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The soft-wall AdS/QCD model, modified by a positive-sign dilaton metric,
leads to a remarkable one-parameter description of nonperturbative hadron dy-
namics. The model predicts a zero-mass pion for zero-mass quarks and a Regge
spectrum of linear trajectories with the same slope in the leading orbital angular
momentum L of hadrons and the radial quantum number N . Light-front holog-
raphy maps the amplitudes which are functions of the fifth dimension variable z
of Anti-de Sitter space to a corresponding hadron theory quantized on the light
front. The resulting Lorentz-invariant relativistic light-front wave equations are
functions of an invariant impact variable ζ which measures the separation of the
quark and gluonic constituents within the hadron at equal light-front time. The
result is to a semiclassical frame-independent first approximation to the spec-
tra and light-front wavefunctions of meson and baryon light-quark bound states,
which in turn predict the behavior of the pion and nucleon form factors. The
theory implements chiral symmetry in a novel way: the effects of chiral symmetry
breaking increase as one goes toward large interquark separation, consistent with
spectroscopic data, and the hadron eigenstates generally have components with
different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with
massless quarks has L = 0 and L = 1 light-front Fock components with equal
probability. The soft-wall model also predicts the form of the non-perturbative
effective coupling αAdS

s (Q) and its β-function which agrees with the effective cou-
pling αg1 extracted from the Bjorken sum rule. The AdS/QCD model can be sys-
tematically improved by using its complete orthonormal solutions to diagonalize
the full QCD light-front Hamiltonian or by applying the Lippmann–Schwinger
method in order to systematically include the QCD interaction terms. A new
perspective on quark and gluon condensates is also reviewed.
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1. Introduction

The Schrödinger equation plays a central role in atomic physics, provid-
ing a simple, but effective, first approximation description of the spectrum
and wavefunctions of bound states in quantum electrodynamics. It can be
systematically improved in QED, leading to an exact quantum field theoretic
description of atomic states such as positronium and muonium as given by
the relativistic Bethe–Salpeter equation.

A long-sought goal in hadron physics is to find a simple analytic first
approximation to QCD analogous to the Schrödinger–Coulomb equation of
atomic physics. This problem is particularly challenging since the formalism
must be relativistic, color-confining, and consistent with chiral symmetry.

We have recently shown that the soft-wall AdS/QCD model, modified by
a positive-sign dilaton metric, leads to a remarkable one-parameter descrip-
tion of nonperturbative hadron dynamics. The model predicts a zero-mass
pion for zero-mass quarks and a Regge spectrum of linear trajectories with
the same slope in the leading orbital angular momentum L of hadrons and
the radial quantum number N .

Light-front holography [1] maps the amplitudes which are functions of
the fifth dimension variable z of Anti-de Sitter (AdS) space to a correspond-
ing hadron theory quantized at fixed light-front time τ = x0 + x3/c , the
time marked by the front of a light wave [2]. The resulting Lorentz-invariant
relativistic light-front (LF) wave equations are functions of an impact vari-
able ζ which measures the invariant separation of the quark and gluonic
constituents within the hadron at equal light-front time; it is analogous to
the radial coordinate r in the Schrödinger equation. This novel approach
leads to a semiclassical frame-independent first approximation to the spec-
trum and light-front wavefunctions of meson and baryon light-quark bound
states, which in turn predict the behavior of the pion and nucleon form
factors in the space-like and time-like regions. The resulting equation for
a meson qq bound state has the form of a relativistic Lorentz invariant
Schrödinger equation(

− d2

dζ2
− 1− 4L2

4ζ2
+ U(ζ)

)
φ(ζ) =M2φ(ζ) , (1)

where the confining potential is U(ζ) = κ4ζ2 + 2κ2(L + S − 1) in a soft
dilaton modified background [3]. There is only one parameter, the mass
scale κ ∼ 1/2 GeV, which enters the confinement potential. Here S = 0, 1
is the spin of the q and q. In a relativistic theory, the hadron eigenstate has
components of different orbital angular momentum, just as in the Dirac–
Coulomb equation, where the lowest eigenstate has both S and P states.
By convention one uses the minimum L to label the state. Furthermore,
in light-front theory, the label L refers to the maximum orbital angular
projection |Lz|, of the bound state.
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The single-variable LF Schrödinger equation, Eq. (1), determines the
eigenspectrum and the light-front wavefunctions (LFWFs) of hadrons for
general spin and orbital angular momentum [1]. This LF wave equation
serves as a semiclassical first approximation to QCD, and it is equivalent to
the equations of motion which describe the propagation of spin–J modes in
AdS space. Light-front holography thus provides a remarkable connection
between the description of hadronic modes in AdS space and the Hamiltonian
formulation of QCD in physical space-time quantized on the light-front at
fixed LF time τ. If one further chooses the constituent rest frame (CRF)
[4–6], where the total 3-momentum vanishes:

∑n
i=1 ki = 0, then the kinetic

energy in the LF wave equation displays the usual 3-dimensional rotational
invariance.

The meson spectrum predicted by Eq. (1) has a string-theory Regge form
M2 = 4κ2(n + L + S/2); i.e., the square of the eigenmasses are linear in
both L and n, where n counts the number of nodes of the wavefunction in
the radial variable ζ. This is illustrated for the pseudoscalar and vector-
meson spectra in Figs. 1 and 2, where the data are from Ref. [7]. The pion
(S = 0, n = 0, L = 0) is massless for zero quark mass, consistent with chiral
invariance. Thus one can compute the hadron spectrum by simply adding
4κ2 for a unit change in the radial quantum number, 4κ2 for a change in
one unit in the orbital quantum number and 2κ2 for a change of one unit of
spin S. Remarkably, the same rule holds for baryons as we shall show below.
For other recent calculations of the hadronic spectrum based on AdS/QCD,
see Refs. [8–25].
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Fig. 1. Parent and daughter Regge trajectories for the π-meson family for κ =
0.6 GeV.



2608 S.J. Brodsky, G.F. de Téramond

0
09-2009

8796A1
1 2 3 4

2

4

6

M2

L

1-- 2++ 3-- 4++
JPC

n=3

f2(2300)

f2(1950)

a2(1320)

ρ(1700)

ω(1650)

ρ(1450)
ω(1420)

ρ(770)
ω(782)

f2(1270)

ρ3(1690)
ω3(1670)

a4(2040)
f4(2050)

n=2 n=1 n=0

Fig. 2. Regge trajectories for the I = 1 ρ-meson and the I = 0 ω-meson families
for κ = 0.54 GeV.

The eigensolutions of Eq. (1) provide the light-front wavefunctions of
the valence Fock state of the hadrons ψ(ζ) = ψ(x, b⊥) as illustrated for the
pion in Fig. 3 for the soft and hard wall models. Given these wavefunctions,
one can predict many hadronic observables such as the generalized parton
distributions that control deeply virtual Compton scattering. For example,
hadron form factors can be predicted from the overlap of LFWFs as in the
Drell–Yan–West formula. The prediction for the space-like pion form factor
is shown in Fig. 4. The vector–meson poles residing in the dressed current
in the soft-wall model require choosing a value of κ smaller by a factor 1√

2
than the canonical value of κ that determines the mass scale of the hadronic
spectra. This shift is apparently related to the fact that the longitudi-
nal twist-3 current J+, which appears in the Drell–Yan expression for the
space-like form factor, is different from the leading-twist qq operator that
is used to compute the vector–meson spectrum. The leading-twist operator
corresponds to the transverse current J⊥ which is responsible for produc-
ing the qq state in the time-region from e+e− annihilation. We will discuss
this point further in an upcoming paper. Other recent computations of the
space-like pion form factor in AdS/QCD are presented in [29,30]. Given the
LFWFs one can compute jet hadronization at the amplitude level from first
principles [31]. A similar method has been used to predict the production
of antihydrogen from the off-shell coalescence of relativistic antiprotons and
positrons [32].
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Fig. 3. Pion light-front wavefunction ψπ(x, b⊥) for the AdS/QCD (a) hard-wall
(ΛQCD = 0.32 GeV) and (b) soft-wall ( κ = 0.375 GeV) models.
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Fig. 4. Space-like scaling behavior for Fπ(Q2) as a function of q2. The continuous
line is the prediction of the soft-wall model for κ = 0.375 GeV. The dashed line is
the prediction of the hard-wall model for ΛQCD = 0.22 GeV. The triangles are the
data compilation from Baldini et al. [26] the filled boxes are JLAB 1 data [27] and
empty boxes are JLAB 2 data [28].

This semi-classical first approximation to QCD can be systematically
improved by using the complete orthonormal solutions of Eq. (1) to diago-
nalize the QCD light-front Hamiltonian [33] or by applying the Lippmann–
Schwinger method to systematically include the QCD interaction terms. In
either case, the result is the full Fock state structure of the hadron eigen-
solution. One can also model heavy-light and heavy hadrons by including
non-zero quark masses in the LF kinetic energy

∑
i(k

2
⊥i +m2

i )/xi as well as
the effects of the one-gluon exchange potential.

