,m}

N∑
i<j=1

|λij |
2

2+νij (aij(xk`,m))
νij

2+νij E(2) (1, 1, νij) , (5.10)

where E(2)(1, 1, νij) stands again for the ground state energy of the two-
body Hamiltonian H(2)(νij), (2.18). Let us consider, in turn, the mass
configurations (N ×m), (n1×m1, n2×m2) and (n1×m1, n2×m2, n3×m3)
with always the same assumptions on the exponents νij and the coupling
constants λij .

5.1. Configuration (N ×m)

We have one parameter aij

aij = a , i < j = 1, . . . , N ,

one parameter bk
bk = b , k = 1, . . . , N ,
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and all parameters xij,k are equal to zero. The kinetic energy decomposition
(5.1) reduces to

N∑
i=1

1
2m

~p2
i =

(
N∑
i=1

b~pi

) N∑
j=1

~pj

+
N∑

i<j=1

a

4
(~pi − ~pj)2 , (5.11)

and the identification of both sides of (5.11) gives for the parameter a

a =
2
mN

, i < j = 1, . . . , N . (5.12)

One exponent νij = ν and one coupling constant λij = λ are involved, and
the optimized lower bound reduces to

Eolb =
N (N − 1)

2
|λ| 2

ν+2

(
2
mN

) ν
ν+2

E(2) (1, 1, ν) (5.13)

which is identical to the improved lower bound for the same mass configu-
ration, (3.14).

5.2. Configuration (n1 ×m1, n2 ×m2)

We have three values for the exponents, (2.24), three coupling constants,
(2.23), three values for the parameter aij ,

aij = am1m1 , i < j = 1, . . . , n1 ,

aij = am2m2 , i < j = n1 + 1, . . . , N ,

aij = am1m2 , i = 1, . . . , n1 , j = n1 + 1, . . . , N , (5.14)

and two values of the parameters bk,

bk = bm1 , k = 1, . . . , n1 ,

bk = bm2 , k = n1 + 1, . . . , N .

Two parameters xij,k are involved in the optimized lower bound,

xij,k = 0 , i < j ≤ n1 or n1 < i < j ≤ N ,

xij,k = ` , i = 1, . . . , n1 , j = n1 + 1, . . . , N , 1 ≤ k ≤ n1 k 6= i ,

xij,k = p , i = 1, . . . , n1 , j = n1 + 1, . . . , N , n1 < k ≤ N k 6= j .

The kinetic energy decomposition, (5.1), then simplifies to

n1∑
i=1

1
2m1

~p2
i +

N∑
i=n1+1

1
2m2

~p2
i =

(
n1∑
i=1

bm1~pi +
N∑

i=n1+1

bm2~pi

) N∑
j=1

~pj


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+
am1m1

4

n1∑
i<j=1

(~pi − ~pj)2 +
am2m2

4

N∑
i<j=n1+1

(~pi − ~pj)2

+
am1m2

4

n1∑
i=1

N∑
j=n1+1

~pi − ~pj + `

n1∑
k=1
k 6=i

~pk + p
N∑

k=n1+1
k 6=j

~pk


2

. (5.15)

Identifying both sides of equation (5.15), one gets a system of linear equa-
tions for the aij and bk with ` and p as parameters. This system allows to
express the aij in terms of the parameters ` and p with the result

am1m1 (`, p) =
2

n1m1
− 2n2 (n2m2+n1m1) (`−1)2

n1m1m2 (N−n2`+n1n2`−n1n2p+n1p)
2 , (5.16)

am2m2 (`, p) =
2

n2m2
− 2n1 (n1m1+n2m2) (p+1)2

n2m1m2 (N−n2`+n1n2`−n1n2p+n1p)
2 , (5.17)

am1m2 (`, p) = 2
n1m1+n2m2

m1m2 (N−n2`+n1n2`−n1n2p+n1p)
2 . (5.18)

The optimized lower bound, (5.9), then reduces to

Eolb = max
`,p

(
n1 (n1 − 1)

2
E(2) [am1m1(`, p)] +

n2 (n2 − 1)
2

E(2) [am2m2(`, p)]

