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Pseudospin symmetry is a perfectly valid concept which can reliably be
used in calculations of any deformed heavy nuclei. Therefore, we examined
this symmetry in deformed nuclei with triaxial-symmetry and eigenfunc-
tions. Energy equation were obtained for the case of triaxial-symmetric
harmonic oscillator potential in the Dirac equation.

PACS numbers: 21.60.Fw, 21.60.Cs, 21.60.Ev

1. Introduction

Pseudospin symmetry is based on experimental observation of the quasi-
degeneracy between two single-particle orbitals with quantum numbers
(nr, l, j = l+1/2) and (nr−1, l+2, j′ = j+1 = l+3/2), where nr, l and j are
single-nucleon radials, orbital and total angular momentum quantum num-
bers, respectively [1,2]. The structure of the doublet is expressed in terms of
a “pseudo” orbital angular momentum l̃ = l + 1 and “pseudo” spin s̃ = 1/2.
For example, (nrs1/2, (nr − 1)d3/2) we have l̃ = 1, and (nrp3/2, (nr − 1)f3/2)
we have l̃ = 2, etc. These doublets are almost degenerate in proportion to
pseudospin s̃ = 1/2, since j = l̃ + s̃, for the two states in the doublet. This
is the concept of pseudospin symmetry in the spherical nuclei.

Recently, it has been shown that the pseudospin symmetry is a good
approximation in deformed nuclei, including axially and triaxially deformed
nuclei, and the implementation based on non-relativistic Nilsson model have
been reported [3–6]. In Ref. [4] the validity of the pseudospin concept for
heavy triaxially deformed nuclei was explored using correlation coefficient
measure between a generalized Nilsson Model Hamiltonian and pseudospin–
orbit interaction. Analysis of the correlation coefficient measures for the
generalized Nilsson Hamiltonian and pseudospin–orbit operator showed that
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the goodness of pseudospin symmetry remains virtually unchanged from
axial to triaxial deformations. This points out the importance of using
pseudospin symmetry based shell-model schemes for heavy nuclei at any
reasonable deformation including, in particular, triaxial shapes [4].

A study of the goodness of pseudospin dynamical symmetry in triaxial
nuclei has been done in Ref. [5]. In this reference, an explicit form for
the extended pseudospin transformation for arbitrary deformations has been
suggested and applied to some modifications of triaxial Nilsson Hamiltonian.
Nilsson-type model could be viewed as a further clarification on triaxial
model which was intended to correctly reproduce the structure of the basic
states in both spherical and cylindrical limits and extend this to arbitrary
triaxial shapes [6].

In presence of deformation, doublets with quantum numbers

[N,nz, Λ]Ω = Λ+ 1
2 and [N,nz, Λ′ = Λ+ 2]Ω′ = Λ+ 3

2

can be expressed in terms of pseudo-orbital and total angular momentum
projections Λ̃ = Λ+ 1, Ω = Λ̃± 1

2 [7]. The pseudospin symmetry has been
used to explain features of deformed nuclei [8–10].

In the past decades, Relativistic Mean-Field Theory (RMF) achieved
great success in description of nuclear properties, especially in pseudospin
symmetry [11] and spin symmetry in anti-nucleon spectra [20]. In the Dirac
equation of nucleon, when scalar potential S(r) and vector potential V (r)
are equal in amplitudes but opposite in sign, i.e., S(r) + V (r) = 0, or more
generally, d[S(r) + V (r)]/dr = 0, there is an exact pseudospin symmetry
in single-particle spectra [11–14]. These conditions imply some special rela-
tions between four components of Dirac wavefunctions which have been used
to test the pseudospin symmetry in spherical and axially deformed nuclei
[15–19].

In the nucleus, the charge-conjugation transformation relates spin sym-
metry of antinucleons to pseudospin symmetry of the nucleons [20]. This
has also been discussed in Ref. [21], analyzing harmonic oscillator for antin-
ucleons with spin symmetry (S(r) = V (r)). Castro et al. [22] have solved
generalized relativistic harmonic oscillator in 1 + 1 dimensions, i.e., includ-
ing a linear pseudoscalar potential and quadratic scalar and vector potentials
which have equal or opposite signs.