One can derive these results in two parallel ways. In the first method,
one begins with a conformal approximation to QCD, justified by evidence
that the theory has an infrared fixed point [34]. One then uses the fact that
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the conformal group has a geometrical representation in the five-dimensional
AdS5 space to model an effective dual gravity description in AdS. The fact
that conformal invariance is reflected in the isometries of AdS is an essential
ingredient of Maldacena’s AdS/CFT correspondence [35]. Confinement is ef-
fectively introduced with a sharp cut-off in the infrared region of AdS space,
the “hard-wall” model [36] or with a dilaton background in the fifth dimen-
sion which produces a smooth cutoff and linear Regge trajectories, the “soft-
wall” model [37]. The soft-wall AdS/CFT model with a dilaton-modified
AdS space leads to the potential U(z) = κ4z2 + 2κ2(L+S− 1). This poten-
tial can be derived directly from the action in AdS space [3] and corresponds
to a dilaton profile exp(+κ2z2), with a positive argument of the exponential,
opposite in sign to that of Ref. [37]. The modified metric induced by the dila-
ton can be interpreted in AdS space as a gravitational potential for an object
of mass m in the fifth dimension: V (z) = mc2√g00 = mc2Re±κ

2z2/2/z. In
the case of the negative solution, the potential decreases monotonically, and
thus an object in AdS will fall to infinitely large values of z. For the posi-
tive solution, the potential is non-monotonic and has an absolute minimum
at z0 = 1/κ. Furthermore, for large values of z the gravitational poten-
tial increases exponentially, confining any object to distances 〈z〉 ∼ 1/κ [3].
We will thus choose the confining positive sign dilaton solution [3, 38] with
opposite sign to that of Ref. [37]. This additional warp factor leads to a
well-defined scale-dependent effective coupling.

Glazek and Schaden [39] have shown that a harmonic-oscillator confin-
ing potential naturally arises as an effective potential between heavy quark
states when one stochastically eliminates higher gluonic Fock states. Also,
Hoyer [40] has argued that the Coulomb and linear potentials are uniquely
allowed in the Dirac equation at the lowest level in ~. The linear potential
becomes a harmonic oscillator potential in the corresponding Klein–Gordon
equation.

Hadrons are identified in AdS/QCD by matching the power behavior of
the hadronic amplitude at the AdS boundary at small z to the twist of its in-
terpolating operator at short distances x2 → 0, as required by the AdS/CFT
dictionary. The twist corresponds to the dimension of fields appearing in chi-
ral super-multiplets [41]. The canonical twist of a hadron equals the number
of its constituents. We can then apply light-front holography to relate the
amplitude eigensolutions in the fifth dimension coordinate z to the LF wave-
functions in the physical space-time variable ζ. Light-front holography can
be derived by establishing an identity between the Polchinski–Strassler for-
mula for current matrix elements in AdS space [42] and the corresponding
Drell–Yan–West formula in LF theory [43, 44]. The same correspondence is
obtained for both electromagnetic [45,46] and gravitational form factors, [47]
a nontrivial test of consistency.
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In the second method we use a first semiclassical approximation to trans-
form the fixed LF time bound-state Hamiltonian equation to a corresponding
wave equation in AdS space. The invariant LF coordinate ζ allows the sep-
aration of the dynamics of quark and gluon binding from the kinematics
of constituent spin and internal orbital angular momentum [1]. In effect, ζ
represents the off-light-front energy shell (invariant mass) dependence of the
bound state. The result is the single-variable LF relativistic Schrödinger
equation which determines the spectrum and LFWFs of hadrons for gen-
eral spin and orbital angular momentum. This LF wave equation serves
as a semiclassical first approximation to QCD, and it is equivalent to the
equations of motion which describe the propagation of spin–J modes in AdS
space.

The term L2/4ζ2 in the LF equation of motion (1) is derived from the
reduction of the LF kinetic energy, when one transforms to the radial ζ
and angular coordinate ϕ, in analogy to the `(` + 1)/r2 Casimir term in
Schrödinger theory. One thus establishes the interpretation of the orbital
angular momentum L in the AdS equations of motion. The interaction terms
build confinement and correspond to truncation of AdS space in an effec-
tive dual gravity approximation [1]. The duality between these two methods
provides a direct connection between the description of hadronic modes in
AdS space and the Hamiltonian formulation of QCD in physical space-time,
quantized on the light-front at fixed LF time τ.

2. Foundations of AdS/QCD

One of the most significant theoretical advances in recent years has been
the application of the AdS/CFT correspondence [35] between string theo-
ries defined in 5-dimensional Anti-de Sitter space-time and conformal field
theories in physical space-time, to study the dynamics of strongly coupled
quantum field theories. The essential principle underlying the AdS/CFT
approach to conformal gauge theories is the isomorphism of the group of
Poincaré and conformal transformations SO(4, 2) to the group of isometries
of Anti-de Sitter space. The AdS metric is

ds2 =
R2

z2

(
ηµνdx

µdxν − dz2
)
, (2)

which is invariant under scale changes of the coordinate in the fifth dimension
z → λz and xµ → λxµ. Thus one can match scale transformations of the
theory in 3 + 1 physical space-time to scale transformations in the fifth
dimension z. In the AdS/CFT duality, the amplitude Φ(z) represents the
extension of the hadron into the additional fifth dimension. The behavior of
Φ(z) → zτ at z → 0 matches the twist-dimension τ of the hadron at short
distances.
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In the standard applications of AdS/CFT methods, one begins with Mal-
dacena’s duality between the conformal supersymmetric SO(4, 2) gauge the-
ory and a semiclassical supergravity string theory defined in a 10 dimension
AdS5 × S5 space-time. There are no existing string theories actually dual
to QCD, but nevertheless many interesting predictions can be made. In
contrast, in our approach, we simply use the mathematical fact that the
effects of scale transformations in a conformal theory can be mapped to
the z-dependence of amplitudes in AdS5 space. In this approach, we con-
sider the propagation of hadronic modes in a fixed effective gravitational
background which encodes salient properties of the QCD dual theory, such
as the ultraviolet conformal limit at the AdS boundary at z → 0, as well
as modifications of the background geometry in the large-z infrared region,
characteristic of strings dual to confining gauge theories.

The identification of orbital angular momentum of the constituents is
a key element in the description of the internal structure of hadrons using
holographic principles. In our approach quark and gluon degrees of freedom
are explicitly introduced in the gauge/gravity correspondence, in contrast
with the usual AdS/QCD framework [48,49] where axial and vector currents
become the primary entities as in effective chiral theory. In our approach,
the holographic mapping is carried out in the strongly coupled regime where
QCD is almost conformal corresponding to an infrared fixed-point. Our
analysis follows from developments in light-front QCD [1,45–47,50,51] which
have been inspired by the AdS/CFT correspondence [35].

QCD is not conformal, but there is in fact much empirical evidence from
lattice gauge theory [52], Dyson Schwinger theory [53], and empirical ef-
fective charges [54] that the QCD β-function vanishes in the infrared [34].
The QCD infrared fixed point arises since the propagators of the confined
quarks and gluons in the loop integrals contributing to the β-function have a
maximal wavelength [55]. The decoupling of quantum loops in the infrared
is analogous to QED where vacuum polarization corrections to the photon
propagator decouple at Q2 → 0. Since there is a window where the QCD
coupling is large and approximately constant, QCD resembles a conformal
theory for massless quarks. Thus, even though QCD is not conformally
invariant, one can use the mathematical representation of the conformal
group in five-dimensional Anti-de Sitter space to construct an analytic first
approximation to the theory. One then uses AdS5 to represent scale trans-
formations within the conformal window. Unlike the top-down supergravity
approach, one is not limited to hadrons of spin J ≤ 2 in our bottom-up
approach, and one can study baryons with NC = 3. The theory also predicts
dimensional counting for form factors and other fixed CM angle exclusive
reactions. Moreover, as we shall review, light-front holography allows one
to map the hadronic amplitudes Φ(z) determined in the AdS fifth dimen-
sion z to the valence LFWFs of each hadron as a function of a covariant
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impact variable ζ. Moreover, the same techniques provide a prediction for
the QCD coupling αs(Q2) and its β-function which reflects the dynamics of
confinement.

3. Light-front quantization

Light-front quantization is the ideal framework for describing the struc-
ture of hadrons in terms of their quark and gluon degrees of freedom. The
light-front wavefunctions of bound states in QCD are relativistic general-
izations of the Schrödinger wavefunctions, but they are determined at fixed
light-front time τ = x+ = x0 + x3, the time marked by the front of a light
wave [2], rather than at fixed ordinary time t. They play the same role in
hadron physics that Schrödinger wavefunctions play in atomic physics. In
addition, the simple structure of the LF vacuum provides an unambiguous
definition of the partonic content of a hadron in QCD.

We can define the LF Lorentz invariant Hamiltonian HLF = PµP
µ =

P−P+−P 2
⊥ with eigenstates |ψH(P+,P⊥, Sz)〉 and eigenmassM2

H, the mass
spectrum of the color-singlet states of QCD [56]. HLF can be determined
canonically from the QCD Lagrangian in light-cone gauge A+ = 0. The
light-front formalism for gauge theories in light-cone gauge is particularly
useful in that there are no ghosts and one has a direct physical interpretation
of orbital angular momentum. The Heisenberg equation for QCD on the
light-front thus takes the form HLF|ψH〉 =M2

H|ψH〉. Its eigenfunctions are
the light-front eigenstates which define the frame-independent light-front
wavefunctions, and its eigenvalues yield the hadronic spectrum, the bound
states as well as the continuum. A state |ψH〉 is an expansion in multi-
particle Fock states |n〉 of the free LF Hamiltonian: |ψH〉 =

∑
n ψn/H|n〉,

where a one parton state is |q〉 =
√

2q+ b†(q)|0〉. The projection of the
eigensolutions on the free Fock basis thus give the n-parton LF wavefunctions
ψn/H = 〈n|ψH〉 needed for phenomenology.