+n1n2E
(2) [am1m2(`, p)]

)
, (5.19)

which, in the case of power law potentials, (5.10) simplifies to

Eolb = max
`,p

(
n1 (n1 − 1)

2
|λm1m1 |

2
νm1m1+2 (am1m1)

νm1m1
νm1m1+2 E(2) (1, 1, νm1m1)

+
n2 (n2 − 1)

2
|λm2m2 |

2
νm2m2+2 (am2m2)

νm2m2
νm2m2+2 E(2) (1, 1, νm2m2)

+n1n2|λm1m2 |
2

νm1m2+2 (am1m2)
νm1m2
νm1m2+2 E(2) (1, 1, νm1m2)

)
. (5.20)

5.3. Configuration (n1 ×m1, n2 ×m2, n3 ×m3)

We have six values of the exponent νij , (2.27), and six coupling constants
λij , (2.28). The parameters bk are in number of three,

bk = bm1 , k = 1, . . . , n1 ,
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bk = bm2 , k = n1 + 1, . . . , n2 ,

bk = bm3 , k = n2 + 1, . . . , N ,

and six parameters aij are involved,

aij = am1m1 , i < j = 1, . . . , n1 ,

aij = am2m2 , i < j = n1 + 1, . . . , n1 + n2 ,

aij = am3m3 , i < j = n1 + n2 + 1, . . . , N ,

aij = am1m2 , i = 1, . . . , n1, j = n1 + 1, . . . , n1 + n2 ,

aij = am1m3 , i = 1, . . . , n1, j = n1 + n2 + 1, . . . , N ,

aij = am2m3 , i = n1 + 1, . . . , n1 + n2 ,

j = n1 + n2 + 1, . . . , N . (5.21)

The kinetic energy decomposition (5.1) reduces to
n1X
i=1

1

2m1
~p2
i +

n1+n2X
i=n1+1

1

2m2
~p2
i +

NX
i=n1+n2+1

1

2m3
~p2
i

=

 
n1X
i=1

b1~pi +

n1+n2X
i=n1+1

b2~pi +

NX
i=n1+n2+1

b3~pi

! 
NX
i=1

~pi

!

+
am1m1

4

n1X
i<j=1

(~pi − ~pj)
2 +

am2m2

4

n1+n2X
i<j=n1+1

(~pi − ~pj)
2 +

am3m3

4

NX
i<j=n1+n2+1

(~pi−~pj)
2

+
am1m2

4

n1X
i=1

n1+n2X
j=n1+1

0@~pi − ~pj + c1

n1X
k1 6=i=1

~pk1 + c2

n1+n2X
k2 6=j=n1+1

~pk2 + c3

NX
k3=n1+n2+1

~pk3

1A2

+
am1m3

4

n1X
i=1

NX
j=n1+n2+1

0@~pi − ~pj+d1

n1X
k1 6=i=1

~pk1 +d2

n1+n2X
k2=n1+1

~pk2 +d3

NX
k3 6=j=n1+n2+1

~pk3

1A2

+
am2m3

4

n1+n2X
i=n1+1

NX
j=n1+n2+1

0@~pi−~pj+e1

n1X
k1=1

~pk1 +e2

n1+n2X
k2 6=i=n1+1

~pk2 + |1e3

NX
k3 6=j=n1+n2+1

~pk3

1A2

.

(5.22)

The optimized lower bound, (5.10), then reduces to

Eolb = max
c1,c2,c3
d1,d2,d3
f1,f2,f3

n1 (n1 − 1)
2

(am1m1)
−νm1m1
2+νm1m1 |λm1m1 |

2
2+νm1m1 E(2)(1, 1, νm1m1)

+
n2 (n2 − 1)

2
(am2m2)

−νm2m2
2+νm2m2 |λm2m2 |

2
2+νm2m2 E(2)(1, 1, νm2m2)

+
n3 (n3 − 1)

2
(am3m3)

