COMPARISON OF VARIOUS LOWER BOUNDS FOR THE GROUND STATE ENERGY OF AN N-BODY SYSTEM

Kheir-Eddine Boudjemaa ${ }^{\text {a,b } \dagger}$, SAmi R. Zouzou ${ }^{\text {a }} \ddagger$
${ }^{\text {a }}$ Laboratoire de Physique Théorique
Département de Physique, Faculté des Sciences Exactes
Université Mentouri-Constantine, Algeria
${ }^{\mathrm{b}}$ Centre Universitaire de Khenchela, Algeria

(Received August 2, 2010; revised version received September 20, 2010)
This paper is devoted to a comparison of various lower bounds, the socalled optimized, naïve and improved lower bounds on the ground state energies of N-body systems with non-relativistic kinematics and translationally invariant two-body interactions. The optimized lower bound proves, in all cases, to be better than the improved and the naïve bounds.

PACS numbers: 03.65.-w

1. Introduction

As is generally admitted, the N-body problem is extremely difficult to deal with. Even the most simple cases of a one-body problem in a central potential or the two-body problem with translationally and rotationally invariant interaction can be solved only for particular forms of the interaction potential. This leads to the development of approximate methods of resolution of the Schrödinger equation. However, the things complicate quickly with N, requiring considerable calculational facilities. An alternative to numerical calculations are exact results. Among them, the lower bounds for the ground state energy occupy a particular place. Recently, we have generalized a lower bound initially derived for three- [1] and four-body [2] systems to N-body systems [3-5], with arbitrary N, under the two assumptions of nonrelativistic kinematics and translationally invariant two-body interactions, that is to N-body systems governed by Hamiltonians of the form

[^0]\[

$$
\begin{equation*}
H=\sum_{i=1}^{N} \frac{1}{2 m_{i}} \vec{p}_{i}^{2}+\sum_{i<j=1}^{N} V^{(i j)}\left(\vec{r}_{i j}\right) \tag{1.1}
\end{equation*}
$$

\]

where $m_{i}, \vec{r}_{i}, \vec{p}_{i}$ stand, respectively, for the mass, the position and the linear momentum of the i th particle. $\vec{r}_{i j}:=\vec{r}_{i}-\vec{r}_{j}, i \neq j=1, \ldots, N$. This bound, named optimized lower bound, proves to be very interesting. Among other things, it proves to be saturated in the case of harmonic interactions, for all mass configurations and all values of the coupling constants. This property of saturability is something like a label of quality of the optimized lower bound. Other lower bounds on the market, the so-called naïve and improved lower bounds, do not satisfy this property of saturability. The objective of this paper is to compare the optimized, the naïve and the improved lower bounds for different forms of the two-body interaction potentials. This paper is organized as follows. In Section 2 and 3 the naïve and the improved lower bounds are presented in turn, and then compared to each other in Section 4. The optimized lower bound is presented in Section 5. Section 6 is devoted to numerical results and Section 7 to a general conclusion and perspectives.

2. Naïve lower bound

Historically, the naïve lower bound [6-11] was the first to be established. Its starting point is the following decomposition of the kinetic energy term

$$
\begin{equation*}
\sum_{i=1}^{N} \frac{\vec{p}_{i}^{2}}{2 m_{i}}=\frac{1}{N-1} \sum_{i<j=1}^{N}\left(\frac{\vec{p}_{i}^{2}}{2 m_{i}}+\frac{\vec{p}_{j}^{2}}{2 m_{j}}\right) . \tag{2.1}
\end{equation*}
$$

The Hamiltonian H may then be rewritten as a sum of two-body Hamiltonians $H_{i j}^{\prime(2)}$

$$
\begin{equation*}
H=\sum_{i=1}^{N} H_{i j}^{\prime(2)} \tag{2.2}
\end{equation*}
$$

with

$$
\begin{equation*}
H_{i j}^{\prime(2)}=\frac{1}{N-1}\left(\frac{\vec{p}_{i}^{2}}{2 m_{i}}+\frac{\vec{p}_{j}^{2}}{2 m_{j}}\right)+V^{(i j)}\left(\vec{r}_{i j}\right) . \tag{2.3}
\end{equation*}
$$

$H_{i j}^{(2)}$ may be rewritten as

$$
\begin{equation*}
H_{i j}^{\prime(2)}=\frac{\vec{P}_{i j}^{2}}{2(N-1)\left(m_{i}+m_{j}\right)}+\frac{\vec{p}_{i j}^{2}}{2 \mu_{i j}}+V^{(i j)}\left(\vec{r}_{i j}\right), \tag{2.4}
\end{equation*}
$$

where $\vec{P}_{i j}$ denotes the sum of the momenta \vec{p}_{i} and \vec{p}_{j}

$$
\begin{equation*}
\vec{P}_{i j}:=\vec{p}_{i}+\vec{p}_{j} \tag{2.5}
\end{equation*}
$$

$\vec{p}_{i j}$ is a conjugate momentum of $\vec{r}_{i j}:=\vec{r}_{i}-\vec{r}_{j}$

$$
\begin{equation*}
\vec{p}_{i j}:=\frac{m_{i} m_{j}}{m_{i}+m_{j}}\left(\frac{\vec{p}_{i}}{m_{i}}-\frac{\vec{p}_{j}}{m_{j}}\right)=\frac{m_{j} \vec{p}_{i}-m_{i} \vec{p}_{j}}{m_{i}+m_{j}} \tag{2.6}
\end{equation*}
$$

and $\mu_{i j}$ is the reduced mass of two particles of masses $(N-1) m_{i}$ and $(N-1) m_{j}$

$$
\begin{equation*}
\mu_{i j}=(N-1) \frac{m_{i} m_{j}}{m_{i}+m_{j}} \tag{2.7}
\end{equation*}
$$

Thus

$$
\begin{equation*}
H=\sum_{i<j=1}^{N} \frac{\vec{P}_{i j}^{2}}{2(N-1) m_{i} m_{j}}+\sum_{i<j=1}^{N} H_{i j}^{(2)} \tag{2.8}
\end{equation*}
$$

with

$$
\begin{equation*}
H_{i j}^{(2)}=\frac{\vec{p}_{i j}^{2}}{2 \mu_{i j}}+V^{(i j)}\left(\vec{r}_{i j}\right) \tag{2.9}
\end{equation*}
$$

Let $|\Psi\rangle$ be the unknown normalized ground state of the system and E the corresponding ground state energy. Then

$$
\begin{equation*}
E=\langle\Psi| H|\Psi\rangle=\langle\Psi| \sum_{i<j=1}^{N} \frac{\vec{P}_{i j}^{2}}{2(N-1)\left(m_{i}+m_{j}\right)}|\Psi\rangle+\langle\Psi| \sum_{i<j=1}^{N} H_{i j}^{(2)}|\Psi\rangle \tag{2.10}
\end{equation*}
$$

Since $\vec{P}_{i j}^{2} /\left(2(N-1) m_{i} m_{j}\right)$ is a positive definite operator, then

$$
\begin{equation*}
\langle\Psi| \frac{\vec{P}_{i j}^{2}}{2(N-1) m_{i} m_{j}}|\Psi\rangle \geq 0 \tag{2.11}
\end{equation*}
$$

This is on one hand. On the other hand, by virtue of the variational principle

$$
\begin{equation*}
\langle\Psi| H_{i j}^{(2)}|\Psi\rangle \geq E_{i j}^{(2)}\left(\mu_{i j}\right) \tag{2.12}
\end{equation*}
$$

where $E_{i j}^{(2)}\left(\mu_{i j}\right)$ denotes the ground state energy of the two-body Hamiltonian $H_{i j}^{(2)}$. Hence

$$
\begin{equation*}
E \geq \sum_{i<j=1}^{N} E_{i j}^{(2)}\left(\mu_{i j}\right) \tag{2.13}
\end{equation*}
$$

The right-hand side of the inequality (2.13) is called the naïve lower bound and is denoted $E_{\text {naïve }}$, namely

$$
\begin{equation*}
E_{\text {naïve }}=\sum_{i<j=1}^{N} E_{i j}^{(2)}\left(\mu_{i j}\right) \tag{2.14}
\end{equation*}
$$

One easily sees that one default of the naïve lower bound is to replace the expectation value of each one of the positive definite operators $\vec{P}_{i j}^{2} /\left(2(N-1) m_{i} m_{j}\right)$ by zero, which is a rather crude approximation. This has lead to the development of another lower bound, known in the literature as the improved lower bound. We will present this bound in the next section, but before that let us consider the important particular case of a two-body power law potential

$$
\begin{equation*}
V^{(i j)}\left(\vec{r}_{i j}\right)=\lambda_{i j} r_{i j}^{\nu_{i j}} \tag{2.15}
\end{equation*}
$$

where $\lambda_{i j}$, the coupling constant, and $\nu_{i j}$ the exponent of the power law potential are of the same sign. By virtue of the scaling laws [12,13]

$$
\begin{equation*}
E^{(2)}(a,|\lambda|, \nu)=a^{\frac{\nu}{2+\nu}}|\lambda|^{\frac{2}{2+\nu}} E^{(2)}(1,1, \nu) \tag{2.16}
\end{equation*}
$$

where $E^{(2)}(a,|\lambda|, \nu)$ and $E^{(2)}(1,1, \nu)$ stand respectively for the ground state energies of the two Hamiltonians

$$
\begin{equation*}
H^{(2)}(a,|\lambda|, \nu):=a \vec{p}^{2}+\operatorname{sign}(\nu)|\lambda| r^{\nu} \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
H^{(2)}(\nu):=\vec{p}^{2}+\operatorname{sign}(\nu) r^{\nu} \tag{2.18}
\end{equation*}
$$

The naïve lower bound may then be put in the form

$$
\begin{equation*}
E_{\text {naïve }}=\sum_{i<j=1}^{N}\left(2 \mu_{i j}\right)^{\frac{-\nu_{i j}}{2+\nu_{i j}}}\left|\lambda_{i j}\right|^{\frac{2}{2+\nu_{i j}}} E^{(2)}\left(1,1, \nu_{i j}\right) \tag{2.19}
\end{equation*}
$$

Let us consider now in turn, mass configurations up to three distinct masses. Throughout this paper, we will restrict ourselves to the case where $\lambda_{i j}$ and $\nu_{i j}$ depend only on the masses m_{i} and m_{j} of the two involved particles.