Light-front quantization of QCD provides a nonperturbative method for
solving QCD in Minkowski space. Unlike lattice gauge theories, fermions
introduce no new complications. Heisenberg’s problem on the light-front can
be solved numerically using discretized light-front quantization (DLCQ) [57]
by applying anti-periodic boundary conditions in σ = x0− x3. This method
has been used successfully to solve many lower dimension quantum field
theories [56].

4. Light-front wavefunctions

The Schrödinger wavefunction describes the quantum-mechanical struc-
ture of an atomic system at the amplitude level. The light-front multiparticle
Fock state wavefunctions play a similar role in quantum chromodynamics,
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providing a fundamental description of the structure and internal dynamics
of hadrons in terms of their constituent quarks and gluons. The LFWFs
of bound states in QCD are relativistic generalizations of the Schrödinger
wavefunctions of atomic physics, but they are determined at fixed light-cone
time τ = x0 + x3/c — the “front form” introduced by Dirac [2] — rather
than at fixed ordinary time t.

When a flash from a camera illuminates a scene, each object is illumi-
nated along the light-front of the flash; i.e., at a given τ . Similarly, when
a sample is illuminated by an X-ray source, each element of the target is
struck at a given τ. In contrast, setting the initial condition using conven-
tional instant time t requires simultaneous scattering of photons on each con-
stituent. Thus it is natural to set boundary conditions at fixed τ and then
evolve the system using the light-front Hamiltonian P−=P 0 − P 3 = id/dτ .
The invariant Hamiltonian HLF = P+P−− P 2

⊥ then has eigenvalues M2,
whereM is the physical mass. Its eigenfunctions are the light-front eigen-
states whose Fock state projections define the light-front wavefunctions.
Given the LF Fock state wavefunctions ψH

n (xi,k⊥i, λi), where xi =k+/P+,∑n
i=1 xi= 1,

∑n
i=1 k⊥i= 0, one can immediately compute observables such

as hadronic form factors (overlaps of LFWFs), structure functions (squares
of LFWFS), as well as the generalized parton distributions and distribution
amplitudes which underly hard exclusive reactions.

The most useful feature of LFWFs is the fact that they are frame-
independent; i.e., the form of the LFWF is independent of the hadron’s
total momentum P+ = P 0 + P z and P⊥. The simplicity of Lorentz boosts
of LFWFs contrasts dramatically with the complexity of the boost of wave-
functions defined at fixed time t [58]. Light-front quantization is thus the
ideal framework to describe the structure of hadrons in terms of their quark
and gluon degrees of freedom. The constituent spin and orbital angular mo-
mentum properties of the hadrons are also encoded in the LFWFs. The total
angular momentum projection [59], Jz =

∑n
i=1 S

z
i +

∑n−1
i=1 L

z
i , is conserved

Fock-state by Fock-state and by every interaction in the LF Hamiltonian.
The angular momentum projections in the LF ẑ direction Lz, Sz and Jz

are kinematical in the front form, so they are the natural quantum num-
bers to label the eigenstates of light-front physics. In the massless fermion
limit, the gauge interactions conserve LF chirality; i.e., the quark spin Sz

is conserved (rather than helicity ~S · ~p ) at the QCD vertices. Similarly,
quark–antiquark pairs from gluon splitting have opposite Sz. For example,
the light-front wavefunction of a massless electron at order α in QED with
Jz = +1/2 has fermion–photon Fock components Sze = +1/2, Szγ = +1,
Lz = −1 and Sze = +1/2, Szγ = −1, Lz = +1.

In general, a hadronic eigenstate with spin j in the front form corre-
sponds to an eigenstate of J2 = j(j + 1) in the rest frame in the con-
ventional instant form. It thus has 2j + 1 degenerate states with Jz =
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−j,−j + 1, . . . j − 1,+j [56]. An important feature of relativistic theories is
that hadron eigenstates have in general Fock components with different L
components. For example, the Sz = +1/2 proton eigenstate in AdS space
has equal probability Szq = +1/2, Lz = 0 and Szq = −1/2, Lz = +1 light-
front Fock components with equal probability. Thus in AdS, the proton is
effectively a quark/scalar–diquark composite with equal S and P waves.

In the case of QED, the ground 1S state of the Dirac–Coulomb equation
has both L = 0 and L = 1 components. By convention, in both light-front
QCD and QED, one labels the eigenstate with its minimum value of L.
For example, the symbol L in the AdS/QCD spectral prediction M2 =
4κ2(n + L + S/2) refers to the minimum L, and S = j is the total spin of
the hadron.

Other advantageous features of light-front quantization include:

• The simple structure of the light-front vacuum allows an unambiguous
definition of the partonic content of a hadron in QCD. The chiral and
gluonic condensates are properties of the higher Fock states [60, 61]
rather than the vacuum. In the case of the Higgs model, the effect of
the usual Higgs vacuum expectation value is replaced by a constant
k+ = 0 zero mode field [62]. The LF vacuum is trivial up to zero
modes in the front form, thus eliminating contributions to the cosmo-
logical constant from QED or QCD [61]. We discuss the remarkable
consequences of this for the cosmological constant in Section 14.

• If one quantizes QCD in the physical light-cone gauge (LCG) A+ = 0,
then gluons only have physical angular momentum projections Sz=±1.
The orbital angular momenta of quarks and gluons are defined unam-
biguously, and there are no ghosts.

• The gauge-invariant distribution amplitude φ(x,Q) is the integral of
the valence LFWF in LCG integrated over the internal transverse mo-
mentum k2

⊥ < Q2 because the Wilson line is trivial in this gauge. It is
also possible to quantize QCD in Feynman gauge in the light front [63].

• LF Hamiltonian perturbation theory provides a simple method for
deriving analytic forms for the analog of Parke–Taylor amplitudes [64],
where each particle spin Sz is quantized in the LF z direction. The
gluonic g6 amplitude T (−1 − 1 → +1 + 1 + 1 + 1 + 1 + 1) requires
∆Lz = 8; it thus must vanish at tree level since each three-gluon
vertex has ∆Lz = ±1. However, the order g8 one-loop amplitude can
be non-zero.

• Amplitudes in light-front perturbation theory may be automatically
renormalized using the “alternate denominator” subtraction method
[65]. The application to QED has been checked at one and two loops
[65].
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• A fundamental theorem for gravity can be derived from the equivalence
principle: the anomalous gravitomagnetic moment defined from the
spin-flip matrix element of the energy-momentum tensor is identically
zero, B(0) = 0 [66]. This theorem can be proven in the light-front
formalism Fock state by Fock state [59].

• LFWFs obey the cluster decomposition theorem, providing an elegant
proof of this theorem for relativistic bound states [67].

• The LF Hamiltonian can be diagonalized using the discretized light-
cone quantization (DLCQ) method [57]. This nonperturbative method
is particularly useful for solving low-dimension quantum field theories
such as QCD(1 + 1) [68].

• LF quantization provides a distinction between static (the square of
LFWFs) distributions versus non-universal dynamic structure func-
tions, such as the Sivers single-spin correlation and diffractive deep
inelastic scattering which involve final state interactions. The origin
of nuclear shadowing and process independent anti-shadowing also be-
comes explicit.

• LF quantization provides a simple method to implement jet hadroniza-
tion at the amplitude level.

• The instantaneous fermion interaction in LF quantization provides a
simple derivation of the J = 0 fixed pole contribution to deeply virtual
Compton scattering [69] i.e., the e2

qs
0F (t) contribution to the DVCS

amplitude which is independent of photon energy and virtuality.

• Unlike instant time quantization, the bound state Hamiltonian equa-
tion of motion in the LF is frame independent. This makes a direct
connection of QCD with AdS/CFT methods possible [1].

5. Applications of light-front wavefunctions

The Fock components ψn/H(xi,k⊥i, λzi ) are independent of P+ and P⊥
and depend only on relative partonic coordinates: the momentum fraction
xi = k+

i /P
+, the transverse momentum k⊥i and spin component λzi . The

LFWFs ψn/H provide a frame-independent representation of a hadron which
relates its quark and gluon degrees of freedom to their asymptotic hadronic
state. Since the LFWFs are independent of the hadron’s total momentum
P+ = P 0+P 3, so that once they are known in one frame, they are known in
all frames; Wigner transformations and Melosh rotations are not required.
They also allow one to formulate hadronization in inclusive and exclusive
reactions at the amplitude level.
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A key example of the utility of the light-front formalism is the Drell–
Yan–West formula [43,44] for the space-like form factors of electromagnetic
currents given as overlaps of initial and final LFWFs. At high momentum,
where one can iterate the hard scattering kernel, this yields the dimensional
counting rules, factorization theorems, and ERBL evolution of the distri-
bution amplitudes. The gauge-invariant distribution amplitudes φH(xi, Q)
defined from the integral over the transverse momenta k2

⊥i ≤ Q2 of the va-
lence (smallest n) Fock state provide a fundamental measure of the hadron
at the amplitude level [70, 71]; they are the nonperturbative inputs to the
factorized form of hard exclusive amplitudes and exclusive heavy hadron
decays in pQCD.

Given the light-front wavefunctions ψn/H one can compute a large range
of other hadron observables. For example, the valence and sea quark and
gluon distributions which are measured in deep inelastic lepton scattering
are defined from the squares of the LFWFs summed over all Fock states n.
Exclusive weak transition amplitudes [72] such as B → `νπ, and the general-
ized parton distributions [73] measured in deeply virtual Compton scattering
γ∗p → γp are (assuming the “handbag” approximation) overlaps of the ini-
tial and final LFWFs with n = n′ and n = n′+2. The resulting distributions
obey the DGLAP and ERBL evolution equations as a function of the max-
imal invariant mass, thus providing a physical factorization scheme [74]. In
each case, the derived quantities satisfy the appropriate operator product
expansions, sum rules, and evolution equations. At large x, where the struck
quark is far-off shell, DGLAP evolution is quenched [75] so that the fall-off
of the DIS cross-sections in Q2 satisfies Bloom–Gilman inclusive–exclusive
duality at fixed W 2.