They considered positive and negative quadratic potentials and discussed
in detail their bound state solutions for fermions and antifermions. Some
authors studied relativistic harmonic oscillator for spin 1

2 particles, and ob-
tained bound state solutions for Dirac equation whit spin and pseudospin
symmetry conditions [23, 24]. In this paper, some part of Ref. [19] will be
reviewed. Then, Dirac equation for triaxial-symmetric harmonic oscillator
will be solved.
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At first, eigenfunctions and energy equation for Dirac equation with
triaxial-symmetric harmonic oscillator under pseudospin symmetry condi-
tion were obtained. Then, the results were compared with previous results
for this problem in spherical nuclei, i.e. the nuclei with spherical harmonic
oscillator which was done in [23, 24]. In the previous work, this procedure
for axial-symmetric harmonic oscillator was done [25]. Finally, our results
were compared with those of Ginocchio’s work through chiral and charge-
conjugation transformations.

2. Dirac Hamiltonian and pseudospin symmetry

In this section, Ref. [19] is reviewed briefly.
Hamiltonian of a Dirac particle of mass M in an external scalar, S(~r ) ,

and vector, V (~r ), potentials is given by

H = ~̂α · ~p+ β̂(M + S(~r )) + V (~r ) , (1)

where α and β are Dirac matrices. Dirac equation can be written as (~ =
c = 1) {

~̂α · ~p+ β̂[M + S(~r )] + V (~r )
}
Φ(~r ) = EΦ(~r ) . (2)

Dirac Hamiltonian with spherically symmetric scalar and vector potentials
are invariant under a SU(2) algebra for two limits: S(~r ) = V (~r ) + Cs

and S(~r ) = −V (~r ) + Cps, where Cs, Cps are constants [26]. When the
former limit occurs, we have spin symmetry [27]. The latter limit leads to
pseudospin symmetry [9]. Generators of pseudospin are given by

~̃Si =
(

~̃si 0
0 ~si

)
=
(
Up~siUp 0

0 ~si

)
, (3)

where si = σi
2 , σi are Pauli matrices and Up = σ·p

p is unitary matrix oper-
ator [28]. This generators commute with Dirac Hamiltonian for the limit
of S(~r ) = −V (~r ) + Cps, [Hps, Si] = 0. Thus, Dirac Hamiltonian and pseu-
dospin symmetry have simultaneous eigenfunction

HpsΦ
ps
k,µ̃(~r ) = EkΦ

ps
k,µ̃(~r ) , (4)

where k is just a label for the remaining quantum numbers besides µ̃ [19],
and µ̃ = ±1

2 is eigenvalue of S̃z

S̃zΦ
ps
k,µ̃(~r ) = µ̃Φps

k,µ̃(~r ) . (5)
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Eigenstate in pseudospin doublet will be connected by S̃± generators

S̃±Φ
ps
k,µ̃(~r ) =

√(
1
2 ∓ µ̃

) (
3
2 ± µ̃

)
Φps
k,µ̃(~r ) . (6)

Dirac four-component wavefunction, Φps
k,µ̃(~r ), is given by

Φps
k,µ̃(~r ) =


g+
k,µ̃(~r )
g−k,µ̃(~r )
if+
k,µ̃(~r)

if−k,µ̃(~r )

 , (7)

where g±k,µ̃(~r ) are upper Dirac components, here + indicates spin up and −
spin down and, f±k,µ̃(~r ) are lower Dirac components, where + indicates spin
up and − spin down. Pseudospin symmetry create some relations between
these components which are derived from Eqs. (5) and (6) [18]

f+
k,− 1

2

(~r ) = f−
k, 1

2

(~r ) = 0 , (8)

f+
k,+ 1

2

(~r ) = f−
k,− 1

2

(~r ) ≡ fk(~r ) , (9)

g+
k, 1

2

(~r ) = −g−
k,− 1

2

(~r ) ≡ gk(~r ) , (10)(
∂

∂x
− i ∂

∂y

)
g−
k, 1

2

(~r ) =
(
∂

∂x
+ i

∂

∂y

)
g+
k,− 1

2

(~r ) , (11)