2.1. Configuration $(N \times m)$

This is the case of a system with all masses equal. Thus

$$
\begin{equation*}
\mu_{i j}=(N-1) \frac{m}{2}, \quad i<j=1, \ldots, N \tag{2.20}
\end{equation*}
$$

is independent of the pair under consideration. Moreover, we have one coupling constant $\lambda_{i j}=\lambda$ and one power $\nu_{i j}=\nu$. Therefore, the naïve lower bound simplifies to

$$
\begin{equation*}
E_{\text {naïve }}=\frac{N(N-1)}{2}((N-1) m)^{\frac{-\nu}{2+\nu}}|\lambda|^{\frac{2}{2+\nu}} E^{(2)}(1,1, \nu) . \tag{2.21}
\end{equation*}
$$

2.2. Configuration ($n_{1} \times m_{1}, n_{2} \times m_{2}$)

This is the case of systems constituted of $n_{1}\left(n_{1}<N\right)$ particles of mass m_{1} and $n_{2}\left(n_{2}=N-n_{1}\right)$ particles of mass m_{2}. We have then three different reduced masses

$$
\begin{array}{ll}
\mu_{i j}=\mu_{m_{1} m_{1}}=(N-1) \frac{m_{1}}{2}, & i<j=1, \ldots, n_{1}, \\
\mu_{i j}=\mu_{m_{2} m_{2}}=(N-1) \frac{m_{2}}{2}, & i<j=n_{1}+1, \ldots, N, \\
\mu_{i j}=\mu_{m_{1} m_{2}}=(N-1) \frac{m_{1} m_{2}}{m_{1}+m_{2}}, & i=1, \ldots, n_{1}, \quad j=n_{1}+1, \ldots, N, \tag{2.22}
\end{array}
$$

three coupling constants

$$
\begin{array}{ll}
\lambda_{i j}=\lambda_{m_{1} m_{1}}, & i<j=1, \ldots, n_{1}, \\
\lambda_{i j}=\lambda_{m_{2} m_{2}}, & i<j=n_{1}+1, \ldots, N, \\
\lambda_{i j}=\lambda_{m_{1} m_{2}}, & i=1, \ldots, n_{1}, \quad j=n_{1}+1, \ldots, N, \tag{2.23}
\end{array}
$$

and three exponents

$$
\begin{align*}
\nu_{i j} & =\nu_{m_{1} m_{1}}, & & i<j=1, \ldots, n_{1}, \\
\nu_{i j} & =\nu_{m_{2} m_{2}}, & & i<j=n_{1}+1, \ldots, N, \\
\nu_{i j} & =\nu_{m_{1} m_{2}}, & & i=1, \ldots, n_{1}, \quad j=n_{1}+1, \ldots, N . \tag{2.24}
\end{align*}
$$

The general expression of the naïve lower bound simplifies to

$$
\begin{align*}
E_{\text {naïve }}= & \frac{n_{1}\left(n_{1}-1\right)}{2}\left(2 \mu_{m_{1} m_{1}}\right)^{\frac{-\nu_{m_{1} m_{1}}}{2+\nu_{m_{1} m_{1}}}}\left|\lambda_{m_{1} m_{1}}\right|^{\frac{2}{2+\nu_{1} m_{1}}} E^{(2)}\left(1,1, \nu_{m_{1} m_{1}}\right) \\
& +\frac{n_{2}\left(n_{2}-1\right)}{2}\left(2 \mu_{m_{2} m_{2}}\right)^{\frac{-\nu_{2} m_{2} m_{2}}{2+\nu_{m_{2} m_{2}}}}\left|\lambda_{m_{2} m_{2}}\right|^{\frac{2}{2+\nu_{m_{2} m_{2}}}} E^{(2)}\left(1,1, \nu_{m_{2} m_{2}}\right) \\
& +n_{1} n_{2}\left(2 \mu_{m_{1} m_{2}}\right)^{\frac{-\nu_{m_{1} m_{2}}^{2}}{2+\nu_{m_{1} m_{2}}}}\left|\lambda_{m_{1} m_{2}}\right|^{\frac{2}{2+\nu_{m_{1} m_{2}}}} E^{(2)}\left(1,1, \nu_{m_{1} m_{2}}\right),(2.25) \tag{2.25}
\end{align*}
$$

where $\mu_{m_{1} m_{1}}, \mu_{m_{2} m_{2}}$ and $\mu_{m_{1} m_{2}}$ are given by (2.22).

2.3. Configuration $\left(n_{1} \times m_{1}, n_{2} \times m_{2}, n_{3} \times m_{3}\right)$

Here we consider systems where three distinct masses m_{1}, m_{2} and m_{3} are involved. The particles with masses m_{1}, m_{2} and m_{3} are in numbers of n_{1}, n_{2} and n_{3} respectively with $n_{1}+n_{2}+n_{3}=N$. For this configuration, we have 6 reduced masses, 6 exponents and 6 coupling constants

$$
\begin{align*}
& \mu_{i j}=\mu_{m_{1} m_{1}}=\left(n_{1}-1\right) \frac{m_{1}}{2}, \quad i<j=1, \ldots, n_{1}, \\
& \mu_{i j}=\mu_{m_{2} m_{2}}=\left(n_{2}-1\right) \frac{m_{2}}{2}, \quad i<j=n_{1}+1, \ldots, n_{1}+n_{2}, \\
& \mu_{i j}=\mu_{m_{3} m_{3}}=\left(n_{3}-1\right) \frac{m_{3}}{2}, \quad i<j=n_{1}+n_{2}+1, \ldots, N, \\
& \mu_{i j}=\mu_{m_{1} m_{2}}=(N-1) \frac{m_{1} m_{2}}{m_{1}+m_{2}}, \quad i=1, \ldots, n_{1}, \\
& j=n_{1}+1, \ldots, n_{1}+n_{2}, \\
& \mu_{i j}=\mu_{m_{1} m_{3}}=(N-1) \frac{m_{1} m_{3}}{m_{1}+m_{3}}, \quad i=1, \ldots, n_{1}, \\
& j=n_{1}+n_{2}+1, \ldots, N, \\
& \mu_{i j}=\mu_{m_{2} m_{3}}=(N-1) \frac{m_{2} m_{3}}{m_{2}+m_{3}}, \quad i=n_{1}+1, \ldots, n_{1}+n_{2}, \\
& j=n_{1}+n_{2}+1, \ldots, N, \tag{2.26}\\
& \nu_{i j}=\nu_{m_{1} m_{1}}, \quad i<j=1, \ldots, n_{1}, \\
& \nu_{i j}=\nu_{m_{2} m_{2}}, \quad i<j=n_{1}+1, \ldots, n_{1}+n_{2}, \\
& \nu_{i j}=\nu_{m_{3} m_{3}}, \quad i<j=n_{1}+n_{2}+1, \ldots, N, \\
& \nu_{i j}=\nu_{m_{1} m_{2}}, \quad i=1, \ldots, n_{1}, \quad j=n_{1}+1, \ldots, n_{1}+n_{2}, \\
& \nu_{i j}=\nu_{m_{1} m_{3}}, \quad i=1, \ldots, n_{1}, \quad j=n_{1}+n_{2}+1, \ldots, N, \\
& \nu_{i j}=\nu_{m_{2} m_{3}}, \quad i=n_{1}+1, \ldots, n_{1}+n_{2}, \\
& j=n_{1}+n_{2}+1, \ldots, N, \tag{2.27}
\end{align*}
$$

and

$$
\begin{array}{ll}
\lambda_{i j}=\lambda_{m_{1} m_{1}}, & \\
\lambda_{i j}=\lambda_{m_{2} m_{2}}, & \\
i<j=1, \ldots, n_{1}, \\
\lambda_{i j}=\lambda_{m_{3} m_{3}}, & \\
i<j=n_{1}+1, \ldots, n_{1}+n_{2}, \\
\lambda_{i j}=\lambda_{m_{1} m_{2}}, \quad & \\
i=1, \ldots, N, n_{1}, \quad j=n_{1}+1, \ldots, n_{1}+n_{2}, \tag{2.28}\\
\lambda_{i j}=\lambda_{m_{1} m_{3}}, \quad & \\
\lambda_{i j}=\lambda_{m_{2} m_{3}}, \quad & \\
& i=n_{1}+1, \ldots, n_{1}+n_{2}, \\
& j=n_{1}+n_{2}+1, \ldots, N .
\end{array}
$$

The naïve lower bound then reduces to

$$
\begin{align*}
E_{\text {naïve }} & =\frac{n_{1}\left(n_{1}-1\right)}{2}\left(2 \mu_{m_{1} m_{1}}\right)^{\frac{-\nu_{m_{1} m_{1}}^{2+m_{1} m_{1}}}{2}}\left|\lambda_{m_{1} m_{1}}\right|^{\frac{2}{2+m_{1} m_{1}}} E^{(2)}\left(1,1, \nu_{m_{1} m_{1}}\right) \\
& +\frac{n_{2}\left(n_{2}-1\right)}{2}\left(2 \mu_{m_{2} m_{2}}\right)^{\frac{-\nu_{m_{2} m_{2}}}{2+\nu_{m_{2} m_{2}}}}\left|\lambda_{m_{2} m_{2}}\right|^{\frac{2}{2+\nu_{m_{2} m_{2}}}} E^{(2)}\left(1,1, \nu_{m_{2} m_{2}}\right) \\
& +\frac{n_{3}\left(n_{3}-1\right)}{2}\left(2 \mu_{m_{3} m_{3}}\right)^{\frac{-\nu_{m_{3} m_{3}}^{2+m_{3} m_{3}}}{}\left|\lambda_{m_{3} m_{3}}\right|^{\frac{2}{2+\nu_{m_{3} m_{3}}}} E^{(2)}\left(1,1, \nu_{m_{3} m_{3}}\right)} \\
& +n_{1} n_{2}\left(2 \mu_{m_{1} m_{2}}\right)^{\frac{-\nu_{m_{1} m_{2}}}{2+\nu_{1} m_{2}}}\left|\lambda_{m_{1} m_{2}}\right|^{\frac{2}{2+\nu_{1} m_{2}}} E^{(2)}\left(1,1, \nu_{m_{1} m_{2}}\right) \\
& +n_{1} n_{3}\left(2 \mu_{m_{1} m_{3}}\right)^{\frac{-\nu_{1} m_{3}}{2+\nu_{1} m_{3}}}\left|\lambda_{m_{1} m_{3}}\right|^{\frac{2}{2+\nu_{1} m_{3}}} E^{(2)}\left(1,1, \nu_{m_{1} m_{3}}\right) \\
& +n_{2} n_{3}\left(2 \mu_{m_{2} m_{3}}\right)^{\frac{-\nu_{2} m_{3}}{2+\nu_{m_{2} m_{3}}}}\left|\lambda_{m_{2} m_{3}}\right|^{\frac{2}{2+\nu_{m_{2} m_{3}}}} E^{(2)}\left(1,1, \nu_{m_{2} m_{3}}\right) .(2.29 \tag{2.29}
\end{align*}
$$