The simple features of the light-front contrast with the conventional in-
stant form where one quantizes at t = 0. For example, calculating a hadronic
form factor requires boosting the hadron’s wavefunction from the initial to
final state, a dynamical problem as difficult as solving QCD itself. Moreover,
current matrix elements require computing the interaction of the probe with
all of connected currents fluctuating in the QCD vacuum. Each contributing
diagram is frame-dependent.

6. Light-front holography

Light-front holography [1,45–47,76] maps a confining gauge theory quan-
tized on the light front to a higher-dimensional Anti-de Sitter space incor-
porating the AdS/CFT correspondence as a useful guide. This correspon-
dence provides a direct connection between the hadronic amplitudes Φ(z)
in AdS space with LF wavefunctions φ(ζ) describing the quark and gluon
constituent structure of hadrons in physical space-time. In the case of a

meson, ζ =
√
x(1− x)b2

⊥ is a Lorentz invariant coordinate which measures
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the distance between the quark and antiquark; it is analogous to the radial
coordinate r in the Schrödinger equation. Here b⊥ is the Fourier conjugate
of the transverse momentum k⊥. The variable ζ also represents the off-light-
front energy shell and invariant mass dependence of the bound state. Light-
front holography provides a connection between the description of hadronic
modes in AdS space and the Hamiltonian formulation of QCD in physical
space-time quantized on the light-front at fixed LF time τ. The resulting
equation for the mesonic qq bound states at fixed light-front time, Eq. (1),
has the form of a single-variable relativistic Lorentz invariant Schrödinger
equation [1]. The resulting light-front eigenfunctions provide a fundamen-
tal description of the structure and internal dynamics of hadronic states in
terms of their constituent quark and gluons.

7. Holographic mapping of transition amplitudes

The mapping between the LF invariant variable ζ and the fifth-dimension
AdS coordinate z was originally obtained by matching the expression for elec-
tromagnetic current matrix elements in AdS space with the corresponding
expression for the current matrix element, using LF theory in physical space-
time [45]. It has also been shown that one obtains the identical holographic
mapping using the matrix elements of the energy-momentum tensor [47,77]
thus verifying the consistency of the holographic mapping from AdS to phys-
ical observables defined on the light front.

The light-front electromagnetic form factor in impact space [45, 46, 78]
can be written as a sum of overlap of light-front wave functions of the j =
1, 2, . . . , n− 1 spectator constituents

F
(
q2
)

=
∑
n

n−1∏
j=1

∫
dxjd

2b⊥j
∑
q

eq exp

(
iq⊥ ·

n−1∑
j=1

xjb⊥j

)∣∣ψn/H (xj , b⊥j)
∣∣2 ,
(3)

where the normalization is defined by∑
n

n−1∏
j=1

∫
dxjd

2b⊥j
∣∣ψn/H (xj , b⊥j)

∣∣2 = 1 . (4)

The formula is exact if the sum is over all Fock states n. For definiteness
we shall consider a two-quark π+ valence Fock state |ud〉 with charges eu =
2/3 and ed = 1/3. For n = 2, there are two terms which contribute to the
q-sum in (3). Exchanging x↔ 1−x in the second integral we find

Fπ+

(
q2
)

= 2π

1∫
0

dx

x(1− x)

∫
ζdζJ0

(
ζq

√
1− x
x

)∣∣∣ψud/π(x, ζ)
∣∣∣2 , (5)

where ζ2 = x(1− x)b2
⊥ and Fπ+(q=0) = 1.



QCD and Light-front Holography 2619

We now compare this result with the electromagnetic form-factor in AdS
space [42]

F
(
Q2
)

= R3

∫
dz

z3
J
(
Q2, z

)
|Φ(z)|2 , (6)

where J(Q2, z) = zQK1(zQ). Using the integral representation of J(Q2, z)

J
(
Q2, z

)
=

1∫
0

dxJ0

(
ζQ

√
1− x
x

)
(7)

we write the AdS electromagnetic form-factor as

F
(
Q2
)

= R3

1∫
0

dx

∫
dz

z3
J0

(
zQ

√
1− x
x

)
|Φ(z)|2 . (8)

Comparing with the light-front QCD form factor (5) for arbitrary values
of Q [45]

|ψ(x, ζ)|2 =
R3

2π
x(1− x)

|Φ(ζ)|2

ζ4
, (9)

where we identify the transverse LF variable ζ, 0 ≤ ζ ≤ ΛQCD, with the
holographic variable z. Identical results are obtained from the mapping
of the QCD gravitational form factor with the expression for the hadronic
gravitational form factor in AdS space [47,77].

8. A semiclassical approximation to QCD

One can also derive light-front holography using a first semiclassical ap-
proximation to transform the fixed light-front time bound-state Hamilto-
nian equation of motion in QCD to a corresponding wave equation in AdS
space [1]. To this end we compute the invariant hadronic massM2 from the
hadronic matrix element

〈ψH

(
P ′
)
|HLF|ψH(P )〉 =M2

H〈ψH

(
P ′
)
|ψH(P )〉 (10)

expanding the initial and final hadronic states in terms of its Fock compo-
nents. We use the frame P =

(
P+,M2/P+,~0⊥

)
, where HLF = P+P−. The

LF expression forM2 In impact space is

M2
H =

∑
n

n−1∏
j=1

∫
dxj d

2b⊥j ψ
∗
n(xj , b⊥j)

∑
q

(
−∇2

b⊥q
+m2

q

xq

)
ψn(xj , b⊥j)

+(interactions) (11)

plus similar terms for antiquarks and gluons (mg = 0).
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To simplify the discussion we will consider a two-parton hadronic bound
state. In the limit of zero quark mass mq → 0

M2 =

1∫
0

dx

x(1− x)

∫
d2b⊥ ψ

∗(x, b⊥)
(
−∇2

b⊥

)
ψ(x, b⊥) + (interactions) .

(12)
The functional dependence for a given Fock state is given in terms of the
invariant mass

M2
n =

(
n∑
a=1

kµa

)2

=
∑
a

k2
⊥a +m2

a

xa
→ k2

⊥
x(1− x)

(13)

the measure of the off-mass shell energy M2 − M2
n of the bound state.

Similarly in impact space the relevant variable for a two-parton state is
ζ2 = x(1−x)b2

⊥. Thus, to first approximation LF dynamics depend only on
the boost invariant variableMn or ζ, and hadronic properties are encoded
in the hadronic mode φ(ζ) from the relation

ψ(x, ζ, ϕ) = eiMϕX(x)
φ(ζ)√
2πζ

, (14)

thus factoring out the angular dependence ϕ and the longitudinal, X(x),
and transverse mode φ(ζ) with normalization 〈φ|φ〉 =

∫
dζ |〈ζ|φ〉|2 = 1.

We can write the Laplacian operator in (12) in circular cylindrical coordi-
nates (ζ, ϕ) and factor out the angular dependence of the modes in terms of
the SO(2) Casimir representation L2, L = Lz, of orbital angular momentum
in the transverse plane. Using (14) we find [1]

M2 =
∫
dζ φ∗(ζ)

√
ζ

(
− d2

dζ2
− 1
ζ

d

dζ
+
L2

ζ2

)
φ(ζ)√
ζ

+
∫
dζ φ∗(ζ)U(ζ)φ(ζ) ,

(15)
where all the complexity of the interaction terms in the QCD Lagrangian
is summed up in the effective potential U(ζ). The LF eigenvalue equation
HLF|φ〉 =M2|φ〉 is thus a light-front wave equation for φ(

− d2

dζ2
− 1− 4L2

4ζ2
+ U(ζ)

)
φ(ζ) =M2φ(ζ) , (16)

an effective single-variable light-front Schrödinger equation which is rela-
tivistic, covariant and analytically tractable. It is important to notice that
in the light-front the SO(2) Casimir for orbital angular momentum L2 is
a kinematical quantity, in contrast with the usual SO(3) Casimir `(` + 1)
from non-relativistic physics which is rotational, but not boost invariant.
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Using (11) one can readily generalize the equations to allow for the kinetic
energy of massive quarks [79]. In this case, however, the longitudinal mode
X(x) does not decouple from the effective LF bound-state equations.

As the simplest example, we consider a bag-like model where partons
are free inside the hadron and the interaction terms effectively build con-
finement. The effective potential is a hard wall: U(ζ) = 0 if ζ ≤ 1/ΛQCD

and U(ζ) = ∞ if ζ > 1/ΛQCD, where boundary conditions are imposed on
the boost invariant variable ζ at fixed light-front time. If L2 ≥ 0 the LF
Hamiltonian is positive definite 〈φ|HLF|φ〉 ≥ 0 and thusM2 ≥ 0. If L2 < 0
the bound state equation is unbounded from below and the particle “falls
towards the center”. The critical value corresponds to L = 0. The mode
spectrum follows from the boundary conditions φ(ζ = 1/ΛQCD) = 0, and is
given in terms of the roots of Bessel functions: ML,k = βL,kΛQCD. Upon
the substitution Φ(ζ) ∼ ζ3/2φ(ζ), ζ → z we find[

z2∂2
z − 3z ∂z + z2M2− (µR)2

]
ΦJ = 0 , (17)

the wave equation which describes the propagation of a scalar mode in a fixed
AdS5 background with AdS radius R. The five dimensional mass µ is related
to the orbital angular momentum of the hadronic bound state by (µR)2 =
−4 + L2. The quantum mechanical stability L2 > 0 is thus equivalent
to the Breitenlohner–Freedman stability bound in AdS [80]. The scaling
dimensions are ∆ = 2 + L independent of J in agreement with the twist
scaling dimension of a two parton bound state in QCD. Higher spin–J wave
equations are obtained by shifting dimensions: ΦJ(z) = (z/R)−JΦ(z) [1].