−νm3m3
2+νm3m3 |λm3m3 |

2
2+νm3m3 E(2)(1, 1, νm3m3)
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+n1n2 (am1m2)
−νm1m2
2+νm1m2 |λm1m2 |

2
2+νm1m2 E(2)(1, 1, νm1m2)

+n1n3 (am1m3)
−νm1m3
2+νm1m3 |λm1m3 |

2
2+νm1m3 E(2)(1, 1, νm1m3)

+n2n3 (am2m3)
−νm2m3
2+νm2m3 |λm2m3 |

2
2+νm2m3 E(2)(1, 1, νm2m3) , (5.23)

where we have to adjust over nine parameters xij,k

xij,k = c1 , i = 1, . . . , n1 , j = n1 + 1, . . . , n1 + n2 ,

k 6= i = 1, . . . , n1 ,

xij,k = c2 , i = 1, . . . , n1 , j = n1 + 1, . . . , n1 + n2 ,

k 6= j = n1 + 1, . . . , n1 + n2 ,

xij,k = c3 , i = 1, . . . , n1 , j = n1 + 1, . . . , n1 + n2 ,

k = n1 + n2 + 1, . . . , N ,

xij,k = d1 , i = 1, . . . , n1 , j = n2 + 1, . . . , N ,

k 6= i = 1, . . . , n1 ,

xij,k = d2 , i = 1, . . . , n1 , j = n2 + 1, . . . , N ,

k = n1 + 1, . . . , n1 + n2 ,

xij,k = d3 , i = 1, . . . , n1 , j = n2 + 1, . . . , N ,

k 6= j = n2 + 1, . . . , N ,

xij,k = e1 , i = n1 + 1, . . . , n1 + n2 , j = n1 + n2 + 1, . . . , N ,

k = 1, . . . , n1 ,

xij,k = e2 , i = n1 + 1, . . . , n1 + n2 , j = n1 + n2 + 1, . . . , N ,

k 6= i = n1 + 1, . . . , n1 + n2 ,

xij,k = e3 , i = n1 + 1, . . . , n1 + n2 , j = n1 + n2 + 1, . . . , N ,

k 6= j = n1 + n2 + 1, . . . , N . (5.24)

The aij are functions of the parameters c1, c2, c3,. . . , e3 and their explicit
dependence is obtained by inverting the matrix equation

D̃A = α , (5.25)

where D̃ is a square 6×6 matrix given by

D̃ =



n1
2 0 0 n2(c1−1)2

2
n3(d1−1)2

2 0
0 n2

2 0 n1(c2+1)2

2 0 n3(e2−1)2

2

0 0 n3
2 0 n1(d3+1)2

2
n2(e3+1)2

2
n1−1

4
n2−1

4 0 D̃44 D̃45 D̃46
n1−1

4 0 n3−1
4 D̃54 D̃55 D̃56

0 n2−1
4

n3−1
4 D̃64 D̃65 D̃66


, (5.26)
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with

D̃54 =
n2

(−2c3 + c23n1 + c1 (n1 − 1) (c1 − 2c3) + 1
)

4
,

D̃64 =
n1

(
2c3 + c23n2 + c2 (n2 − 1) (c2 − 2c3) + 1

)
4

,

D̃45 =
n3

(−2d2 + d2
2n1 + 1 + d1 (d1 − 2d2) (n1 − 1)

)
4

,

D̃65 =
n1

(
2d2 + d2

2n3 + 1 + d3 (d3 − 2d2) (n3 − 1)
)

4
,

D̃46 =
n3

(−2e1 + e21n2 + 1 + e2 (e2 − 2e1) (n2 − 1)
)

4
,

D̃56 =
n2

(
2e1 + e21n3 + 1 + e3 (e3 − 2e1) (n3 − 1)

)
4

,

eD44 =
n1+n2+2−2c1c2 (n1−1) (n2−1)+c1 (n1−1) (c1n2+2)+c2 (n2−1) (c2n1−2)

4
,

eD55 =
n1+n3+ v2− v2d1d3 (n1−1) (n3−1)+d1 (n1−1) (d1n3+2)+d3 (n3−1)(d3n1−2)

4
,

eD66 =
n2+n3+2−2e2e3 (n2−1) (n3−1)+e2 (n2−1) (e2n3+2)+e3 (n3−1) (e3n2 − 2)

4
.