3. Improved lower bound

A default of the naïve lower bound is that the centre of mass energy is not separated from the Hamiltonian and this leads, as we have already noticed, to the replacement of the expectation values of positive definite operators by zero, a rather crude approximation. This fact motivated the development of another lower bound, the so-called improved lower bound [14-16] which we will present in what follows. Here the starting point is the following identity

$$
\begin{equation*}
\sum_{i=1}^{N} \frac{\vec{p}_{i}^{2}}{2 m_{i}}=\frac{\boldsymbol{P}^{2}}{2 M}+\sum_{i<j=1}^{N} \frac{\left(m_{j} \vec{p}_{i}-m_{i} \vec{p}_{j}\right)^{2}}{2 m_{i} m_{j} M} \tag{3.1}
\end{equation*}
$$

where $\boldsymbol{P}^{2} /(2 M)$ stands for the centre of mass kinetic energy $\left(M=\sum_{i=1}^{N} m_{i}\right)$. The Hamiltonian of the system may then be rewritten as

$$
\begin{equation*}
H=\frac{\boldsymbol{P}^{2}}{2 M}+\sum_{i<j=1}^{N} \widetilde{H}_{i j}^{(2)} \tag{3.2}
\end{equation*}
$$

where $\widetilde{H}_{i j}^{(2)}$ is a two-body Hamiltonian

$$
\begin{equation*}
\widetilde{H}_{i j}^{(2)}=\frac{\left(m_{j} \vec{p}_{i}-m_{i} \vec{p}_{j}\right)^{2}}{2 m_{i} m_{j} M}+V^{(i j)}\left(\vec{r}_{i j}\right) \tag{3.3}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
\vec{p}_{i j}:=\frac{m_{j} \vec{p}_{i}-m_{i} \vec{p}_{j}}{m_{i}+m_{j}}, \quad i<j=1, \ldots, N \tag{3.4}
\end{equation*}
$$

is a conjugate momentum of $\vec{r}_{i j}$ and it is more judicious to rewrite $\widetilde{H}_{i j}^{(2)}$ by explicitly showing $\vec{p}_{i j}$

$$
\begin{equation*}
\widetilde{H}_{i j}^{(2)}=\frac{\vec{p}_{i j}^{2}}{2 \widetilde{\mu}_{i j}}+V^{(i j)}\left(\vec{r}_{i j}\right) \tag{3.5}
\end{equation*}
$$

with

$$
\begin{equation*}
\widetilde{\mu}_{i j}=\frac{m_{i} m_{j} M}{\left(m_{i}+m_{j}\right)^{2}}, \quad i<j=1, \ldots, N \tag{3.6}
\end{equation*}
$$

Denoting again by $|\Psi\rangle$ the normalized ground state of the system and E the corresponding energy we have

$$
\begin{equation*}
E=\langle\Psi| H|\Psi\rangle=\langle\Psi| \frac{\boldsymbol{P}^{2}}{2 M}|\Psi\rangle+\sum_{i<j=1}^{N}\langle\Psi| \widetilde{H}_{i j}^{(2)}|\Psi\rangle \tag{3.7}
\end{equation*}
$$

Since $|\Psi\rangle$ is invariant under translations, it follows that $\boldsymbol{P}|\Psi\rangle=\mathbf{0}$ and

$$
\begin{equation*}
\langle\Psi| \frac{\boldsymbol{P}^{2}}{2 M}|\Psi\rangle=0 \tag{3.8}
\end{equation*}
$$

Applying the variational principle

$$
\begin{equation*}
\langle\Psi| \widetilde{H}_{i j}^{(2)}|\Psi\rangle \geq E_{i j}^{(2)}\left(\widetilde{\mu}_{i j}\right) \tag{3.9}
\end{equation*}
$$

where $E_{i j}^{(2)}\left(\widetilde{\mu}_{i j}\right)$ stands for the ground state energy of the two-body Hamiltonian $\widetilde{H}_{i j}^{(2)}$. Thus

$$
\begin{equation*}
E \geq \sum_{i<j=1}^{N} E_{i j}^{(2)}\left(\widetilde{\mu}_{i j}\right) \tag{3.10}
\end{equation*}
$$

We obtain in this way a lower bound, the right hand side of the previous inequality, called improved lower bound and denoted $E_{\text {improved }}$, i.e.,

$$
\begin{equation*}
E_{\mathrm{improved}}=\sum_{i<j=1}^{N} E_{i j}^{(2)}\left(\widetilde{\mu}_{i j}\right) \tag{3.11}
\end{equation*}
$$

As in the case of the naïve lower bound, let us consider the interesting case of a two-body power law potential, (2.15). Making use of scaling laws, (2.16), we have in this case

$$
\begin{equation*}
E_{\text {improved }}=\sum_{i<j=1}^{N}\left(\frac{2 m_{i} m_{j} M}{\left(m_{i}+m_{j}\right)^{2}}\right)^{\frac{-\nu_{i j}}{2+\nu_{i j}}}\left|\lambda_{i j}\right|^{\frac{2}{2+\nu_{i j}}} E^{(2)}\left(1,1, \nu_{i j}\right) \tag{3.12}
\end{equation*}
$$

where $E^{(2)}\left(1,1, \nu_{i j}\right)$ stands for the ground state energy of the Hamiltonian $H^{(2)}\left(\nu_{i j}\right),(2.18)$. As in the case of the naïve lower bound, let us consider in turn the mass configurations $(N \times m),\left(n_{1} \times m_{1}, n_{2} \times m_{2}\right)$ and $\left(n_{1} \times m_{1}, n_{2} \times\right.$ $m_{2}, n_{3} \times m_{3}$) with always the same assumptions on the exponents $\nu_{i j}$ and the coupling constants $\lambda_{i j}$, that is $\nu_{i j}$ and $\lambda_{i j}$ depending uniquely on the masses of the two involved particles.

3.1. Configuration $(N \times m)$

We have one reduced mass

$$
\begin{equation*}
\widetilde{\mu}_{i j}=\widetilde{\mu}=\frac{N m}{4}, \tag{3.13}
\end{equation*}
$$

one exponent $\nu_{i j}=\nu$ and one coupling constant $\lambda_{i j}=\lambda$, in which case the improved lower bound, (3.12), reduces to

$$
\begin{equation*}
E_{\text {improved }}=\frac{N(N-1)}{2}\left(\frac{N m}{2}\right)^{\frac{-\nu}{2+\nu}}|\lambda|^{\frac{2}{2+\nu}} E^{(2)}(1,1, \nu) . \tag{3.14}
\end{equation*}
$$

3.2. Configuration $\left(n_{1} \times m_{1}, n_{2} \times m_{2}\right)$

We have three values of the exponents, (2.24), three coupling constants, (2.23), and three reduced masses

$$
\begin{align*}
\widetilde{\mu}_{i j}= & \widetilde{\mu}_{m_{1} m_{1}}=\frac{n_{1} m_{1}+\left(N-n_{1}\right) m_{2}}{4}, \quad i<j=1, \ldots, n_{1}, \\
\widetilde{\mu}_{i j}= & \widetilde{\mu}_{m_{2} m_{2}}=\frac{n_{1} m_{1}+\left(N-n_{1}\right) m_{2}}{4}, \quad i<j=n_{1}+1, \ldots, N, \\
\widetilde{\mu}_{i j}= & \widetilde{\mu}_{m_{1} m_{2}}=\frac{m_{1} m_{2}\left(n_{1} m_{1}+\left(N-n_{1}\right) m_{2}\right)}{\left(m_{1}+m_{2}\right)^{2}}, \\
& i=1, \ldots, n_{1}, \quad j=n_{1}+1, \ldots, N . \tag{3.15}
\end{align*}
$$

The improved lower bound then reduces to

$$
\begin{align*}
E_{\text {improved }}= & \frac{n_{1}\left(n_{1}-1\right)}{2}\left(2 \widetilde{\mu}_{m_{1} m_{1}}\right)^{\frac{-\nu_{m_{1}} m_{1}}{2+\nu_{m_{1} m_{1}}}}\left|\lambda_{m_{1} m_{1}}\right|^{\frac{2}{2+\nu_{m_{1} m_{1}}}} E^{(2)}\left(1,1, \nu_{m_{1} m_{1}}\right) \\
& +\frac{n_{2}\left(n_{2}-1\right)}{2}\left(2 \widetilde{\mu}_{m_{2} m_{2}}\right)^{\frac{-\nu_{m_{2} m_{2}}^{2+\nu_{2}}}{2+m_{2} m_{2}}}\left|\lambda_{m_{2} m_{2}}\right|^{\frac{2}{2+\nu_{m_{2} m_{2}}}} E^{(2)}\left(1,1, \nu_{m_{2} m_{2}}\right) \\
& +n_{1} n_{2}\left(2 \widetilde{\mu}_{m_{1} m_{2}}\right)^{\frac{-m_{1} m_{2}}{2+\nu_{m_{1} m_{2}}}}\left|\lambda_{m_{1} m_{2}}\right|^{\frac{2}{2+\nu_{m_{1} m_{2}}}} E^{(2)}\left(1,1, \nu_{m_{1} m_{2}}\right) \cdot(3 . \tag{3.16}
\end{align*}
$$

3.3. Configuration $\left(n_{1} \times m_{1}, n_{2} \times m_{2}, n_{3} \times m_{3}\right)$

We have six reduced masses

$$
\begin{align*}
\widetilde{\mu}_{i j}= & \widetilde{\mu}_{m_{1} m_{1}}=\frac{n_{1} m_{1}+n_{2} m_{2}+n_{3} m_{3}}{4}, \quad i<j=1, \ldots, n_{1} \\
\widetilde{\mu}_{i j}= & \widetilde{\mu}_{m_{2} m_{2}}=\frac{n_{1} m_{1}+n_{2} m_{2}+n_{3} m_{3}}{4}, \quad i<j=n_{1}+1, \ldots, n_{1}+n_{2} \\
\widetilde{\mu}_{i j}= & \widetilde{\mu}_{m_{3} m_{3}}=\frac{n_{1} m_{1}+n_{2} m_{2}+n_{3} m_{3}}{4}, \quad i<j=n_{1}+n_{2}+1, \ldots, N, \\
\widetilde{\mu}_{i j}= & \widetilde{\mu}_{m_{1} m_{2}}=m_{1} m_{2} \frac{\left(n_{1} m_{1}+n_{2} m_{2}+n_{3} m_{3}\right)}{\left(m_{1}+m_{2}\right)^{2}}, \\
& i=1, \ldots, n_{1}, \quad j=n_{1}+1, \ldots, n_{1}+n_{2}, \\
\widetilde{\mu}_{i j}= & \widetilde{\mu}_{m_{1} m_{3}}=m_{1} m_{3} \frac{\left(n_{1} m_{1}+n_{2} m_{2}+n_{3} m_{3}\right)}{\left(m_{1}+m_{3}\right)^{2}}, \\
& i=1, \ldots, n_{1}, \quad j=n_{1}+n_{2}+1, \ldots, N, \\
\widetilde{\mu}_{i j}= & \widetilde{\mu}_{m_{2} m_{3}}=m_{2} m_{3} \frac{\left(n_{1} m_{1}+n_{2} m_{2}+n_{3} m_{3}\right)}{\left(m_{2}+m_{3}\right)^{2}}, \\
& i=n_{1}+1, \ldots, n_{1}+n_{2}, \quad j=n_{1}+n_{2}+1, \ldots, N, \tag{3.17}
\end{align*}
$$