∂

∂z
g±
k,∓ 1

2

(~r ) = ±
(
∂

∂x
∓ i ∂

∂y

)
g±
k,± 1

2

(~r ) . (12)

Therefore, Dirac eigenfunction in pseudospin doublet are given by

Φps

k, 1
2

(~r ) =


gk(~r )
g−
k, 1

2

(~r )

ifk(~r )
0

 , (13)

Φps

k,− 1
2

(~r ) =


g+
k,− 1

2

(~r )

−gk(~r )
0

ifk(~r )

 . (14)
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3. Pseudospin symmetry for triaxially deformed nuclei

In Ref. [4] it has been shown that although near level degeneracy of
pseudospin–orbit partners in axial systems is lost for triaxial geometries,
pseudospin symmetry breaking induced by triaxiality is small and compara-
ble to that found in axial cases, and therefore pseudospin symmetry remains
an important physical concept.

We replace Eqs. (13) and (14) in Eq. (2) and obtain the following rela-
tions for upper and lower components of Dirac wavefunctions, respectively

g±
k,∓ 1

2

(~r ) =
−1

M − E +Σ

(
∂

∂x
∓ i ∂

∂y

)
fk(~r ) , (15)

gk(~r ) =
−1

M − E +Σ

∂

∂z
fk(~r ) , (16)

fk(~r ) =
−1

M + E −∆

((
∂

∂x
+ i

∂

∂y

)
g+
k,− 1

2

(~r ) +
∂

∂z

)
gk(~r ) , (17)

where Σ = S(~r ) + V (~r ) and ∆ = V (~r )− S(~r ).
By substituting g+

k,− 1
2

(r) and gk(~r ) from Eqs. (15) and (16) in Eq. (17)

a second order deferential equation for lower component, fk(~r ), is obtained

(M + E −∆)(M − E +Σ)fk(~r ) =
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 1
M − E +Σ([(

∂

∂x
+ i

∂

∂y

)
Σ

](
∂

∂x
+ i

∂

∂y

)
+
∂Σ

∂z

∂

∂z

))
fk(~r ) . (18)

By applying pseudospin symmetry condition, i.e. Σ = 0, or ∂Σ∂x = 0, ∂Σ∂y = 0,
∂Σ
∂z = 0 and replacing ∆ = 2V , this equation is reduced to(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ E2 −M2 + 2V (M − E)

)
fk(~r ) = 0 . (19)

For triaxial deformed nuclei, Eq. (19) with the following vector and scalar
potentials

V (~r ) = −S(~r ) = 1
2M

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

(20)

can be written as(
∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2
−(E−M)M

(
ω2
xx

2+ω2
yy

2+ω2
zz

2
)
+E2−M2

)
fk(~r ) . (21)
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This equation can be written as three separate equations for x1, y1 and z1(
∂2

∂x2
1

− x2
1 + 2ñx + 1

)
fñx(~r ) = 0 , (22)(

∂2

∂y2
1

− y2
1 + 2ñy + 1

)
fñy(~r ) = 0 , (23)(

∂2

∂z2
1

− z2
1 + 2ñz + 1

)
fñz(~r ) = 0 , (24)

where

x1 =
(
Mω2

x(E −M)
) 1

4 x = αxx , (25)

y1 =
(
Mω2

y(E −M)
) 1

4 y = αyy , (26)
and

z1 =
(
Mω2

z(E −M)
) 1

4 z = αzz . (27)

Here we consider

fk(~r ) = Nfñx(x)fñy(y)fñz(z) , (28)

where N is normalization constant which is determined by∫
dx

∫
dy

∫
dz

∣∣∣∣Φps

k,± 1
2

(~r )
∣∣∣∣2 = 1 . (29)

Energy equation becomes

E2
ñx,ñy ,ñz −M

2 = α2
x(2ñx + 1) + α2

y(2ñy + 1) + α2
z(2ñz + 1) , (30)

where ñx, ñy and ñz are quantum numbers of oscillator of lower component
in x, y and z directions, respectively.