A and α are 6×1 column matrices given by

A :=


am1m1

am2m2

am3m3

am1m2

am1m3

am2m3

 , α :=



1
m1
1
m2
1
m3

1
2m1

+ 1
2m2

1
2m1

+ 1
2m3

1
2m2

+ 1
2m3


. (5.27)

The matrix equation (5.25) is obtained by identifying both sides of equation
(5.22) taking into account the symmetry of the problem. One obtains in
this way a linear system of 9 equations, with the bs: bm1 , bm2 , bm3 and as:
am1m1 , am2m2 , . . . , am2m3 as unknowns and c1, c2, . . . , e3 as parameters.
Eliminating the bs in favor of the as results in a linear system of 6 equations
with the 6 as as unknowns, which may be written in matrix form as in (5.25).

The optimization problem implied by (5.23) may be greatly simplified
if one takes into account that the values of the parameters c1, . . . , e3 cor-
responding to the optimized lower bound are constrained by four relations,
which are independent of the particular form of the potential and of dynam-
ical nature, the so-called universal dynamical constraints

d1 =
c1 − c3 − c1d2 + d2

1− c3 , (5.28)
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e2 = −c2 − c2d2 + c3d2 − d2

1− c3d2
, (5.29)

d3 =
c3 − c3d2 − c3d2e3 + e3

1− c3 , (5.30)

e1 = − c3 − d2

1− c3d2
. (5.31)

More details of the derivation of those constraints will be given in a forth-
coming paper.

This allows us to reduce the number of parameters over which we opti-
mize from 9 to 5: c1, c2, c3, d2 and e3, resulting in a great simplification.

Note that for configurations (n1 ×m1, n2 ×m2, n3 ×m3), we have con-
sidered implicitly the cases where n1 > 1, n2 > 1, n3 > 1. The cases where
one or more of the ni, i = 1, 2, 3 equals 1 may be obtained from the re-
sults corresponding to n1 > 1, n2 > 1, n3 > 1 by appropriate replacements
in the final result for Enaïve and Eimproved. For Eolb, there are additional
subtleties: The optimization problem becomes less involved since a part of
the parameters disappear. For n1 > 1, n2 > 1, n3 = 1, the number of
parameters decreases from 9 to 7: the parameters d3 and e3 no longer exist.
The universal dynamical constraints are in number of 3, Eqs. (5.28), (5.29)
and (5.31), and if we take into account these constraints, we have to opti-
mize over 4 parameters, which we may choose to be c1, c2, c3 and d2. When
n1 > 1, n2 = 1, n3 = 1, we have only 5 parameters c1, c3, d1, d2 and e1,
2 universal dynamical constraints, Eqs. (5.28), (5.31), which allow to reduce
the problem to an optimization over 3 parameters, that one may choose to
be c1, c3, and d2. In the case of n1 = 1, n2 = 1, n3 = 1, i.e., the three-body
case, there are only 3 parameters: c3, d2 and e1 which are related by (5.31),
and thus we have to optimize over two parameters, for instance c3 and d2.

6. Numerical results

The following tables illustrate our numerical results for mass configura-
tions up to three distinct masses. We have considered the six-body system
with power-law potentials in Table I, where four representative powers νij
are considered: ν = 2, ν = 1, ν = 0.1 and ν = −1. We have also considered
some non power-law potentials: the Coulomb+Linear Vij = rij − 1/rij and
the Coulomb+Harmonic Vij = r2ij − 1/rij potentials, also in the case of the
six-body system, Table II.

It is worthwhile to notice that for non power-law potentials, and since
there is no scaling laws at our disposal, the reduced mass µ cannot be ex-
tracted from the ground state energy of the two-body Hamiltonian as in
(2.16) with 2µ = 1/a. Technically, we need to inject the algorithm of the
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TABLE I

Lower bounds for six-body systems with power-law potentials: Vij = r2ij , Vij = rij ,
Vij = r0.1

ij and Vij = −1/rij .