six values of the exponent $\nu_{i j},(2.27)$, and six coupling constants $\lambda_{i j},(2.28)$. The improved lower bound then reduces to

$$
\begin{aligned}
E_{\text {improved }} & =\frac{n_{1}\left(n_{1}-1\right)}{2}\left(2 \widetilde{\mu}_{m_{1} m_{1}}\right)^{\frac{-m_{1} m_{1}}{2+\nu_{m_{1} m_{1}}}}\left|\lambda_{m_{1} m_{1}}\right|^{\frac{2}{2+\nu_{m_{1} m_{1}}}} E^{(2)}\left(1,1, \nu_{m_{1} m_{1}}\right) \\
& +\frac{n_{2}\left(n_{2}-1\right)}{2}\left(2 \widetilde{\mu}_{m_{2} m_{2}}\right)^{\frac{-\nu_{2} m_{2}}{2+\nu_{m_{2} m_{2}}}}\left|\lambda_{m_{2} m_{2}}\right|^{\frac{2}{2+\nu_{m_{2} m_{2}}}} E^{(2)}\left(1,1, \nu_{m_{2} m_{2}}\right) \\
& +\frac{n_{3}\left(n_{3}-1\right)}{2}\left(2 \widetilde{\mu}_{m_{3} m_{3}}\right)^{\frac{-\nu_{m_{3} m_{3}}^{2+m_{3} m_{3}}}{}}\left|\lambda_{m_{3} m_{3}}\right|^{\frac{2}{2+m_{3} m_{3}}} E^{(2)}\left(1,1, \nu_{m_{3} m_{3}}\right) \\
& +n_{1} n_{2}\left(2 \widetilde{\mu}_{m_{1} m_{1}}\right)^{\frac{-\nu_{m_{1} m_{2}}^{2}}{2+m_{m_{1} m_{2}}}}\left|\lambda_{m_{1} m_{2}}\right|^{\frac{2}{2+\nu_{m_{1} m_{2}}}} E^{(2)}\left(1,1, \nu_{m_{1} m_{2}}\right) \\
& +n_{1} n_{3}\left(2 \widetilde{\mu}_{m_{1} m_{3}}\right)^{\frac{-\nu_{1} m_{3}}{2+\nu_{1} m_{3}}}\left|\lambda_{m_{1} m_{3}}\right|^{\frac{2}{2+\nu_{m_{1} m_{3}}}} E^{(2)}\left(1,1, \nu_{m_{1} m_{3}}\right) \\
& +n_{2} n_{3}\left(2 \widetilde{\mu}_{m_{2} m_{3}}\right)^{\frac{-m_{2} m_{3}}{2+\nu_{m_{2} m_{3}}}}\left|\lambda_{m_{2} m_{3}}\right|^{\frac{2}{2+\nu_{m_{2} m_{3}}}} E^{(2)}\left(1,1, \nu_{m_{2} m_{3}}\right) .(3.18)
\end{aligned}
$$

4. Comparison of the naïve and improved lower bounds

In reality, the goal at the origin of the introduction of the improved lower bound is only partially reached. Let us content ourselves with two examples. One example where the improved lower bound is better than the naïve lower bound and a counter-example where it is the naïve lower bound that is better than the improved one.

First example

Let us consider the case of masses all equal $m_{1}=\ldots=m_{N}=m$. The naïve and improved lower bounds then reduce respectively to

$$
\begin{align*}
E_{\text {naïve }} & =\frac{N(N-1)}{2} E^{(2)}\left(\frac{(N-1) m}{2}\right) \tag{4.1}\\
E_{\text {improved }} & =\frac{N(N-1)}{2} E^{(2)}\left(\frac{N m}{4}\right) \tag{4.2}
\end{align*}
$$

It is clear that the reduced mass, $N m / 4$, involved in $E_{\text {improved }}$ is lower than the reduced mass, $(N-1) m / 2$, involved in $E_{\text {naïve }}$. Making use of the Feynman-Hellmann theorem [17] which states that for a Hamiltonian H depending on a parameter

$$
\begin{equation*}
H=H(\alpha) \tag{4.3}
\end{equation*}
$$

the corresponding energy levels depend on α according to

$$
\begin{equation*}
\frac{\partial E(\alpha)}{\partial \alpha}=\langle\Psi(\alpha)| \frac{\partial H(\alpha)}{\partial \alpha}|\Psi(\alpha)\rangle \tag{4.4}
\end{equation*}
$$

with

$$
\begin{equation*}
H(\alpha)|\Psi(\alpha)\rangle=E(\alpha)|\Psi(\alpha)\rangle \tag{4.5}
\end{equation*}
$$

to the case of the Hamiltonian $H^{(2)}=\vec{p}^{2} /(2 \mu)+V(\vec{r})$, with the reduced mass μ as a parameter, one obtains

$$
\begin{equation*}
\frac{\partial E(\mu)}{\partial \mu}=-\langle\Psi(\mu)| \frac{\vec{p}^{2}}{2 \mu^{2}}|\Psi(\mu)\rangle \tag{4.6}
\end{equation*}
$$

Since $\vec{p}^{2} /(2 \mu)$ is a positive definite operator

$$
\begin{equation*}
\frac{\partial E(\mu)}{\partial \mu} \leq 0 \tag{4.7}
\end{equation*}
$$

then $E(\mu)$ decreases with μ. This is nothing else but the translation of the intuitively well understood property that the inertia favors binding. Hence

$$
\begin{equation*}
E^{(2)}\left(\frac{N m}{4}\right)>E^{(2)}\left(\frac{(N-1) m}{2}\right) \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{\text {improved }}>E_{\text {naïve }} \tag{4.9}
\end{equation*}
$$

Second example

Let us consider the mass configuration $\left((N-1) \times m_{1}, 1 \times m_{2}\right)$, where the naïve and the improved lower bounds reduce respectively to

$$
E_{\text {naïve }}=\frac{(N-1)(N-2)}{2} E^{(2)}\left(\frac{(N-1) m_{1}}{2}\right)+(N-1) E^{(2)}\left(\frac{(N-1) m_{1} m_{2}}{m_{1}+m_{2}}\right)
$$

and

$$
\begin{aligned}
E_{\text {improved }}= & \frac{(N-1)(N-2)}{2} E^{(2)}\left(\frac{(N-1) m_{1}+m_{2}}{4}\right) \\
& +(N-1) E^{(2)}\left(m_{1} m_{2} \frac{(N-1) m_{1}+m_{2}}{\left(m_{1}+m_{2}\right)^{2}}\right)
\end{aligned}
$$

In the case of a power law potential with the same exponent ν and the same coupling constant λ for all the pairs of particles, $E_{\text {naïve }}$ and $E_{\text {improved }}$ reduce respectively to

$$
\begin{align*}
E_{\text {naïve }}= & |\lambda|^{\frac{2}{2+\nu}}\left(\frac{(N-1)(N-2)}{2}\left((N-1) m_{1}\right)^{\frac{-\nu}{2+\nu}}\right. \\
& \left.+(N-1)\left(2(N-1) \frac{m_{1} m_{2}}{m_{1}+m_{2}}\right)^{\frac{-\nu}{2+\nu}}\right) E^{(2)}(1,1, \nu) \tag{4.10}
\end{align*}
$$

and

$$
\begin{align*}
E_{\text {improved }}= & |\lambda|^{\frac{2}{2+\nu}}\left(\frac{(N-1)(N-2)}{2}\left(\frac{(N-1) m_{1}+m_{2}}{2}\right)^{\frac{-\nu}{2+\nu}}\right. \\
& \left.+(N-1)\left(2 m_{1} m_{2} \frac{(N-1) m_{1}+m_{2}}{\left(m_{1}+m_{2}\right)^{2}}\right)^{\frac{-\nu}{2+\nu}}\right) E^{(2)}(1,1, \nu) \tag{4.11}
\end{align*}
$$

Let us now consider the limit $m_{2} \rightarrow \infty$. For $-2<\nu<0$ and thus $-\nu /(2+\nu)>0$, it is easy to find out, if one bears in mind that $E^{(2)}(1,1, \nu)$ is negative for negative powers ν, that $E_{\text {improved }} \rightarrow-\infty$, while

$$
\begin{align*}
E_{\text {naïve }} \rightarrow & |\lambda|^{\frac{2}{2+\nu}}\left(\frac{(N-1)(N-2)}{2}\left((N-1) m_{1}\right)^{\frac{-\nu}{2+\nu}}\right. \\
& \left.+(N-1)\left(2(N-1) m_{1}\right)^{\frac{-\nu}{2+\nu}}\right) E^{(2)}(1,1, \nu) \tag{4.12}
\end{align*}
$$

remains finite. Therefore,

$$
\begin{equation*}
E_{\text {naïve }}>E_{\text {improved }} \tag{4.13}
\end{equation*}
$$

In other words, the naïve lower bound is better than the improved one.

5. Optimized lower bound

Since the goal behind the introduction of the improved lower bound has been only partially reached, this has lead to the development of a new lower bound: the optimized lower bound [1-5]. The starting point is the following decomposition of the kinetic energy term

$$
\begin{equation*}
\sum_{i=1}^{N} \frac{1}{2 m_{i}} \vec{p}_{i}^{2}=\left(\sum_{j=1}^{N} b_{j} \vec{p}_{j}\right)\left(\sum_{i=1}^{N} \vec{p}_{i}\right)+\sum_{i<j=1}^{N} a_{i j} \vec{p}_{i j}^{2} \tag{5.1}
\end{equation*}
$$

involving the parameters b_{j} and the necessary positive parameters $a_{i j}, i<$ $j=1, \ldots, N$. The $\vec{p}_{i j}$ are linear combinations of the momenta \vec{p}_{k}

$$
\begin{equation*}
\vec{p}_{i j}=\sum_{k=1}^{N} \frac{x_{i j, k}}{2} \vec{p}_{k} \tag{5.2}
\end{equation*}
$$

The factor $1 / 2$ in the expression of $\vec{p}_{i j}$ is a matter of convenience. Without loss of generality, one can take $x_{i j, i}=1$. Then imposing to $\vec{p}_{i j}$ to be a conjugate momentum of $\vec{r}_{i j}$, one ends with $x_{i j, j}=-1$. The decomposition of the kinetic energy term thus involves N parameters $b_{k}, N(N-1) / 2$ parameters $a_{i j}$ and $N(N-1)(N-2) / 2$ parameters $x_{i j, k}$. Identifying both sides of (5.1), one gets $N+N(N-1) / 2$ constraints among the parameters, which one can consider as a system of $N+N(N-1) / 2$ linear equations with the b_{k} and the $a_{i j}$ as unknowns and the $x_{i j, k}$ as parameters. One can then express the $a_{i j}$ and the b_{k} in terms of the $x_{i j, k}$ and the masses m_{1}, \ldots, m_{N}. From now on, the $a_{i j}$ and the b_{k} should be considered as implicit functions of the parameters $x_{i j, k}$. To the decomposition of the kinetic energy term, (5.1), corresponds the following decomposition of the Hamiltonian of the system

$$
\begin{equation*}
H=\left(\sum_{j=1}^{N} b_{j} \vec{p}_{j}\right)\left(\sum_{i=1}^{N} \vec{p}_{i}\right)+\sum_{i<j=1}^{N}\left(a_{i j} \vec{p}_{i j}^{2}+V^{(i j)}\left(\vec{r}_{i j}\right)\right) \tag{5.3}
\end{equation*}
$$