The hard-wall LF model discussed here is equivalent to the hard wall
model of Ref. [36]. The variable ζ, 0 ≤ ζ ≤ Λ−1

QCD, represents the invariable
separation between pointlike constituents and is also the holographic variable
z in AdS, thus we can identify ζ = z. Likewise a two-dimensional oscillator
with effective potential U(z) = κ4z2 + 2κ2(L+ S − 1) is similar to the soft-
wall model of Ref. [37] which reproduce the usual linear Regge trajectories,
where L is the internal orbital angular momentum and S is the internal
spin. The soft-wall discussed here correspond to a positive sign dilaton
and higher-spin solutions also follow from shifting dimensions: ΦJ(z) =
(z/R)−JΦ(z) [3].

Individual hadron states can be identified by their interpolating oper-
ator at z → 0. For example, the pseudoscalar meson interpolating op-
erator O2+L = qγ5D{`1 . . . D`m}q, written in terms of the symmetrized
product of covariant derivatives D with total internal orbital momentum
L =

∑m
i=1 `i, is a twist-two, dimension 3 +L operator with scaling behavior

determined by its twist-dimension 2+L. Likewise the vector-meson operator
Oµ2+L = qγµD{`1 . . . D`m}q has scaling dimension ∆ = 2 + L. The scaling
behavior of the scalar and vector AdS modes Φ(z) ∼ z∆ at z → 0 is precisely
the scaling required to match the scaling dimension of the local pseudoscalar
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and vector-meson interpolating operators. The spectral predictions for the
light pseudoscalar and vector–mesons in the Chew–Frautschi plot in Fig. 1
and 2 for the soft-wall model discussed here are in good agreement for the
principal and daughter Regge trajectories. Radial excitations correspond to
the nodes of the wavefunction.

9. Baryons in light-front holography

For baryons, the light-front wave equation is a linear equation determined
by the LF transformation properties of spin 1/2 states. A linear confining
potential U(ζ) ∼ κ2ζ in the LF Dirac equation leads to linear Regge trajec-
tories [79]. For fermionic modes the light-front matrix Hamiltonian eigen-
value equation DLF|ψ〉 = M|ψ〉, HLF = D2

LF, in a 2 × 2 spinor component
representation is equivalent to the system of coupled linear equations

− d

dζ
ψ− −

ν + 1
2

ζ
ψ− − κ2ζψ− = Mψ+ ,

d

dζ
ψ+ −

ν + 1
2

ζ
ψ+ − κ2ζψ+ = Mψ− , (18)

with eigenfunctions

ψ+(ζ) ∼ z
1
2

+νe−κ
2ζ2/2Lνn

(
κ2ζ2

)
,

ψ−(ζ) ∼ z
3
2

+νe−κ
2ζ2/2Lν+1

n

(
κ2ζ2

)
, (19)

and eigenvalues
M2 = 4κ2(n+ ν + 1) . (20)

The baryon interpolating operatorO3+L=ψD{`1 . . . D`qψD`q+1 . . . D`m}ψ,
L =

∑m
i=1 `i is a twist 3, dimension 9/2 + L with scaling behavior given by

its twist-dimension 3 + L. We thus require ν = L + 1 to match the short
distance scaling behavior. Higher spin fermionic modes are obtained by
shifting dimensions for the fields as in the bosonic case. Thus, as in the
meson sector, the increase in the mass squared for higher baryonic state is
∆n = 4κ2, ∆L = 4κ2 and ∆S = 2κ2, relative to the lowest ground state,
the proton. Since our starting point to find the bound state equation of
motion for baryons is the light-front, we fix the overall energy scale identical
for mesons and baryons by imposing chiral symmetry to the pion [76] in the
LF Hamiltonian equations. By contrast, if we start with a five-dimensional
action for a scalar field in presence of a positive sign dilaton, the pion is
automatically massless.

The predictions for the 56-plet of light baryons under the SU(6) flavor
group are shown in Fig. 5. As for the predictions for mesons in Fig. 2, only
confirmed PDG [7] states are shown. The Roper state N(1440) and the
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N(1710) are well accounted for in this model as the first and second radial
states. Likewise the ∆(1660) corresponds to the first radial state of the ∆
family. The model is successful in explaining the important parity degen-
eracy observed in the light baryon spectrum, such as the L= 2, N(1680)−
N(1720) degenerate pair and the L=2, ∆(1905), ∆(1910), ∆(1920), ∆(1950)
states which are degenerate within error bars. Parity degeneracy of baryons
is also a property of the hard wall model, but radial states are not well
described in this model [51].

0
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(a) (b)6

0 1 2 3 4
9-2009
8796A3
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Fig. 5. 56 Regge trajectories for the N and ∆ baryon families for κ = 0.5 GeV.

10. Realization of chiral invariance in light front holography

The proton eigenstate in light-front holography with massless quarks

ψ(ζ) = ψ+(ζ)u+ + ψ−(ζ)u− (21)

has Lz = 0 and Lz = +1 orbital components combined with spin components
Sz = +1/2 and Sz = −1/2, respectively. The four-dimensional spinors u±
are chiral spinors: γ5u± = ±u±. The light-front Fock components ψ+ and
ψ− have equal probability∫

dζ |ψ+(ζ)|2 =
∫
dζ |ψ−(ζ)|2 , (22)

a manifestation of the chiral invariance of the theory for massless quarks.
As the equality expressed in (22) follows from integrating the square of the
wavefunction for all values of the holographic variable, i.e., over all scales,
it is a global property of the theory. On the other hand, for a given scale
(a given value of the z or ζ) the solution is not chiral invariant as plus and
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minus components have different twist, thus different ζ behavior. At the
AdS boundary, z → 0 or ζ → 0, the solution is trivially chiral symmetric
since ψ+(ζ)→ 0 and ψ−(ζ)→ 0 as ζ → 0. However, as we go to finite values
of z (or ζ) — measuring the proton at different scales — both components
plus and minus evolve differently, thus giving locally (for a given scale) chiral
symmetry breaking effects, even for massless quarks. The measure of CSB
depends in the scale κ or ΛQCD. Chiral symmetry invariance is thus manifest
as a global property, and non-perturbative chiral symmetry breaking effects
arise locally for AdS theories dual to confining gauge theories, even in the
absence of quark masses.

11. The phenomenology of exclusive processes

Exclusive processes play a key role in quantum chromodynamics, test-
ing the primary quark and gluon interactions of QCD and the structure
of hadrons at the amplitude level. Two basic pictures have emerged based
on perturbative QCD (pQCD) and nonperturbative AdS/QCD. In pQCD
hard scattering amplitudes at a high scale Q2 � Λ2

QCD factorize as a con-
volution of gauge-invariant hadron distribution amplitudes φH(xi, Q) with
the underlying hard scattering quark–gluon subprocess amplitude TH. The
leading power fall-off of the hard scattering amplitude follows from the con-
formal scaling of the underlying hard-scattering amplitude: TH ∼ 1/Qn−4,
where n is the total number of fields (quarks, leptons, or gauge fields) par-
ticipating in the hard scattering [81, 82]. Thus the reaction is dominated
by subprocesses and Fock states involving the minimum number of inter-
acting fields. In the case of 2 → 2 scattering processes, this implies the
dimensional counting rules dσ/dt(AB → CD) = FAB→CD(t/s)/sn−2, where
n = NA +NB +NC +ND and NH is the minimum number of constituents
of H. The result is modified by the ERBL evolution [70,71] of the distribu-
tion amplitudes and the running of the QCD coupling

It is striking that the dimensional counting rules are also a key feature
of nonperturbative AdS/QCD models [36]. Although the mechanisms are
different, both the pQCD and AdS/QCD approaches depend on the leading
twist interpolating operators of the hadron and their structure at short dis-
tances. In both theories, hadronic form factors at high Q2 are dominated by
the wavefunctions at small impact separation. This in turn leads to the color
transparency phenomena [83,84]. For example, measurements of pion photo-
production are consistent with dimensional counting s7dσ/dt(γp→ π+n) ∼
constant at fixed CM angle for s > 7 GeV. The angular distributions seen
in hard large CM angle scattering reactions are consistent with quark in-
terchange, [85] a result also predicted by the hard wall AdS/QCD model.
Reviews are given in Refs. [86] and [87]. One sees the onset of perturbative
QCD scaling behavior even for exclusive nuclear amplitudes such as deuteron
photodisintegration (here n = 1 + 6 + 3 + 3 = 13) and s11dσ/dt(γd→ pn) ∼
constant at fixed CM angle [88–90]. The measured deuteron form factor [91]
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also appears to follow the leading-twist QCD predictions [92] at large mo-
mentum transfers in the few GeV region. The six color-triplet quarks of the
valence Fock state of the deuteron can be arranged as a sum of five different
color-singlet states, only one of which can be identified with the neutron-
proton state and can account for the large magnitude of the deuteron form
factor at high scales. A measurement of dσ/dt(γd→ ∆++∆) in the scaling
region can establish the role of “hidden-color” degrees of freedom [93] of the
nuclear wavefunction in hard deuteron reactions.