Harmonic potential Vij = r2ij Linear potential Vij = rij

m1, . . . ,m6 Enaïve Eimproved Eolb Enaïve Eimproved Eolb

1,1,1,1,1,1 20.12 25.98 25.98 20.51 24.32 24.32
1,1,1,1,1,3 18.89 23.66 24.25 19.65 22.83 23.20
1,1,1,1,1,0.5 21.63 27.68 27.82 21.50 25.37 25.43
1,1,1,1,2,2 18.29 23.23 23.51 19.23 22.57 22.73
1,1,1,1,0.5,0.5 23.09 29.38 29.65 22.45 26.39 26.52
1,1,1,2,2,2 17.33 21.99 22.24 18.54 21.75 21.90
1,1,1,1,2,3 17.95 22.46 22.99 18.97 22.06 22.38
1,1,1,1,2,0.5 20.77 26.19 26.61 20.91 24.44 24.67
1,1,1,2,2,0.5 19.87 24.86 25.37 20.28 23.60 23.88
1,1,1,2,2,3 16.96 21.29 21.71 18.27 21.29 21.54
1,1,2,2,3,3 15.56 19.53 19.88 17.23 20.10 20.30
1,1,2,2,0.5,0.5 21.41 26.44 27.23 21.30 24.58 25.02
1,1,1,1,1,∞ 18.16 10.61 22.91 19.10 9.279 22.28
1,1,1,1,2,∞ 16.17 9.985 21.57 18.38 8.896 21.40
1,1,1,2,2,∞ 16.13 9.364 20.24 17.62 8.513 20.49

Martin potential Vij = r0.1
ij Coulomb potential Vij = −1/rij

m1, . . . ,m6 Enaïve Eimproved Eolb Enaïve Eimproved Eolb

1,1,1,1,1,1 17.17 17.59 17.59 −18.75 −11.25 −11.25
1,1,1,1,1,3 17.06 17.43 17.47 −21.88 −13.75 −13.07
1,1,1,1,1,0.5 17.28 17.70 17.70 −16.67 −9.931 −9.921
1,1,1,1,2,2 17.01 17.40 17.42 −23.33 −14.11 −13.90
1,1,1,1,0.5,0.5 17.39 17.80 17.81 −14.79 −8.819 −8.774
1,1,1,2,2,2 16.92 17.31 17.33 −26.25 −15.75 −15.58
1,1,1,1,2,3 16.97 17.35 17.38 −24.67 −15.21 −14.63
1,1,1,1,2,0.5 17.21 17.60 17.62 −18.50 −11.17 −10.95
1,1,1,2,2,0.5 17.13 17.51 17.54 −20.75 −12.45 −12.17
1,1,1,2,2,3 16.88 17.26 17.28 −27.88 −16.88 −16.46
1,1,2,2,3,3 16.74 17.12 17.14 −33.67 −20.09 −19.77
1,1,2,2,0.5,0.5 17.25 17.61 17.65 −18.38 −11.09 −10.67
1,1,1,1,1,∞ 16.98 5.978 17.36 −25.00 −∞ −15.60
1,1,1,1,2,∞ 16.88 5.939 17.26 −29.17 −∞ −17.22
1,1,1,2,2,∞ 16.78 5.900 17.15 −33.75 −∞ −19.76
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TABLE II

Lower bounds for six-body systems with some non power-law potentials: The
Coulomb+Linear and the Coulomb+Harmonic potentials.