Let $|\Psi\rangle$ denotes the normalized ground state of the system, with E the corresponding energy. Since $|\Psi\rangle$ is invariant under translations, then

$$
\begin{equation*}
\left(\sum_{i=1}^{N} \vec{p}_{i}\right)|\Psi\rangle=\mathbf{0} \tag{5.4}
\end{equation*}
$$

This on one hand. On the other hand, applying the variational principle results in

$$
\begin{equation*}
\langle\Psi|\left(a_{i j} \vec{p}_{i j}^{2}+V^{(i j)}\left(\vec{r}_{i j}\right)\right)|\Psi\rangle \geq E_{i j}^{(2)}\left[a_{i j}\left(x_{k \ell, m}\right)\right] \tag{5.5}
\end{equation*}
$$

where $E_{i j}^{(2)}\left[a_{i j}\left(x_{k \ell, m}\right)\right]$ stands for the ground state energy of the two-body Hamiltonian

$$
\begin{equation*}
H_{i j}^{(2)}\left[a_{i j}\left(x_{k \ell, m}\right)\right]=a_{i j} \vec{p}_{i j}^{2}+V^{(i j)}\left(\vec{r}_{i j}\right) \tag{5.6}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
E \geq \sum_{i<j=1}^{N} E_{i j}^{(2)}\left[a_{i j}\left(x_{k \ell, m}\right)\right] \tag{5.7}
\end{equation*}
$$

We obtain in this way a family of lower bounds for E, a lower bound

$$
\begin{equation*}
\sum_{i<j=1}^{N} E_{i j}^{(2)}\left[a_{i j}\left(x_{k \ell, m}\right)\right] \tag{5.8}
\end{equation*}
$$

for each set of values of the parameters $x_{k \ell, m}$. The best of these bounds, denoted $E_{\text {olb }}$, and called optimized lower bound, corresponds obviously to the values of $x_{k \ell, m}$ which maximize $\sum_{i<j=1}^{N} E_{i j}^{(2)}\left[a_{i j}\left(x_{k \ell, m}\right)\right]$

$$
\begin{equation*}
E_{\mathrm{olb}}:=\max _{\left\{x_{k \ell, m}\right\}} \sum_{i<j=1}^{N} E_{i j}^{(2)}\left[a_{i j}\left(x_{k \ell, m}\right)\right] \tag{5.9}
\end{equation*}
$$

As for the two cases of naïve and improved lower bounds, let us consider the case of a two-body power law potential, (2.15). We have in this case, using scaling laws, (2.16),

$$
\begin{equation*}
E_{\mathrm{olb}}=\max _{\left\{x_{k \ell, m}\right\}} \sum_{i<j=1}^{N}\left|\lambda_{i j}\right|^{\frac{2}{2+\nu_{i j}}}\left(a_{i j}\left(x_{k \ell, m}\right)\right)^{\frac{\nu_{i j}}{2+\nu_{i j}}} E^{(2)}\left(1,1, \nu_{i j}\right) \tag{5.10}
\end{equation*}
$$

where $E^{(2)}\left(1,1, \nu_{i j}\right)$ stands again for the ground state energy of the twobody Hamiltonian $H^{(2)}\left(\nu_{i j}\right)$, (2.18). Let us consider, in turn, the mass configurations $(N \times m),\left(n_{1} \times m_{1}, n_{2} \times m_{2}\right)$ and $\left(n_{1} \times m_{1}, n_{2} \times m_{2}, n_{3} \times m_{3}\right)$ with always the same assumptions on the exponents $\nu_{i j}$ and the coupling constants $\lambda_{i j}$.

5.1. Configuration $(N \times m)$

We have one parameter $a_{i j}$

$$
a_{i j}=a, \quad i<j=1, \ldots, N
$$

one parameter b_{k}

$$
b_{k}=b, \quad k=1, \ldots, N
$$

and all parameters $x_{i j, k}$ are equal to zero. The kinetic energy decomposition (5.1) reduces to

$$
\begin{equation*}
\sum_{i=1}^{N} \frac{1}{2 m} \vec{p}_{i}^{2}=\left(\sum_{i=1}^{N} b \vec{p}_{i}\right)\left(\sum_{j=1}^{N} \vec{p}_{j}\right)+\sum_{i<j=1}^{N} \frac{a}{4}\left(\vec{p}_{i}-\vec{p}_{j}\right)^{2}, \tag{5.11}
\end{equation*}
$$

and the identification of both sides of (5.11) gives for the parameter a

$$
\begin{equation*}
a=\frac{2}{m N}, \quad i<j=1, \ldots, N . \tag{5.12}
\end{equation*}
$$

One exponent $\nu_{i j}=\nu$ and one coupling constant $\lambda_{i j}=\lambda$ are involved, and the optimized lower bound reduces to

$$
\begin{equation*}
E_{\mathrm{olb}}=\frac{N(N-1)}{2}|\lambda|^{\frac{2}{\nu+2}}\left(\frac{2}{m N}\right)^{\frac{\nu}{\nu+2}} E^{(2)}(1,1, \nu) \tag{5.13}
\end{equation*}
$$

which is identical to the improved lower bound for the same mass configuration, (3.14).

5.2. Configuration ($n_{1} \times m_{1}, n_{2} \times m_{2}$)

We have three values for the exponents, (2.24), three coupling constants, (2.23), three values for the parameter $a_{i j}$,

$$
\begin{align*}
a_{i j} & =a_{m_{1} m_{1}}, & & i<j=1, \ldots, n_{1}, \\
a_{i j} & =a_{m_{2} m_{2}}, & & i<j=n_{1}+1, \ldots, N \\
a_{i j} & =a_{m_{1} m_{2}}, & & i=1, \ldots, n_{1}, \quad j=n_{1}+1, \ldots, N \tag{5.14}
\end{align*}
$$

and two values of the parameters b_{k},

$$
\begin{aligned}
b_{k}=b_{m_{1}}, & k=1, \ldots, n_{1}, \\
b_{k}=b_{m_{2}}, & k=n_{1}+1, \ldots, N .
\end{aligned}
$$

Two parameters $x_{i j, k}$ are involved in the optimized lower bound,

$$
\begin{aligned}
& x_{i j, k}=0, \quad i<j \leq n_{1} \quad \text { or } \quad n_{1}<i<j \leq N, \\
& x_{i j, k}=\ell, \quad i=1, \ldots, n_{1}, \quad j=n_{1}+1, \ldots, N, \quad 1 \leq k \leq n_{1} \quad k \neq i, \\
& x_{i j, k}=p, \quad i=1, \ldots, n_{1}, \quad j=n_{1}+1, \ldots, N, \quad n_{1}<k \leq N \quad k \neq j .
\end{aligned}
$$

The kinetic energy decomposition, (5.1), then simplifies to

$$
\sum_{i=1}^{n_{1}} \frac{1}{2 m_{1}} \vec{p}_{i}^{2}+\sum_{i=n_{1}+1}^{N} \frac{1}{2 m_{2}} \vec{p}_{i}^{2}=\left(\sum_{i=1}^{n_{1}} b_{m_{1}} \vec{p}_{i}+\sum_{i=n_{1}+1}^{N} b_{m_{2}} \vec{p}_{i}\right)\left(\sum_{j=1}^{N} \vec{p}_{j}\right)
$$

$$
\begin{align*}
& +\frac{a_{m_{1} m_{1}}}{4} \sum_{i<j=1}^{n_{1}}\left(\vec{p}_{i}-\vec{p}_{j}\right)^{2}+\frac{a_{m_{2} m_{2}}}{4} \sum_{i<j=n_{1}+1}^{N}\left(\vec{p}_{i}-\vec{p}_{j}\right)^{2} \\
& +\frac{a_{m_{1} m_{2}}}{4} \sum_{i=1}^{n_{1}} \sum_{j=n_{1}+1}^{N}\left(\vec{p}_{i}-\vec{p}_{j}+\ell \sum_{\substack{k=1 \\
k \neq i}}^{n_{1}} \vec{p}_{k}+p \sum_{\substack{k=n_{1}+1 \\
k \neq j}}^{N} \vec{p}_{k}\right)^{2} . \tag{5.15}
\end{align*}
$$

Identifying both sides of equation (5.15), one gets a system of linear equations for the $a_{i j}$ and b_{k} with ℓ and p as parameters. This system allows to express the $a_{i j}$ in terms of the parameters ℓ and p with the result

$$
\begin{align*}
& a_{m_{1} m_{1}}(\ell, p)=\frac{2}{n_{1} m_{1}}-\frac{2 n_{2}\left(n_{2} m_{2}+n_{1} m_{1}\right)(\ell-1)^{2}}{n_{1} m_{1} m_{2}\left(N-n_{2} \ell+n_{1} n_{2} \ell-n_{1} n_{2} p+n_{1} p\right)^{2}} \tag{5.16}\\
& a_{m_{2} m_{2}}(\ell, p)=\frac{2}{n_{2} m_{2}}-\frac{2 n_{1}\left(n_{1} m_{1}+n_{2} m_{2}\right)(p+1)^{2}}{n_{2} m_{1} m_{2}\left(N-n_{2} \ell+n_{1} n_{2} \ell-n_{1} n_{2} p+n_{1} p\right)^{2}} \tag{5.17}\\
& a_{m_{1} m_{2}}(\ell, p)=2 \frac{n_{1} m_{1}+n_{2} m_{2}}{m_{1} m_{2}\left(N-n_{2} \ell+n_{1} n_{2} \ell-n_{1} n_{2} p+n_{1} p\right)^{2}} \tag{5.18}
\end{align*}
$$