In the spherical harmonic oscillator each level has a (N + 2)(N + 1)
degeneracy because of pseudospin symmetry and because allowed pseudo-
orbital angular momenta are l̃ = N,N − 2, . . . 0 or 1 and allowed pseudo-
orbital angular momentum projections are m = l̃, l̃ − 1, . . . , l̃.

Each group of N in deformed harmonic oscillator contains the levels for
ñz = 0, 1, . . . , N with excitation energy increasing with decreasing ñz. Each
level has a 2(N − ñz) + 1 degeneracy for (N − ñz) even and a 2(N − ñz + 1)
degeneracy for (N − ñz) odd due to spin symmetry and because the allowed
orbital angular momentum projections are Λ̃=(N−ñz), (N−ñz−2), 1 or 0.
The splitting of levels within eachN appears to be approximately linear with
ñz (see Fig. 2 from Ref. [21]).
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Eqs. (22)–(24) are Hermite equations and solution of these equations
can be written in terms of Hermite functions, thus we can obtain lower
component wavefunction, fk(~r ), from Eq. (28)

fk(~r ) = e−
α2
xx

2+α2
yy

2+α2
zz

2

2 Hñx(αxx)Hñy(αyy)Hñz(αzz) . (31)

Now, we are going to obtain energy spectrum in the spherical symmetry
case.

For spherical harmonic oscillator potential we have ωx = ωy = ωz = ω1

then, by using Eqs. (25)–(27), one can obtain αx = αy = αz = α1. There-
fore, the energy equation of Eq. (30) can be rewritten as

E2
ñx,ñy ,ñz −M

2 = 2α2
1

(
ñx + ñy + ñz + 3

2

)
. (32)

On the other hand, energy spectrum of spherical harmonic oscillator corre-
sponding to Eq. (62) of Ref. [23], becomes as following

E2 −M2 = 2
(
Mω2

1(E −M)
) 1

2

(
2ñ+ l̃ + 3

2

)
= 2α2

1

(
2ñ+ l̃ + 3

2

)
, (33)

where the potential, used in our paper, is twice the potential introduced in
Ref. [23]. The l̃ and ñ are the orbital angular momentum and the number
of nodes of lower component of radial wavefunction.

By using the Eqs. (32) and (33), we have

ñx + ñy + ñz = 2ñ+ l̃ . (34)

Then the energy equation of triaxial-symmetric harmonic oscillator for
ωx = ωy = ωz = ω1 is equal to that of spherical harmonic oscillator.

Now, we derive upper components from Eqs. (15) and (16)

gk(~r ) =
αz

M−E
1

Hñz(αzz)

(
Hñz+1(αzz)

2
−ñzHñz−1(αzz)

)
fk(~r ) , (35)

g±
k,∓ 1

2

(~r ) =
1

M−E

(
αx

Hñx(αxx)

(
Hñx+1(αxx)

2
− ñxHñx−1(αxx)

)
∓ iαy
Hñy(αyy)

(
Hñy+1(αyy)

2
− ñyHñy−1(αyy)

))
fk(~r ) . (36)

In an interesting paper Castro et al. [22] found that solutions for zero pseu-
doscalar potential are related to spin and pseudospin symmetry of Dirac
equation in 3 + 1 dimensions. They showed how charge conjugation and
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chiral transformations are related to spectra of spin and pseudospin symme-
tries. They also found that there is the same spectrum, but different spinor
solutions for massless particles of the spin and pseudospin symmetries.