Potential Vij = rij − 1/rij Potential Vij = r2ij − 1/rij

m1, . . . ,m5 Enaïve Eimproved Eolb Enaïve Eimproved Eolb

1,1,1,1,1,1 −10.67 0.883 0.883 −13.42 −0.740 −0.740
1,1,1,1,1,3 −14.59 −3.232 −2.192 −17.39 −5.381 −4.236
1,1,1,1,1,0.5 −7.544 3.389 3.450 −10.03 2.256 2.369
1,1,1,1,2,2 −16.45 −3.896 −3.533 −19.27 −6.162 −5.737
1,1,1,1,0.5,0.5 −4.660 5.675 5.839 −6.867 5.076 5.341
1,1,1,2,2,2 −19.98 −6.394 −6.100 −22.80 −8.890 −8.542
1,1,1,1,2,3 −17.99 −5.519 −4.649 −20.80 −7.913 −6.952
1,1,1,1,2,0.5 −9.951 1.101 1.541 −12.51 −0.445 0.117
1,1,1,2,2,0.5 −12.79 −1.101 −0.574 −15.39 −2.977 −2.315
1,1,1,2,2,3 −21.82 −7.998 −7.368 −24.61 −10.59 −9.890
1,1,2,2,3,3 −28.46 −12.41 −11.93 −31.16 −15.19 −14.67
1,1,2,2,0.5,0.5 −9.363 1.359 2.172 −11.72 −0.092 0.949
1,1,1,1,1,∞ −18.16 −∞ −5.244 −20.88 −∞ −7.559
1,1,1,1,2,∞ −22.93 −∞ −8.353 −25.63 −∞ −10.88
1,1,1,2,2,∞ −28.13 −∞ −11.81 −30.79 −∞ −14.50

resolution of the two-body Schrödinger equation inside the optimization pro-
cess which makes the numerical calculation of the optimized lower bound
more complicated.

A variational calculation allows us to determine an upper bound for the
ground state energy of an N -body system, which when combined with the
optimized lower bound determine a frame for the ground state energy lying
between. The following figure, Fig. 1, shows the variation of lower bounds:
the naïve bound, Enaïve, the improved bound, Eimproved, and the optimized
bound Eolb as functions of the particle mass. We have considered a 5-body
system with Coulombian interactions V (ij) = −1/rij , where we have fixed
the masses of all particles with the exception of one mass, m5, which we
leave variable. We have also plotted in the same figure an upper bound,
Evariational, obtained, by a variational calculation using a trial wave function
of Gaussian form

Ψ(ρ1,ρ2,ρ3,ρ4) = B exp

− 4∑
i=j=1

Aijρiρj

 , (6.1)

where ρ1, ρ2, ρ3 and ρ4 are Jacobi coordinates, B is a normalized constant
and Aij are variational parameters determined by minimizing the expecta-
tion value of the Hamiltonian for the trial wave function.
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Fig. 1. Lower and upper bounds for 5-body system with Coulombian interactions
V (ij) = −1/rij : m1 = m2 = 1, m3 = m4 = 2 and m5 variable.

7. Conclusion

An optimized lower bound derived initially for the ground state ener-
gies of three-body [1] and four-body [2] Hamiltonians, has been generalized
recently for the ground state energy of an N -body Hamiltonian with arbi-
trary N [4], with particular emphasis on the five-body case [3]. The pro-
cedure applies under the two conditions of non-relativistic kinematics and
translationally invariant two-body forces. In this paper, we have compared
this optimized lower bound with other lower bounds, namely the so-called
naïve [6–11] and improved lower bounds [14–16]. We have considered various
mass configurations, various forms of the interaction potential and different
values of N , the number of bodies. In the case of harmonic interactions, the
optimized lower bound becomes saturated, i.e., equal to the ground state
energy, for all mass configurations and all values of N we have considered.
This is not the case for the naïve lower bound which is never saturated. For
the improved lower bound the saturation occurs only for equal mass con-
figurations. In the case of other forms of interactions, the optimized lower
bound is always better, i.e., gives greater values, than both the naïve and
improved lower bounds. Thus the optimized lower bound is always better
than the two other bounds naïve and improved (there is, however, the situa-
tion in the equal mass case where the optimized and improved lower bounds
give identical values) for all mass configurations, all forms of the potential
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and all values of N we have considered. Our investigations are sufficiently
intensive to allow us to make a conclusion: the optimized lower bound is
better than both the naïve and the improved lower bounds.

This work was supported by le Ministère de l’Enseignement Supérieur et
de la Recherche Scientifique of Algeria under grant D00920090096.
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