The optimized lower bound, (5.9), then reduces to

$$
\begin{align*}
E_{\mathrm{olb}}= & \max _{\ell, p}\left(\frac{n_{1}\left(n_{1}-1\right)}{2} E^{(2)}\left[a_{m_{1} m_{1}}(\ell, p)\right]+\frac{n_{2}\left(n_{2}-1\right)}{2} E^{(2)}\left[a_{m_{2} m_{2}}(\ell, p)\right]\right. \\
& \left.+n_{1} n_{2} E^{(2)}\left[a_{m_{1} m_{2}}(\ell, p)\right]\right) \tag{5.19}
\end{align*}
$$

which, in the case of power law potentials, (5.10) simplifies to

$$
\begin{align*}
E_{\mathrm{olb}}= & \max _{\ell, p}\left(\frac{n_{1}\left(n_{1}-1\right)}{2}\left|\lambda_{m_{1} m_{1}}\right|^{\frac{2}{\nu_{m_{1} m_{1}+2}}}\left(a_{m_{1} m_{1}}\right)^{\frac{\nu_{m_{1} m_{1}}^{\nu_{1} m_{1}+2}}{}} E^{(2)}\left(1,1, \nu_{m_{1} m_{1}}\right)\right. \\
& +\frac{n_{2}\left(n_{2}-1\right)}{2}\left|\lambda_{m_{2} m_{2}}\right|^{\frac{2}{\nu_{2} m_{2}+2}}\left(a_{m_{2} m_{2}}\right)^{\frac{\nu_{m_{2} m_{2}}^{\nu m_{2} m_{2}+2}}{}} E^{(2)}\left(1,1, \nu_{m_{2} m_{2}}\right) \\
& \left.+n_{1} n_{2}\left|\lambda_{m_{1} m_{2}}\right|^{\frac{2}{\nu_{1} m_{2}+2}}\left(a_{m_{1} m_{2}}\right)^{\frac{\nu_{m_{1} m_{2}}^{\nu m_{1} m_{2}+2}}{}} E^{(2)}\left(1,1, \nu_{m_{1} m_{2}}\right)\right) . \tag{5.20}
\end{align*}
$$

5.3. Configuration $\left(n_{1} \times m_{1}, n_{2} \times m_{2}, n_{3} \times m_{3}\right)$

We have six values of the exponent $\nu_{i j},(2.27)$, and six coupling constants $\lambda_{i j},(2.28)$. The parameters b_{k} are in number of three,

$$
b_{k}=b_{m_{1}}, \quad k=1, \ldots, n_{1}
$$

$$
\begin{array}{ll}
b_{k}=b_{m_{2}}, & k=n_{1}+1, \ldots, n_{2}, \\
b_{k}=b_{m_{3}}, & k=n_{2}+1, \ldots, N,
\end{array}
$$

and six parameters $a_{i j}$ are involved,

$$
\begin{array}{rlrl}
a_{i j} & =a_{m_{1} m_{1}}, & & i<j=1, \ldots, n_{1}, \\
a_{i j} & =a_{m_{2} m_{2}}, & & i<j=n_{1}+1, \ldots, n_{1}+n_{2}, \\
a_{i j}=a_{m_{3} m_{3}}, & & i<j=n_{1}+n_{2}+1, \ldots, N, \\
a_{i j}=a_{m_{1} m_{2}}, & & i=1, \ldots, n_{1}, j=n_{1}+1, \ldots, n_{1}+n_{2}, \\
a_{i j}=a_{m_{1} m_{3}}, & & i=1, \ldots, n_{1}, j=n_{1}+n_{2}+1, \ldots, N, \\
a_{i j}=a_{m_{2} m_{3}}, & & i=n_{1}+1, \ldots, n_{1}+n_{2}, \\
& & j=n_{1}+n_{2}+1, \ldots, N . \tag{5.21}
\end{array}
$$

The kinetic energy decomposition (5.1) reduces to

$$
\begin{align*}
& \sum_{i=1}^{n_{1}} \frac{1}{2 m_{1}} \vec{p}_{i}^{2}+\sum_{i=n_{1}+1}^{n_{1}+n_{2}} \frac{1}{2 m_{2}} \vec{p}_{i}^{2}+\sum_{i=n_{1}+n_{2}+1}^{N} \frac{1}{2 m_{3}} \vec{p}_{i}^{2} \\
& =\left(\sum_{i=1}^{n_{1}} b_{1} \vec{p}_{i}+\sum_{i=n_{1}+1}^{n_{1}+n_{2}} b_{2} \vec{p}_{i}+\sum_{i=n_{1}+n_{2}+1}^{N} b_{3} \vec{p}_{i}\right)\left(\sum_{i=1}^{N} \vec{p}_{i}\right) \\
& +\frac{a_{m_{1} m_{1}}}{4} \sum_{i<j=1}^{n_{1}}\left(\vec{p}_{i}-\vec{p}_{j}\right)^{2}+\frac{a_{m_{2} m_{2}}}{4} \sum_{i<j=n_{1}+1}^{n_{1}+n_{2}}\left(\vec{p}_{i}-\vec{p}_{j}\right)^{2}+\frac{a_{m_{3} m_{3}}}{4} \sum_{i<j=n_{1}+n_{2}+1}^{N}\left(\vec{p}_{i}-\vec{p}_{j}\right)^{2} \\
& +\frac{a_{m_{1} m_{2}}}{4} \sum_{i=1}^{n_{1}} \sum_{j=n_{1}+1}^{n_{1}+n_{2}}\left(\vec{p}_{i}-\vec{p}_{j}+c_{1} \sum_{k_{1} \neq i=1}^{n_{1}} \vec{p}_{k_{1}}+c_{2} \sum_{k_{2} \neq j=n_{1}+1}^{n_{1}+n_{2}} \vec{p}_{k_{2}}+c_{3} \sum_{k_{3}=n_{1}+n_{2}+1}^{N} \vec{p}_{k_{3}}\right)^{2} \\
& +\frac{a_{m_{1} m_{3}}}{4} \sum_{i=1}^{n_{1}} \sum_{j=n_{1}+n_{2}+1}^{N}\left(\vec{p}_{i}-\vec{p}_{j}+d_{1} \sum_{k_{1}}^{n_{1}} \vec{p}_{k_{1}+d_{2}}^{\left.n_{k_{2}=n_{1}+1}^{n_{1}+n_{2}} \vec{p}_{k_{2}}+d_{3} \sum_{k_{3} \neq j=n_{1}+n_{2}+1}^{N} \vec{p}_{k_{3}}^{n_{1}}\right)^{2}}\right. \\
& +\frac{a_{m_{2} m_{3}}^{n_{1}+n_{2}}}{4} \sum_{i=n_{1}+1+n_{2}}^{n_{1}} \sum_{k_{1}+n_{2}+1}^{N}\left(\vec{p}_{i}-\vec{p}_{j}+e_{1} \sum_{k_{1}=1}^{n_{k_{1}}+e_{2}} \sum_{k_{2} \neq i=n_{1}+1}^{N} \sum_{k_{3} \neq j=n_{1}+n_{2}+1}^{N} \vec{p}_{k_{3}}\right)^{2} . \tag{5.22}
\end{align*}
$$

The optimized lower bound, (5.10), then reduces to

$$
\begin{aligned}
E_{\mathrm{olb}}= & \max _{\substack{c_{1}, c_{2}, c_{3} \\
d_{1}, d_{2}, d_{3} \\
f_{1}, f_{2}, f_{3}}} \frac{n_{1}\left(n_{1}-1\right)}{2}\left(a_{m_{1} m_{1}}\right)^{\frac{-\nu_{m_{1} m_{1}}^{2+\nu_{m_{1}} m_{1}}}{}}\left|\lambda_{m_{1} m_{1}}\right|^{\frac{2}{2+\nu_{m_{1} m_{1}}}} E^{(2)}\left(1,1, \nu_{m_{1} m_{1}}\right) \\
& +\frac{n_{2}\left(n_{2}-1\right)}{2}\left(a_{m_{2} m_{2}}\right)^{\frac{-\nu_{m_{2} m_{2}}^{2+m_{2} m_{2}}}{2}\left|\lambda_{m_{2} m_{2}}\right|^{\frac{2}{2+\nu_{m_{2} m_{2}}^{2}}} E^{(2)}\left(1,1, \nu_{m_{2} m_{2}}\right)} \\
& +\frac{n_{3}\left(n_{3}-1\right)}{2}\left(a_{m_{3} m_{3}}\right)^{\frac{-\nu_{m_{3} m_{3}}^{2+m_{3} m_{3}}}{2}\left|\lambda_{m_{3} m_{3}}\right|^{\frac{2}{2+\nu_{m_{3} m_{3}}}} E^{(2)}\left(1,1, \nu_{m_{3} m_{3}}\right)}
\end{aligned}
$$

$$
\begin{align*}
& +n_{1} n_{2}\left(a_{m_{1} m_{2}}\right)^{\frac{-m_{1} m_{2}}{2+\nu_{m_{1} m_{2}}}}\left|\lambda_{m_{1} m_{2}}\right|^{\frac{2}{2+\nu_{m_{1} m_{2}}}} E^{(2)}\left(1,1, \nu_{m_{1} m_{2}}\right) \\
& +n_{1} n_{3}\left(a_{m_{1} m_{3}}\right)^{\frac{-\nu_{m_{1} m_{3}}^{2}}{2+\nu_{1} m_{3}}}\left|\lambda_{m_{1} m_{3}}\right|^{\frac{2}{2+\nu_{m_{1} m_{3}}}} E^{(2)}\left(1,1, \nu_{m_{1} m_{3}}\right) \\
& +n_{2} n_{3}\left(a_{m_{2} m_{3}}\right)^{\frac{-\nu_{m_{2} m_{3}}^{2+m_{2} m_{3}}}{}\left|\lambda_{m_{2} m_{3}}\right|^{\frac{2}{2+\nu_{m_{2} m_{3}}}} E^{(2)}\left(1,1, \nu_{m_{2} m_{3}}\right)} \tag{5.23}
\end{align*}
$$

where we have to adjust over nine parameters $x_{i j, k}$

$$
\begin{align*}
& x_{i j, k}=c_{1}, \quad i=1, \ldots, n_{1}, \quad j=n_{1}+1, \ldots, n_{1}+n_{2}, \\
& k \neq i=1, \ldots, n_{1}, \\
& x_{i j, k}=c_{2}, \quad i=1, \ldots, n_{1}, \quad j=n_{1}+1, \ldots, n_{1}+n_{2}, \\
& k \neq j=n_{1}+1, \ldots, n_{1}+n_{2}, \\
& x_{i j, k}=c_{3}, \quad i=1, \ldots, n_{1}, \quad j=n_{1}+1, \ldots, n_{1}+n_{2}, \\
& k=n_{1}+n_{2}+1, \ldots, N, \\
& x_{i j, k}=d_{1}, \quad i=1, \ldots, n_{1}, \quad j=n_{2}+1, \ldots, N, \\
& k \neq i=1, \ldots, n_{1}, \\
& x_{i j, k}=d_{2}, \quad i=1, \ldots, n_{1}, \quad j=n_{2}+1, \ldots, N, \\
& k=n_{1}+1, \ldots, n_{1}+n_{2}, \\
& x_{i j, k}=d_{3}, \quad i=1, \ldots, n_{1}, \quad j=n_{2}+1, \ldots, N, \\
& k \neq j=n_{2}+1, \ldots, N, \\
& x_{i j, k}=e_{1}, \quad i=n_{1}+1, \ldots, n_{1}+n_{2}, \quad j=n_{1}+n_{2}+1, \ldots, N, \\
& k=1, \ldots, n_{1} \text {, } \\
& x_{i j, k}=e_{2}, \quad i=n_{1}+1, \ldots, n_{1}+n_{2}, \quad j=n_{1}+n_{2}+1, \ldots, N, \\
& k \neq i=n_{1}+1, \ldots, n_{1}+n_{2}, \\
& x_{i j, k}=e_{3}, \quad i=n_{1}+1, \ldots, n_{1}+n_{2}, \quad j=n_{1}+n_{2}+1, \ldots, N, \\
& k \neq j=n_{1}+n_{2}+1, \ldots, N . \tag{5.24}
\end{align*}
$$