And now, our results are compared with those of Ginocchio’s work [21]
through chiral and charge-conjugation transformations. At first, we intro-
duce charge-conjugation operation:

The charge-conjugation operation changes the sign of the vector potential
in (1). This is performed by the transformation [29]

Φ→ Φc = αΦ∗ . (37)

After applying this charge-conjugation operation to Dirac equation (2), time
independent Dirac equation becomes

HcΦ̃c = −E Φ̃c , (38)

where Φ̃c = α Φ̃∗, Φ̃(x) = e
i
~Etφ (x, t) and Hc is given by

Hc = ~̂α · ~p+ β̂(M + S(~r ))− V (~r ) . (39)

In terms of the potentials ∆ and Σ, this Hamiltonian becomes

Hc = ~̂α · ~p+ β̂Mc2 − I + β̂

2
∆− I − β̂

2
Σ . (40)

We can see that charge-conjugation operation changes the sign of the energy
and of the potential V (r). This means that Σ turns into −∆ and∆ into −Σ.
Therefore, to be invariant under charge conjugation, the Hamiltonian must
contain only a scalar potential [22]. Now, we introduce chiral transformation:
Chiral operator for a Dirac spinor is the matrix γ5. Transformed Dirac
spinor under chiral transformation is given by Φχ = γ5Φ and transformed
Dirac Hamiltonian Hχ = γ5Hγ5. Chiral transformed Dirac equation is

HχΦ̃χ = E Φ̃χ , (41)

where Hχ is given by

Hχ = ~̂α · ~p− β̂
(
Mc2 + S(~r )

)
+ V (~r ) , (42)

in terms of Σ and ∆, this Hamiltonian becomes

Hχ = ~̂α · ~p− β̂Mc2 +
I + β̂

2
∆+

I − β̂
2

Σ . (43)



Pseudospin Symmetry in Deformed Nuclei with Triaxial-symmetric . . . 2467

This means that the chiral transformation changes the sign of the mass
and that of scalar potential, thus turning Σ into ∆ and vice versa. A chiral-
invariant Hamiltonian needs to have zero mass and S(r) zero everywhere [22].

With respect to this fact that charge-conjugation transformation per-
forms the changes of ∆ → −Σ, Σ → −∆ and E → −E, we can conclude
that charge-conjugation transformation relates the spin symmetry of the
negative bound-state solutions (antinucleons) to pseudospin symmetry of
positive bound-state solutions (nucleons) [20]. Therefore, under charge-
conjugation transformation, the nucleons energy spectrum, Eq. (30), be-
comes

E2
nx,ny ,nz −M

2 = α2
x(2nx + 1) + α2

y(2ny + 1) + α2
z(2nz + 1) , (44)

where

αx =
(
Mω2

x(E +M)
) 1

4 , (45)

αy =
(
Mω2

y(E +M)
) 1

4 , (46)

and

αz =
(
Mω2

z(E +M)
) 1

4 . (47)

Here, nx, ny and nz are the number of nodes for upper component in x, y
and z directions, respectively.

Eq. (44) is the same energy equation (Eq. (19), Ref. [21]) which is ap-
plied for the study of antinucleons. Ginocchio got this equation for triaxial
harmonic oscillator for the case ∆ = 0, Σ = M(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), i.e.,

spin symmetry.
Moreover, since under chiral transformation we have Σ → ∆, ∆ → Σ

and M → −M changes, so we can obtain the conclusions related to ∆ = 0,
Σ = M(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), by changing M sign in relevant parameters.

Therefore, under chiral transformation, nucleons energy spectrum, Eq. (30),
becomes

E2
nx,ny ,nz −M

2 = α2
x(2nx + 1) + α2

y(2ny + 1) + α2
z(2nz + 1) . (48)

Eq. (48) is the same as Eq. (44) but for nucleons with spin symmetry. By
comparing Eqs. (44) and (48), one may note that the spectra of nucleons
and antinucleons are the same for spin symmetry. It means that, for Dirac
harmonic oscillator which we considered, spectra of nucleon ∆ = 0 states
are degenerate with antinucleon ∆ = 0 states.
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The number of nodes of the function gk(~r ), in the z direction is different
from that of lower component, fk(~r ), by one unit, but they are the same
in x and y directions. Although, the number of nodes of g±

k,∓ 1
2

(~r ) functions
is the same as that of lower component in z direction, they are different in
x and y direction (by one unit).

In fact, this shows the structure of nodes in the pseudospin doublet of
deformed nuclei with triaxial-symmetric harmonic oscillator potential.