In the case of pQCD, the near-constancy of the effective QCD coupling
at small scales helps explain the general empirical success of the dimensional
counting rules for the near-conformal power law fall-off of form factors and
fixed-angle scaling [94].

Color transparency [83, 84] is a key property of color gauge theory, and
it thus stands at the foundations of QCD. Color transparency has been
confirmed in diffractive dijet production, [95] pion photoproduction [96] and
vector-meson electroproduction, [97] but it is very important to also system-
atically validate it in large-angle hadron scattering processes. Color trans-
parency and higher-twist subprocesses [98–102], where the trigger hadron is
produced directly, such as uu→ pd, can account for the anomalous growth
of the baryon-to-meson ratio with increasing centrality observed in heavy
ion collisions at RHIC [103].

12. Anomalies in exclusive processes

Some exceptions to the general success of dimensional counting are
known.

The transition form factor F (Q2)γ→π0 between a real photon and a pion
has been measured at BaBar to high Q2 ' 10 GeV2, falling at high pho-
ton virtuality roughly as 1/Q3/2 rather than the predicted 1/Q2 fall-off. In
contrast, preliminary measurements from BaBar [104] indicate that the tran-
sition form factors F (Q2)γ→η and F (Q2)γ→η′ are consistent with the pQCD
expectations. The photon to meson transition form factor is the simplest
QCD hadronic exclusive amplitude, and thus it is critical to understand this
discrepancy. As we shall discuss below, AdS/QCD predicts a broad distri-
bution amplitude φπ(x,Q) in the nonperturbative domain, but since ERBL
evolution leads to a narrower distribution in the high Q domain, it cannot
explain the BaBar anomaly. It is difficult to imagine that the pion distribu-
tion amplitude is close to flat [105–108] since this corresponds to a pointlike
non-composite hadron. It is crucial to measure dσ/dt(γγ → π0π0) since the
CM angular distribution is very sensitive to the shape of φπ(x,Q) [109].

The Hall A Collaboration [110] at JLab has reported another signifi-
cant exception to the general empirical success of dimensional counting in
fixed-CM-angle Compton scattering dσ/dt(γp → γp) ∼ F (θCM)/s8 instead
of the predicted 1/s6 scaling. The deviations from fixed-angle conformal
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scaling may be due to corrections from resonance contributions in the JLab
energy range. It is interesting that the hadron form factor RV(t) [111] which
multiplies the γq → γq amplitude is found by Hall A to scale as 1/t2, in
agreement with the pQCD and AdS/QCD prediction. In addition, the Belle
measurement [112] of the timelike two-photon cross-section dσ/dt(γγ → pp)
is consistent with 1/s6 scaling.

Although large-angle proton–proton elastic scattering is well described
by dimensional scaling s10dσ/dt(pp → pp) ∼ constant at fixed CM angle,
extraordinarily large spin–spin correlations are observed [113]. The ratio
of scattering cross-sections for spin-parallel and normal to the scattering
plane versus spin-antiparallel reaches RNN ' 4 in large angle pp → pp
at
√
s ' 5 GeV; this is a remarkable example of “exclusive transversity”.

Color transparency is observed at lower energies but it fails [114] at the
same energy, where RNN becomes large. In fact, these anomalies have a
natural explanation [115] as a resonance effect related to the charm thresh-
old in pp scattering. Alternative explanations of the large spin correlation
are discussed and reviewed in Ref. [116]. Resonance formation is a natural
phenomenon when all constituents are relatively at rest. For example, a
resonance effect can occur due to the intermediate state uuduudcc at the
charm threshold

√
s = 5 GeV in pp collisions. Since the c and c have op-

posite intrinsic parity, the resonance appears in the L = J = S = 1 partial
wave for pp → pp which is only allowed for spin-parallel and normal to
the scattering plane ANN = 1 [115]. Resonance formation at the charm
threshold also explains the dramatic quenching of color transparency seen
in quasielastic pn scattering by the EVA BNL experiment [114] in the same
kinematic region. The reason why these effects are apparent in pp → pp
scattering is that the amplitude for the formation of an uuduudcc s-channel
resonance in the intermediate state is of the same magnitude as the fast-
falling background pp → pp pQCD amplitude from quark interchange at
large CM angles: M(pp → pp) ∼ 1/u2t2. The open charm cross-section in
pp scattering is predicted by unitarity to be of the order of 1 µb at thresh-
old [115]. One also expects similar novel QCD phenomena in large-angle
photoproduction γp → πN near the charm threshold, including the break-
down of color transparency and strong spin–spin correlations. These effects
can be tested by measurements at the new JLab 12 GeV facility, which would
confirm resonance formation in a low partial wave in γp → πN at

√
s ' 4

GeV due to attractive forces in the uudcc channel.
Another difficulty for the application of pQCD to exclusive processes is

the famous J/ψ → ρπ puzzle; the observed unusually large branching ratio
for J/ψ → ρπ. In contrast, the branching ratio for Ψ ′ → ρπ is very small.
Such decays into pseudoscalar plus vector mesons require light-quark helicity
suppression or internal orbital angular momentum and thus should be sup-
pressed by hadron helicity conservation in pQCD. However, the J/ψ → ρπ
puzzle can be explained by the presence of intrinsic charm Fock states in the
outgoing mesons [117].
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13. Nucleon form factor in light-front holography

As an example of the scaling behavior of a twist τ = 3 hadron, we
compute the spin non-flip nucleon form factor in the soft wall model [79].
The proton and neutron Dirac form factors are given by

F p1
(
Q2
)

=
∫
dζ J(Q, ζ) |ψ+(ζ)|2 , (23)

Fn1
(
Q2
)

= −1
3

∫
dζ J(Q, ζ)

[
|ψ+(ζ)|2 − |ψ−(ζ)|2

]
, (24)

where F p1 (0) = 1, Fn1 (0) = 0. The non-normalizable mode J(Q, z) is the
solution of the AdS wave equation for the external electromagnetic current
in presence of a dilaton background exp(±κ2z2) [46, 118]. Plus and minus
components of the twist 3 nucleon LFWF are

ψ+(ζ) =
√

2κ2 ζ3/2e−κ
2ζ2/2 , Ψ−(ζ) = κ3 ζ5/2e−κ

2ζ2/2 . (25)

The results for Q4F p1 (Q2) and Q4Fn1 (Q2) and are shown in Fig. 6.
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Fig. 6. Predictions for Q4F p1 (Q2) and Q4Fn1 (Q2) in the soft wall model for κ =
0.424 GeV [119].

14. Nonperturbative running coupling from
light-front holography

The concept of a running coupling αs(Q2) in QCD is usually restricted
to the perturbative domain. However, as in QED, it is useful to define the
coupling as an analytic function valid over the full space-like and time-like
domains. The study of the non-Abelian QCD coupling at small momentum
transfer is a complex problem because of gluonic self-coupling and color
confinement.
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The definition of the running coupling in perturbative quantum field
theory is scheme-dependent. As discussed by Grunberg, [120] an effective
coupling or charge can be defined directly from physical observables. Effec-
tive charges defined from different observables can be related to each other
in the leading-twist domain using commensurate scale relations (CSR) [121].
The potential between infinitely heavy quarks can be defined analytically in
momentum transfer space as the product of the running coupling times the
Born gluon propagator: V (q) = −4πCFαV(q)/q2. This effective charge de-
fines a renormalization scheme — the αV scheme of Appelquist, Dine, and
Muzinich [122]. In fact, the holographic coupling αAdS

s (Q2) can be consid-
ered to be the nonperturbative extension of the αV effective charge defined
in Ref. [122]. We can also make use of the g1 scheme, where the strong cou-
pling αg1(Q2) is determined from the Bjorken sum rule [123]. The coupling
αg1(Q2) has the advantage that it is the best-measured effective charge, and
it can be used to extrapolate the definition of the effective coupling to large
distances [124]. Since αg1 has been measured at intermediate energies, it is
particularly useful for studying the transition from small to large distances.

We have also shown [125] how the LF holographic mapping of effective
classical gravity in AdS space, modified by a positive-sign dilaton back-
ground, can be used to identify an analytically simple color-confining non-
perturbative effective coupling αAdS

s (Q2) as a function of the space-like mo-
mentum transfer Q2 = −q2. This coupling incorporates confinement and
agrees well with effective charge observables and lattice simulations. It
also exhibits an infrared fixed point at small Q2 and asymptotic freedom
at large Q2. However, the fall-off of αAdS

s (Q2) at large Q2 is exponential:
αAdS

s (Q2) ∼ e−Q
2/κ2 , rather than the pQCD logarithmic fall-off. It agrees

with hadron physics data extracted phenomenologically from different ob-
servables, as well as with the predictions of models with built-in confine-
ment and lattice simulations. We also show that a phenomenological ex-
tended coupling can be defined which implements the pQCD behavior. The
β-function derived from light-front holography becomes significantly nega-
tive in the non-perturbative regime Q2 ∼ κ2, where it reaches a minimum,
signaling the transition region from the infrared (IR) conformal region, char-
acterized by hadronic degrees of freedom, to a pQCD conformal ultraviolet
(UV) regime where the relevant degrees of freedom are the quark and gluon
constituents. The β-function vanishes at large Q2 consistent with asymp-
totic freedom, and it vanishes at small Q2 consistent with an infrared fixed
point [55,126].