The $a_{i j}$ are functions of the parameters $c_{1}, c_{2}, c_{3}, \ldots, e_{3}$ and their explicit dependence is obtained by inverting the matrix equation

$$
\begin{equation*}
\widetilde{D} A=\alpha \tag{5.25}
\end{equation*}
$$

where $\widetilde{\boldsymbol{D}}$ is a square 6×6 matrix given by

$$
\widetilde{\boldsymbol{D}}=\left(\begin{array}{cccccc}
\frac{n_{1}}{2} & 0 & 0 & \frac{n_{2}\left(c_{1}-1\right)^{2}}{2} & \frac{n_{3}\left(d_{1}-1\right)^{2}}{2} & 0 \tag{5.26}\\
0 & \frac{n_{2}}{2} & 0 & \frac{n_{1}\left(c_{2}+1\right)^{2}}{2} & 0 & \frac{n_{3}\left(e_{2}-1\right)^{2}}{2} \\
0 & 0 & \frac{n_{3}}{2} & 0 & \frac{n_{1}\left(d_{3}+1\right)^{2}}{2} & \frac{n_{2}\left(e_{3}+1\right)^{2}}{2} \\
\frac{n_{1}-1}{4} & \frac{n_{2}-1}{4} & 0 & \widetilde{\boldsymbol{D}}_{44} & \widetilde{\boldsymbol{D}}_{45} & \widetilde{\boldsymbol{D}}_{46} \\
\frac{n_{1}-1}{4} & 0 & \frac{n_{3}-1}{4} & \widetilde{\boldsymbol{D}}_{54} & \widetilde{\boldsymbol{D}}_{55} & \widetilde{\boldsymbol{D}}_{56} \\
0 & \frac{n_{2}-1}{4} & \frac{n_{3}-1}{4} & \widetilde{\boldsymbol{D}}_{64} & \widetilde{\boldsymbol{D}}_{65} & \widetilde{\boldsymbol{D}}_{66}
\end{array}\right)
$$

with

$$
\begin{gathered}
\widetilde{\boldsymbol{D}}_{54}=\frac{n_{2}\left(-2 c_{3}+c_{3}^{2} n_{1}+c_{1}\left(n_{1}-1\right)\left(c_{1}-2 c_{3}\right)+1\right)}{4}, \\
\widetilde{\boldsymbol{D}}_{64}=\frac{n_{1}\left(2 c_{3}+c_{3}^{2} n_{2}+c_{2}\left(n_{2}-1\right)\left(c_{2}-2 c_{3}\right)+1\right)}{4}, \\
\widetilde{\boldsymbol{D}}_{45}=\frac{n_{3}\left(-2 d_{2}+d_{2}^{2} n_{1}+1+d_{1}\left(d_{1}-2 d_{2}\right)\left(n_{1}-1\right)\right)}{4}, \\
\widetilde{\boldsymbol{D}}_{65}=\frac{n_{1}\left(2 d_{2}+d_{2}^{2} n_{3}+1+d_{3}\left(d_{3}-2 d_{2}\right)\left(n_{3}-1\right)\right)}{4}, \\
\widetilde{\boldsymbol{D}}_{46}=\frac{n_{3}\left(-2 e_{1}+e_{1}^{2} n_{2}+1+e_{2}\left(e_{2}-2 e_{1}\right)\left(n_{2}-1\right)\right)}{4}, \\
\widetilde{\boldsymbol{D}}_{56}=\frac{n_{2}\left(2 e_{1}+e_{1}^{2} n_{3}+1+e_{3}\left(e_{3}-2 e_{1}\right)\left(n_{3}-1\right)\right)}{4}, \\
\widetilde{\boldsymbol{D}}_{44}=\frac{n_{1}+n_{2}+2-2 c_{1} c_{2}\left(n_{1}-1\right)\left(n_{2}-1\right)+c_{1}\left(n_{1}-1\right)\left(c_{1} n_{2}+2\right)+c_{2}\left(n_{2}-1\right)\left(c_{2} n_{1}-2\right)}{4}, \\
\widetilde{\boldsymbol{D}}_{55}=\frac{n_{1}+n_{3}+v 2-v 2 d_{1} d_{3}\left(n_{1}-1\right)\left(n_{3}-1\right)+d_{1}\left(n_{1}-1\right)\left(d_{1} n_{3}+2\right)+d_{3}\left(n_{3}-1\right)\left(d_{3} n_{1}-2\right)}{4}, \\
\widetilde{\boldsymbol{D}}_{66}=\frac{n_{2}+n_{3}+2-2 e_{2} e_{3}\left(n_{2}-1\right)\left(n_{3}-1\right)+e_{2}\left(n_{2}-1\right)\left(e_{2} n_{3}+2\right)+e_{3}\left(n_{3}-1\right)\left(e_{3} n_{2}-2\right)}{4} .
\end{gathered}
$$

\boldsymbol{A} and $\boldsymbol{\alpha}$ are 6×1 column matrices given by

$$
\boldsymbol{A}:=\left(\begin{array}{c}
a_{m_{1} m_{1}} \tag{5.27}\\
a_{m_{2} m_{2}} \\
a_{m_{3} m_{3}} \\
a_{m_{1} m_{2}} \\
a_{m_{1} m_{3}} \\
a_{m_{2} m_{3}}
\end{array}\right), \quad \boldsymbol{\alpha}:=\left(\begin{array}{c}
\frac{1}{m_{1}} \\
\frac{1}{m_{2}} \\
\frac{1}{m_{3}} \\
\frac{1}{2 m_{1}}+\frac{1}{2 m_{2}} \\
\frac{1}{2 m_{1}}+\frac{1}{2 m_{3}} \\
\frac{1}{2 m_{2}}+\frac{1}{2 m_{3}}
\end{array}\right) .
$$

The matrix equation (5.25) is obtained by identifying both sides of equation (5.22) taking into account the symmetry of the problem. One obtains in this way a linear system of 9 equations, with the $b \mathrm{~s}: b_{m_{1}}, b_{m_{2}}, b_{m_{3}}$ and $a \mathrm{~s}$: $a_{m_{1} m_{1}}, a_{m_{2} m_{2}}, \ldots, a_{m_{2} m_{3}}$ as unknowns and $c_{1}, c_{2}, \ldots, e_{3}$ as parameters. Eliminating the $b s$ in favor of the a s results in a linear system of 6 equations with the 6 as as unknowns, which may be written in matrix form as in (5.25).

The optimization problem implied by (5.23) may be greatly simplified if one takes into account that the values of the parameters c_{1}, \ldots, e_{3} corresponding to the optimized lower bound are constrained by four relations, which are independent of the particular form of the potential and of dynamical nature, the so-called universal dynamical constraints

$$
\begin{equation*}
d_{1}=\frac{c_{1}-c_{3}-c_{1} d_{2}+d_{2}}{1-c_{3}} \tag{5.28}
\end{equation*}
$$

$$
\begin{align*}
e_{2} & =-\frac{c_{2}-c_{2} d_{2}+c_{3} d_{2}-d_{2}}{1-c_{3} d_{2}} \tag{5.29}\\
d_{3} & =\frac{c_{3}-c_{3} d_{2}-c_{3} d_{2} e_{3}+e_{3}}{1-c_{3}} \tag{5.30}\\
e_{1} & =-\frac{c_{3}-d_{2}}{1-c_{3} d_{2}} \tag{5.31}
\end{align*}
$$

More details of the derivation of those constraints will be given in a forthcoming paper.

This allows us to reduce the number of parameters over which we optimize from 9 to $5: c_{1}, c_{2}, c_{3}, d_{2}$ and e_{3}, resulting in a great simplification.

Note that for configurations $\left(n_{1} \times m_{1}, n_{2} \times m_{2}, n_{3} \times m_{3}\right)$, we have considered implicitly the cases where $n_{1}>1, n_{2}>1, n_{3}>1$. The cases where one or more of the $n_{i}, i=1,2,3$ equals 1 may be obtained from the results corresponding to $n_{1}>1, n_{2}>1, n_{3}>1$ by appropriate replacements in the final result for $E_{\text {naïve }}$ and $E_{\text {improved }}$. For $E_{\text {olb }}$, there are additional subtleties: The optimization problem becomes less involved since a part of the parameters disappear. For $n_{1}>1, n_{2}>1, n_{3}=1$, the number of parameters decreases from 9 to 7 : the parameters d_{3} and e_{3} no longer exist. The universal dynamical constraints are in number of 3, Eqs. (5.28), (5.29) and (5.31), and if we take into account these constraints, we have to optimize over 4 parameters, which we may choose to be c_{1}, c_{2}, c_{3} and d_{2}. When $n_{1}>1, n_{2}=1, n_{3}=1$, we have only 5 parameters $c_{1}, c_{3}, d_{1}, d_{2}$ and e_{1}, 2 universal dynamical constraints, Eqs. (5.28), (5.31), which allow to reduce the problem to an optimization over 3 parameters, that one may choose to be c_{1}, c_{3}, and d_{2}. In the case of $n_{1}=1, n_{2}=1, n_{3}=1$, i.e., the three-body case, there are only 3 parameters: c_{3}, d_{2} and e_{1} which are related by (5.31), and thus we have to optimize over two parameters, for instance c_{3} and d_{2}.

6. Numerical results

The following tables illustrate our numerical results for mass configurations up to three distinct masses. We have considered the six-body system with power-law potentials in Table I, where four representative powers $\nu_{i j}$ are considered: $\nu=2, \nu=1, \nu=0.1$ and $\nu=-1$. We have also considered some non power-law potentials: the Coulomb + Linear $V_{i j}=r_{i j}-1 / r_{i j}$ and the Coulomb + Harmonic $V_{i j}=r_{i j}^{2}-1 / r_{i j}$ potentials, also in the case of the six-body system, Table II.

It is worthwhile to notice that for non power-law potentials, and since there is no scaling laws at our disposal, the reduced mass μ cannot be extracted from the ground state energy of the two-body Hamiltonian as in (2.16) with $2 \mu=1 / a$. Technically, we need to inject the algorithm of the

TABLE I

Lower bounds for six-body systems with power-law potentials: $V_{i j}=r_{i j}^{2}, V_{i j}=r_{i j}$, $V_{i j}=r_{i j}^{0.1}$ and $V_{i j}=-1 / r_{i j}$.