The structure of nuclear rotational bands has been investigated in
Ref. [30]. Szymanski considered single-particle motion of a nucleon in a
highly deformed and fast rotating mean field by the rather well known pro-
cedure of the cranking model. Pseudospin picture which will be used exten-
sively throughout this work is mainly connected to cranking treatment of
the rotation. The cranking Hamiltonian [30]

Hω = H − ωj1 (49)

will, therefore, be employed here together with the pseudospin picture. Here,
the angular momentum j1 is the sum of the pseudo-orbital angular mo-
mentum l̃1 and pseudospin s̃1. In Ref. [30], the whole dynamics has been
described in terms of a simple picture of a Rotating Harmonic Oscillator
(RHO) in the coordinate space. An exact solution to the cranking Hamil-
tonian Hω exists [31, 32] and may be employed to investigate explicitly the
single-particle Routhians. The solution has the form of three independent
normal modes of the Harmonic Oscillator (HO) type and obtained the one-
nucleon Routhians as [30]

eων =
(
n1 + 1

2

)
ω1 +

(
n2 + 1

2

)
Ω2 +

(
n3 + 1

2

)
Ω3 . (50)

Here, ω1, ω2, ω1 are the three original harmonic oscillator frequencies. The
two modified (normal) frequencies Ω2 and Ω3 are simple functions of ω2 and
ω3, and rotational frequency ω [31,32]. Integers n1, n2 and n3 are the three
quantum numbers of the RHO. It seems to be a remarkable result of such a
model that whenever the condition

n2 = n3 (51)

is fulfilled, the orbit (n1, n2, n3) becomes almost a flat line in the eωn1,n2,n3
=

f(ω) representation in a rather large interval of ω (see Fig. 1 of Ref. [30]).
The angular momentum operator j1 from Eq. (48) couples all the states

|Ñn3Λ̃Ω〉 in the pseudospin picture so that expansion of any RHO state
(n1, n2, n3) into the states |Ñn3Λ̃Ω〉 is infinite. Nevertheless, for slow rota-
tion a certain correspondence between the two representations can be estab-
lished approximately (see Table II from Fig. [30]). The states (n1, n2, n3) are
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related to asymptotic HO representation in pseudospin picture. The approx-
imate correspondence between the states in the two representations shows
that the state (n1, n2, n3) is related to the state |Ñn3Λ̃Ω〉 as Ñ = n1+n2+n3

and Λ̃ = (Ñ − n3), (Ñ − n3)− 2, . . . while the quantum number n3 remains
the same in both representations.

In order to transform pseudospin deformed HO representation into a
usual deformed HO representation |Nn3ΛΩ〉, the corresponding procedure
is well known as follows [1, 3]∣∣∣Ñn3Λ̃Ω

〉
−→ |N + 1n3ΛΩ〉 , (52)

where Λ = Λ̃± 1 for Ω = Λ̃± (1
2).

4. Conclusions

A study of goodness of pseudospin symmetry in triaxial nuclei was the
subject matter of this paper. An analysis was carried out within the frame-
work of the harmonic-oscillator shell model. In this paper, energy equation
was given by Eq. (30). If ωx = ωy = ωz = ω1, then αx = αy = αz = α1, in
this case, the energy equation would be converted into Eq. (32), which is the
same corresponding energy equation for spherical symmetric nuclei. So the
consistent condition of our result with previous findings [23] is ñx+ñy+ñz =
2ñ+ l̃. The wavefunctions for triaxial nuclei and also for spherical nuclei are
4-component Dirac spinors, but in the former case one has four distinct spa-
tial wavefunctions (and therefore four differential equations to solve) while
in the latter it has only 2 distinct radial functions [23]. In this work, four-
component Dirac wavefunctions were obtained as given by Eq. (31) and
Eqs. (35), (36). We showed how the charge-conjugation and chiral transfor-
mations connect different spectra related to spin and pseudospin symmetries.
In fact, we mapped our solution to Ginocchio’s by appropriate changes of
signs in the relevant parameters.
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