Let us consider a five-dimensional gauge field F propagating in AdS5

space in presence of a dilaton background ϕ(z) which introduces the energy
scale κ in the five-dimensional action. At quadratic order in the field strength
the action is

S = −1
4

∫
d5x
√
g eϕ(z) 1

g2
5

F 2 , (26)
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where the metric determinant of AdS5 is √g = (R/z)5, ϕ = κ2z2 and the
square of the coupling g5 has dimensions of length. We can identify the
prefactor

g−2
5 (z) = eϕ(z)g−2

5 (27)

in the AdS action (26) as the effective coupling of the theory at the length
scale z. The coupling g5(z) then incorporates the non-conformal dynamics
of confinement. The five-dimensional coupling g5(z) is mapped, modulo a
constant, into the Yang–Mills (YM) coupling gYM of the confining theory in
physical space-time using light-front holography. One identifies z with the
invariant impact separation variable ζ which appears in the LF Hamiltonian:
g5(z)→ gYM(ζ). Thus

αAdS(ζ) =
g2

YM(ζ)
4π

∝ e−κ2ζ2 . (28)

In contrast with the 3-dimensional radial coordinates of the non-rela-
tivistic Schrödinger theory, the natural light-front variables are the two-
dimensional cylindrical coordinates (ζ, φ) and the light-cone fraction x. The
physical coupling measured at the scale Q is the two-dimensional Fourier
transform of the LF transverse coupling αAdS

s (ζ) (28). Integration over the
azimuthal angle φ gives the Bessel transform

αAdS
s

(
Q2
)
∼
∞∫

0

ζdζ J0(ζQ)αAdS
s (ζ) (29)

in the q+ = 0 light-front frame where Q2 = −q2 = −q2
⊥ > 0 is the square

of the space-like four-momentum transferred to the hadronic bound state.
Using this ansatz we then have from Eq. (29)

αAdS
s

(
Q2
)

= αAdS
s (0) e−Q

2/4κ2
. (30)

In contrast, the negative dilaton solution ϕ = −κ2z2 leads to an integral
which diverges at large ζ. We identify αAdS

s (Q2) with the physical QCD
running coupling in its nonperturbative domain.

The flow equation (27) from the scale dependent measure for the gauge
fields can be understood as a consequence of field-strength renormalization.
In physical QCD we can rescale the non-Abelian gluon field Aµ → λAµ

and field strength Gµν → λGµν in the QCD Lagrangian density LQCD by
a compensating rescaling of the coupling strength g → λ−1g. The renor-
malization of the coupling gphys = Z

1/2
3 g0, where g0 is the bare coupling

in the Lagrangian in the UV-regulated theory, is thus equivalent to the
renormalization of the vector potential and field strength: Aµren = Z

−1/2
3 Aµ0 ,

Gµνren = Z
−1/2
3 Gµν0 with a rescaled Lagrangian density Lren

QCD = Z−1
3 L0

QCD =
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(gphys/g0)−2L0. In lattice gauge theory, the lattice spacing a serves as the
UV regulator, and the renormalized QCD coupling is determined from the
normalization of the gluon field strength as it appears in the gluon propa-
gator. The inverse of the lattice size L sets the mass scale of the resulting
running coupling. As is the case in lattice gauge theory, color confinement in
AdS/QCD reflects nonperturbative dynamics at large distances. The QCD
couplings defined from lattice gauge theory and the soft wall holographic
model are thus similar in concept, and both schemes are expected to have
similar properties in the nonperturbative domain, up to a rescaling of their
respective momentum scales.

14.1. Comparison of the holographic coupling with other effective charges

The effective coupling αAdS(Q2) (solid line) is compared in Fig. 7 with
experimental and lattice data. For this comparison to be meaningful, we
have to impose the same normalization on the AdS coupling as the g1 cou-
pling. This defines αAdS

s normalized to the g1 scheme: αAdS
g1

(
Q2 = 0

)
= π.

Details on the comparison with other effective charges are given in Ref. [54].
The couplings in Fig. 7 (top) agree well in the strong coupling regime up

to Q∼1 GeV. The value κ = 0.54 GeV is determined from the vector-meson
Regge trajectory [3]. The lattice results shown in Fig. 7 from Ref. [52] have
been scaled to match the perturbative UV domain. The effective charge
αg1 has been determined in Ref. [54] from several experiments. Fig. 7 also
displays other couplings from different observables as well as αg1 which is
computed from the Bjorken sum rule [123] over a large range of momen-
tum transfer (grey/cyan band). A recent analysis [127] using the pinch
scheme [126] predicts a similar fixed-point behavior.

At Q2 =0 one has the constraint on the slope of αg1 from the Gerasimov–
Drell–Hearn (GDH) sum rule [128] which is also shown in the figure. The
results show no sign of a phase transition, cusp, or other non-analytical
behavior, a fact which allows us to extend the functional dependence of the
coupling to large distances. As discussed below, the smooth behavior of the
AdS strong coupling also allows us to extrapolate its form to the perturbative
domain [125].

The hadronic model obtained from the dilaton-modified AdS space pro-
vides a semiclassical first approximation to QCD. Color confinement is intro-
duced by the harmonic oscillator potential, but effects from gluon creation
and absorption are not included in this effective theory. The nonpertur-
bative confining effects vanish exponentially at large momentum transfer
(Eq. (30)), and thus the logarithmic fall-off from pQCD quantum loops will
dominate in this regime. The running coupling αAdS

s given by Eq. (30) is
obtained from a color-confining potential. Since the strong coupling is an
analytical function of the momentum transfer at all scales, we can extend the
range of applicability of αAdS

s by matching to a perturbative coupling at the
transition scale Q ∼ 1 GeV, where pQCD contributions become important,
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as described in Ref. [125]. The smoothly extrapolated result (dot-dashed
line) for αs is also shown in Fig. 7. In order to have a fully analytical model,
we write

αAdS
Modified,g1

(
Q2
)

= αAdS
g1

(
Q2
)
g+

(
Q2
)

+ αfit
g1

(
Q2
)
g−
(
Q2
)
, (31)

where g±(Q2) = 1/(1 + e±(Q2−Q2
0)/τ2

) are smeared step functions which
match the two regimes. The parameter τ represents the width of the transi-
tion region. Here αAdS

g1 is given by Eq. (30) with the normalization
αAdS
g1 (0) = π — the plain black line in Fig. 7 — and αfit

g1 in Eq. (31) is
the analytical fit to the measured coupling αg1 [54]. The couplings are cho-
sen to have the same normalization at Q2 = 0. The smoothly extrapolated
result (dot-dashed line) for αs is also shown in Fig. 7. We use the parameters
Q2

0 = 0.8 GeV2 and τ2 = 0.3 GeV2.

14.2. The β-function from AdS/QCD

The β-function for the nonperturbative effective coupling obtained from
the LF holographic mapping in a positive dilaton modified AdS background is

βAdS(Q2) =
d

d logQ2
αAdS(Q2) = −πQ

2

4κ2
e−Q

2/(4κ2) . (32)

The solid line in Fig. 7 (bottom) corresponds to the light-front holographic
result Eq. (32). Near Q0 ' 2κ ' 1 GeV, we can interpret the results as a
transition from the nonperturbative IR domain to the quark and gluon de-
grees of freedom in the perturbative UV regime. The transition momentum
scale Q0 is compatible with the momentum transfer for the onset of scaling
behavior in exclusive reactions where quark counting rules are observed [81].
For example, in deuteron photo-disintegration the onset of scaling corre-
sponds to momentum transfer of 1.0 GeV to the nucleon involved [129].
Dimensional counting is built into the AdS/QCD soft and hard wall models
since the AdS amplitudes Φ(z) are governed by their twist scaling behavior
zτ at short distances, z → 0 [36].

Also shown in Fig. 7 (bottom) are the β-functions obtained from phe-
nomenology and lattice calculations. For clarity, we present only the LF
holographic predictions, the lattice results from [52] and the experimental
data supplemented by the relevant sum rules. The dot-dashed curve cor-
responds to the extrapolated approximation obtained by matching to AdS
results to the perturbative coupling [125] given by Eq. (31). The β-function
extracted from LF holography, as well as the forms obtained from the works
of Cornwall [126], Bloch, Fisher et al. [130], Burkert and Ioffe [131], and
Furui and Nakajima [52] are seen to have a similar shape and magnitude.
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Judging from these results, we infer that the actual β-function of QCD
will extrapolate between the non-perturbative results for Q < 1 GeV and the
pQCD results for Q > 1 GeV. We also observe that the general conditions

β(Q→ 0) = β(Q→∞) = 0 , (33)
β(Q) < 0 for Q > 0 , (34)

dβ
dQ

∣∣
Q=Q0

= 0 , (35)
dβ
dQ < 0 for Q < Q0 ,

dβ
dQ > 0 for Q > Q0 (36)

are satisfied by our model β-function obtained from LF holography.
Eq. (33) expresses the fact that QCD approaches a conformal theory in

both the far ultraviolet and deep infrared regions. In the semiclassical ap-
proximation to QCD without particle creation or absorption, the β-function
is zero and the approximate theory is scale invariant in the limit of mass-
less quarks [132]. When quantum corrections are included, the conformal
behavior is preserved at very large Q because of asymptotic freedom and
near Q → 0 because the theory develops a fixed point. An infrared fixed
point is in fact a natural consequence of color confinement [126]: since the
propagators of the colored fields have a maximum wavelength, all loop inte-
grals in the computation of the gluon self-energy decouple at Q2 → 0 [55].
Condition (34) for Q2 large, expresses the basic anti-screening behavior of
QCD where the strong coupling vanishes. The β-function in QCD is essen-
tially negative, thus the coupling increases monotonically from the UV to
the IR where it reaches its maximum value: it has a finite value for a theory
with a mass gap. Equation (35) defines the transition region at Q0 where
the β-function has a minimum. Since there is only one hadronic-partonic
transition, the minimum is an absolute minimum; thus the additional con-
ditions expressed in Eq. (36) follow immediately from Eqs. (33)–(35). The
conditions given by Eqs. (33)–(36) describe the essential behavior of the full
β-function for an effective QCD coupling whose scheme/definition is similar
to that of the V-scheme.