	Harmonic potential $V_{i j}=r_{i j}^{2}$			Linear potential $V_{i j}=r_{i j}$		
m_{1}, \ldots, m_{6}	$E_{\text {naïve }}$	$E_{\text {improved }}$	$E_{\text {olb }}$	$E_{\text {naïve }}$	$E_{\text {improved }}$	$E_{\text {olb }}$
$1,1,1,1,1,1$	20.12	25.98	25.98	20.51	24.32	24.32
$1,1,1,1,1,3$	18.89	23.66	24.25	19.65	22.83	23.20
$1,1,1,1,1,0.5$	21.63	27.68	27.82	21.50	25.37	25.43
$1,1,1,1,2,2$	18.29	23.23	23.51	19.23	22.57	22.73
$1,1,1,1,0.5,0.5$	23.09	29.38	29.65	22.45	26.39	26.52
$1,1,1,2,2,2$	17.33	21.99	22.24	18.54	21.75	21.90
$1,1,1,1,2,3$	17.95	22.46	22.99	18.97	22.06	22.38
$1,1,1,1,2,0.5$	20.77	26.19	26.61	20.91	24.44	24.67
$1,1,1,2,2,0.5$	19.87	24.86	25.37	20.28	23.60	23.88
$1,1,1,2,2,3$	16.96	21.29	21.71	18.27	21.29	21.54
$1,1,2,2,3,3$	15.56	19.53	19.88	17.23	20.10	20.30
$1,1,2,2,0.5,0.5$	21.41	26.44	27.23	21.30	24.58	25.02
$1,1,1,1,1, \infty$	18.16	10.61	22.91	19.10	9.279	22.28
$1,1,1,1,2, \infty$	16.17	9.985	21.57	18.38	8.896	21.40
$1,1,1,2,2, \infty$	16.13	9.364	20.24	17.62	8.513	20.49

	Martin potential $V_{i j}=r_{i j}^{0.1}$		Coulomb potential $V_{i j}=-1 / r_{i j}$			
m_{1}, \ldots, m_{6}	$E_{\text {naïve }}$	$E_{\text {improved }}$	$E_{\text {olb }}$	$E_{\text {naïve }}$	$E_{\text {improved }}$	$E_{\text {olb }}$
$1,1,1,1,1,1$	17.17	17.59	17.59	-18.75	-11.25	-11.25
$1,1,1,1,1,3$	17.06	17.43	17.47	-21.88	-13.75	-13.07
$1,1,1,1,1,0.5$	17.28	17.70	17.70	-16.67	-9.931	-9.921
$1,1,1,1,2,2$	17.01	17.40	17.42	-23.33	-14.11	-13.90
$1,1,1,1,0.5,0.5$	17.39	17.80	17.81	-14.79	-8.819	-8.774
$1,1,1,2,2,2$	16.92	17.31	17.33	-26.25	-15.75	-15.58
$1,1,1,1,2,3$	16.97	17.35	17.38	-24.67	-15.21	-14.63
$1,1,1,1,2,0.5$	17.21	17.60	17.62	-18.50	-11.17	-10.95
$1,1,1,2,2,0.5$	17.13	17.51	17.54	-20.75	-12.45	-12.17
$1,1,1,2,2,3$	16.88	17.26	17.28	-27.88	-16.88	-16.46
$1,1,2,2,3,3$	16.74	17.12	17.14	-33.67	-20.09	-19.77
$1,1,2,2,0.5,0.5$	17.25	17.61	17.65	-18.38	-11.09	-10.67
$1,1,1,1,1, \infty$	16.98	5.978	17.36	-25.00	$-\infty$	-15.60
$1,1,1,1,2, \infty$	16.88	5.939	17.26	-29.17	$-\infty$	-17.22
$1,1,1,2,2, \infty$	16.78	5.900	17.15	-33.75	$-\infty$	-19.76

TABLE II

Lower bounds for six-body systems with some non power-law potentials: The Coulomb + Linear and the Coulomb + Harmonic potentials.

	Potential $V_{i j}=r_{i j}-1 / r_{i j}$		Potential $V_{i j}=r_{i j}^{2}-1 / r_{i j}$			
m_{1}, \ldots, m_{5}	$E_{\text {naïve }}$	$E_{\text {improved }}$	$E_{\text {olb }}$	$E_{\text {naïve }}$	$E_{\text {improved }}$	$E_{\text {olb }}$
$1,1,1,1,1,1$	-10.67	0.883	0.883	-13.42	-0.740	-0.740
$1,1,1,1,1,3$	-14.59	-3.232	-2.192	-17.39	-5.381	-4.236
$1,1,1,1,1,0.5$	-7.544	3.389	3.450	-10.03	2.256	2.369
$1,1,1,1,2,2$	-16.45	-3.896	-3.533	-19.27	-6.162	-5.737
$1,1,1,1,0.5,0.5$	-4.660	5.675	5.839	-6.867	5.076	5.341
$1,1,1,2,2,2$	-19.98	-6.394	-6.100	-22.80	-8.890	-8.542
$1,1,1,1,2,3$	-17.99	-5.519	-4.649	-20.80	-7.913	-6.952
$1,1,1,1,2,0.5$	-9.951	1.101	1.541	-12.51	-0.445	0.117
$1,1,1,2,2,0.5$	-12.79	-1.101	-0.574	-15.39	-2.977	-2.315
$1,1,1,2,2,3$	-21.82	-7.998	-7.368	-24.61	-10.59	-9.890
$1,1,2,2,3,3$	-28.46	-12.41	-11.93	-31.16	-15.19	-14.67
$1,1,2,2,0.5,0.5$	-9.363	1.359	2.172	-11.72	-0.092	0.949
$1,1,1,1,1, \infty$	-18.16	$-\infty$	-5.244	-20.88	$-\infty$	-7.559
$1,1,1,1,2, \infty$	-22.93	$-\infty$	-8.353	-25.63	$-\infty$	-10.88
$1,1,1,2,2, \infty$	-28.13	$-\infty$	-11.81	-30.79	$-\infty$	-14.50

resolution of the two-body Schrödinger equation inside the optimization process which makes the numerical calculation of the optimized lower bound more complicated.

A variational calculation allows us to determine an upper bound for the ground state energy of an N-body system, which when combined with the optimized lower bound determine a frame for the ground state energy lying between. The following figure, Fig. 1, shows the variation of lower bounds: the naïve bound, $E_{\text {naïve }}$, the improved bound, $E_{\text {improved }}$, and the optimized bound $E_{\text {olb }}$ as functions of the particle mass. We have considered a 5 -body system with Coulombian interactions $V^{(i j)}=-1 / r_{i j}$, where we have fixed the masses of all particles with the exception of one mass, m_{5}, which we leave variable. We have also plotted in the same figure an upper bound, $E_{\text {variational }}$, obtained, by a variational calculation using a trial wave function of Gaussian form

$$
\begin{equation*}
\Psi\left(\boldsymbol{\rho}_{\mathbf{1}}, \boldsymbol{\rho}_{\mathbf{2}}, \boldsymbol{\rho}_{\mathbf{3}}, \boldsymbol{\rho}_{\mathbf{4}}\right)=B \exp \left(-\sum_{i=j=1}^{4} A_{i j} \boldsymbol{\rho}_{\boldsymbol{i}} \boldsymbol{\rho}_{\boldsymbol{j}}\right) \tag{6.1}
\end{equation*}
$$

where $\boldsymbol{\rho}_{\mathbf{1}}, \boldsymbol{\rho}_{\mathbf{2}}, \boldsymbol{\rho}_{\mathbf{3}}$ and $\boldsymbol{\rho}_{\mathbf{4}}$ are Jacobi coordinates, B is a normalized constant and $A_{i j}$ are variational parameters determined by minimizing the expectation value of the Hamiltonian for the trial wave function.

Fig. 1. Lower and upper bounds for 5 -body system with Coulombian interactions $V^{(i j)}=-1 / r_{i j}: m_{1}=m_{2}=1, m_{3}=m_{4}=2$ and m_{5} variable.

7. Conclusion

An optimized lower bound derived initially for the ground state energies of three-body [1] and four-body [2] Hamiltonians, has been generalized recently for the ground state energy of an N-body Hamiltonian with arbitrary N [4], with particular emphasis on the five-body case [3]. The procedure applies under the two conditions of non-relativistic kinematics and translationally invariant two-body forces. In this paper, we have compared this optimized lower bound with other lower bounds, namely the so-called naïve [6-11] and improved lower bounds [14-16]. We have considered various mass configurations, various forms of the interaction potential and different values of N, the number of bodies. In the case of harmonic interactions, the optimized lower bound becomes saturated, i.e., equal to the ground state energy, for all mass configurations and all values of N we have considered. This is not the case for the naïve lower bound which is never saturated. For the improved lower bound the saturation occurs only for equal mass configurations. In the case of other forms of interactions, the optimized lower bound is always better, i.e., gives greater values, than both the naïve and improved lower bounds. Thus the optimized lower bound is always better than the two other bounds naïve and improved (there is, however, the situation in the equal mass case where the optimized and improved lower bounds give identical values) for all mass configurations, all forms of the potential
and all values of N we have considered. Our investigations are sufficiently intensive to allow us to make a conclusion: the optimized lower bound is better than both the naïve and the improved lower bounds.

This work was supported by le Ministère de l'Enseignement Supérieur et de la Recherche Scientifique of Algeria under grant D00920090096.

REFERENCES

[1] J.-L. Basdevant, A. Martin, J.-M. Richard, T.T. Wu, Nucl. Phys. B393, 111 (1993).
[2] A. Benslama et al., Few-Body Syst. 24, 39 (1998).
[3] Kh. Boudjemaa, S.R. Zouzou, Few-Body Syst. 46, 199 (2009) [DOI 10.1007/s00601-009-0061-4].
[4] Kh. Boudjemaa, S.R. Zouzou, J. Phys. A: Math. Gen. 39, 7383 (2006).
[5] Kh. Boudjemaa, S.R. Zouzou, J. Phys. A: Math. Gen. 39, 5857 (2006).
[6] M.E. Fisher, D. Ruelle, J. Math. Phys. 7, 260 (1966).
[7] F.J. Dyson, A. Lenard, J. Math. Phys. 8, 423 (1967).
[8] J.-M. Lévy-Leblond, J. Math. Phys. 10, 806 (1969).
[9] J.-P. Ader, J.-M. Richard, P. Taxil, Phys. Rev. D25, 2370 (1982).
[10] S. Nussinov, Phys. Rev. Lett. 51, 2081 (1983).
[11] J.-M. Richard, Phys. Lett. 139, 408 (1984).
[12] C. Quigg, J.L. Rosner, Phys. Rep. 56, 167 (1979); Fermilab-conf/266-T, 1997.
[13] J.-M. Richard, Phys. Rep. 212, 1 (1992).
[14] R.L. Hall, H.R. Post, Proc. Phys. Soc. 90, 381 (1967).
[15] J.-L. Basdevant, A. Martin, J.-M. Richard, Nucl. Phys. B343, 60 (1990).
[16] J.-L. Basdevant, A. Martin, J.-M. Richard, Nucl. Phys. B343, 69 (1990).
[17] W. Thirring, A Course in Mathematical Physics, Vol. 3, Springer Verlag, 1981.

[^0]: \dagger boudjemaa_kh2006@yahoo.fr
 † szouzou2000@yahoo.fr