15. Vacuum effects and light-front quantization

The LF vacuum is remarkably simple in light-cone quantization because
of the restriction k+ ≥ 0. For example in QED, vacuum graphs such as
e+e−γ associated with the zero-point energy do not arise. In the Higgs
theory, the usual Higgs vacuum expectation value is replaced with a k+ = 0
zero mode [62]; however, the resulting phenomenology is identical to the
standard analysis.

Hadronic condensates play an important role in quantum chromodynam-
ics. It is widely held that quark and gluon vacuum condensates have a phys-
ical existence, independent of hadrons, measurable spacetime-independent
configurations of QCD’s elementary degrees-of-freedom in a hadron-less
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ground state. However, a non-zero spacetime-independent QCD vacuum
condensate poses a critical dilemma for gravitational interactions because it
would lead to a cosmological constant some 45 orders of magnitude larger
than observation. As noted in Ref. [61], this conflict is avoided if strong in-
teraction condensates are properties of the light-front wavefunctions of the
hadrons, rather than the hadron-less ground state of QCD.

The usual assumption that non-zero vacuum condensates exist and pos-
sess a measurable reality has long been recognized as posing a conundrum
for the light-front formulation of QCD. In the light-front formulation, the
ground-state is a structureless Fock space vacuum, in which case it would
seem to follow that dynamical chiral symmetry breaking (CSB) is impos-
sible. In fact, as first argued by Casher and Susskind [60] dynamical CSB
must be a property of hadron wavefunctions, not of the vacuum in the light-
front framework. This thesis has also been explored in a series of recent
articles [31,55,61].

Conventionally, the quark and gluon condensates are considered to be
properties of the QCD vacuum and hence to be constant throughout space-
time. A new perspective on the nature of QCD condensates 〈qq〉 and
〈GµνGµν〉, particularly where they have spatial and temporal support, has
recently been presented [55,61, 133,134]. Their spatial support is restricted
to the interior of hadrons, since these condensates arise due to the interac-
tions of quarks and gluons which are confined within hadrons.

For example, consider a meson consisting of a light quark q bound to a
heavy antiquark, such as a B meson. One can analyze the propagation of
the light q in the background field of the heavy b quark. Solving the Dyson–
Schwinger equation for the light quark one obtains a non-zero dynamical
mass and, via the connection mentioned above, hence a non-zero value of the
condensate 〈qq〉. But this is not a true vacuum expectation value; instead,
it is the matrix element of the operator qq in the background field of the
b quark. The change in the (dynamical) mass of the light quark in this
bound state is somewhat reminiscent of the energy shift of an electron in
the Lamb shift, in that both are consequences of the fermion being in a
bound state rather than propagating freely. Similarly, it is important to use
the equations of motion for confined quarks and gluon fields when analyzing
current correlators in QCD, not free propagators, as has often been done in
traditional analyses of operator products. Since the distance between the
quark and antiquark cannot become arbitrarily large, one cannot create a
quark condensate which has uniform extent throughout the universe. Thus
in a fully self-consistent treatment of the bound state, this phenomenon
occurs in the background field of the b-quark, whose influence on light-quark
propagation is primarily concentrated in the far infrared and whose presence
ensures the manifestations of light-quark dressing are gauge invariant.

In the case of the pion one finds that the vacuum quark condensate that
appears in the Gell-Mann–Oakes–Renner formula, is, in fact, a chiral-limit
value of an “in-pion” condensate. This condensate is no more a property of
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the “vacuum” than the pion’s chiral-limit leptonic decay constant. One can
connect the Bethe–Salpeter formalism to the light-front formalism, by fixing
the light-front time τ . This then leads to the Fock state expansion. In fact,
dynamical CSB in the light-front formulation, expressed via “in-hadron” con-
densates, can be shown to be connected with sea-quarks derived from higher
Fock states. This solution is similar to that discussed in Ref. [60]. Moreover,
Ref. [135] establishes the equivalence of all three definitions of the vacuum
quark condensate: a constant in the operator product expansion [136, 137]
via the Banks–Casher formula [138] and the trace of the chiral-limit dressed-
quark propagator.

AdS/QCD also provides a description of chiral symmetry breaking by
using the propagation of a scalar field X(z) which encodes the coupling
of the quark mass mq and quark condensate 〈qq〉 to the hadron. In the
hard-wall model the AdS solution has the form [48,49]

X(z) = a1z + a2z
3 , (37)

where a1 is proportional to the current-quark mass and a2 to the quark
condensate 〈qq〉. Since the quark is a color nonsinglet, the propagation of
X(z), and thus the domain of the quark condensate, is limited to the region
of color confinement. The effect of the a2 term varies within the hadron.
This is consistent with the idea that the effect of CSB increases as one goes
toward large interquark separation. In the light-front view, this is due to
the higher Fock states. In fact, that the CSB dynamics depends on the
total size of the hadron, means that there will be unexpected dependence
of the effective quark mass on the spectators. For example, the effect of the
u quark mass term will be smaller in a B+(bu) than a K+(su) since the B
has a smaller transverse size [139].

The picture of condensates with spatial support restricted to hadrons
is also in general agreement with results from chiral bag models [140–142]
which modify the original MIT bag by coupling a pion field to the surface
of the bag in a chirally invariant manner. It is important to notice however,
that AdS/QCD does not help to elucidate the nature of the in-hadron versus
vacuum condensates. The quark mass and the condensate are from the point
of view of holography, at least in the fixed background approximation, arbi-
trary constants given by the initial conditions. What is physically relevant
from the AdS/QCD perspective is the coupling of mq and 〈qq〉 to X(z), and
this leads to observable effects.

16. Conclusions

The combination of Anti-de Sitter space with light-front holography pro-
vides an accurate first approximation for the spectra and wavefunctions of
meson and baryon light-quark bound states. This new framework provides
an elegant connection between a semiclassical first approximation to QCD,



QCD and Light-front Holography 2635

quantized on the light-front, with hadronic modes propagating on a fixed
AdS background. The resulting bound-state Hamiltonian equation of mo-
tion in QCD leads to relativistic light-front wave equations in the invariant
impact variable ζ, which measures the separation of the quark and gluonic
constituents within the hadron at equal light-front time. This corresponds to
the effective single-variable relativistic Schrödinger-like equation in the AdS
fifth dimension coordinate z, Eq. (1). The eigenvalues give the hadronic
spectrum, and the eigenmodes represent the probability distributions of the
hadronic constituents at a given scale. In particular, the light-front holo-
graphic mapping of effective classical gravity in AdS space, modified by a
positive-sign dilaton background, provides a very good description of the
spectrum and form factors of light mesons and baryons. We emphasize that
the hadron eigenstate generally has components with different orbital an-
gular momentum. For example, the proton eigenstate in AdS/QCD with
massless quarks has L = 0 and L = 1 light-front Fock components with
equal probability — a novel manifestation of chiral invariance.

We have also shown that the light-front holographic mapping of effective
classical gravity in AdS space, modified by the positive-sign dilaton back-
ground predicts the form of a non-perturbative effective coupling αAdS

s (Q)
and its β-function. The AdS/QCD running coupling is in very good agree-
ment with the effective coupling αg1 extracted from the Bjorken sum rule.
The holographic β-function displays a transition from nonperturbative to
perturbative regimes at a momentum scale Q ∼ 1 GeV. Our analysis in-
dicates that light-front holography captures the characteristics of the full
β-function of QCD and the essential dynamics of confinement, thus giv-
ing further support to the application of the gauge/gravity duality to the
confining dynamics of strongly coupled QCD.

There are many phenomenological applications where detailed knowl-
edge of the QCD coupling and the renormalized gluon propagator at rela-
tively soft momentum transfer are essential. This includes exclusive and
semi-exclusive processes as well as the rescattering interactions which cre-
ate the leading-twist Sivers single-spin correlations in semi-inclusive deep
inelastic scattering [143, 144], the Boer–Mulders functions which lead to
anomalous cos 2φ contributions to the lepton pair angular distribution in
the unpolarized Drell–Yan reaction [145], and the Sommerfeld–Sakharov–
Schwinger correction to heavy quark production at threshold [146]. The
confining AdS/QCD coupling from light-front holography thus can provide
a quantitative understanding of this factorization-breaking physics [147].

A new perspective on the nature of quark and gluon condensates in
quantum chromodynamics has also been addressed [55,133,134]: the spatial
support of QCD condensates is restricted to the interior of hadrons, since
they arise due to the interactions of confined quarks and gluons. In LF
theory, the condensate physics is replaced by the dynamics of higher non-
valence Fock states as shown by Casher and Susskind [60]. In particular,
chiral symmetry is broken in a limited domain of size 1/mπ, in analogy to the
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limited physical extent of superconductor phases. This novel description of
chiral symmetry breaking in terms of “in-hadron condensates” has also been
observed in Bethe–Salpeter studies [148,149]. This picture also explains the
results of recent studies [150–152] which find no significant signal for the
vacuum gluon condensate.
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Fig. 7. (Top) Effective coupling from LF holography for κ = 0.54 GeV compared
with effective QCD couplings extracted from different observables and lattice re-
sults. (Bottom) Prediction for the β-function compared to lattice simulations, JLab
and CCFR results for the Bjorken sum rule effective charge.


