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Using the framework of generalized integrability, the BPS chiral model
is constructed. This model is integrable in the sense of the existence of
infinitely many conservation laws, solvable as it leads to exact soliton so-
lutions carrying arbitrary topological charge and, by construction, very
topological in nature. Moreover, solutions are of the Bogomolny type and
saturate the corresponding topological bound, which immediately guaran-
tees their stability. When applied to nuclear physics, the model seems to
cure several serious problems appearing in the standard Skyrme model as
well as in its typical generalizations. At the classical level, it qualitatively
reproduces the main features of the liquid drop model of nuclei, provid-
ing proper relations between masses and radii of nuclei and the baryon
number. In spite of its rather unusual form, the model also allows for the
semiclassical quantization.

PACS numbers: 12.39.Fe, 12.39.Dc

1. Introduction

The Skyrme proposal for the formulation of the low energy sector of
QCD by means of an effective Lagrangian built out of meson matrix fields
U [1] is still one of the most accepted and successful attempts for the de-
scription of the static properties of baryons and atomic nuclei as well as their
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interactions. This old idea became even more attractive when it was shown
that in the large Nc limit QCD is equivalent to an unknown effective theory
of mesons [2, 3]. Although in the real world the number of colors is finite,
it is believed that Nc = 3 is sufficiently large to support the description
of the non-perturbative QCD in terms of mesonic degrees of freedom. The
next important feature of the Skyrme models is their close connection to
topology. In fact, baryons appear as solitonic, i.e., collective excitations of
the original mesonic field with an identification between the baryon number
and the pertinent topological charge. In the simplest case, U takes values
in the SU(2) Lie group. Then, static solutions are maps from the physical
R3 space into the SU(2) ∼= S3 target space

U : R3 ∪ {∞} ∼= S3 3 ~x −→ U(~x ) ∈ S3 ,

where the compactification of the base space to S3 is due to the finite energy
boundary condition U(~x ) → U0 = const. as ~x → ∞. Such maps can
be divided into disconnected homotopy classes and characterized by the
corresponding topological index B ∈ π3(S3),

B =
1

24π2

∫
d3x εijkTr (LiLjLk) , (1)

where Li = U †∂iU .
In its basic form, the Skyrme Lagrangian is given by three terms

LSkr = L2 + L4 + L0 , (2)

where apart from the standard sigma-model term

L2 = −f
2
π

4
Tr (LµLµ) , (3)

one adds a four derivative part, the so-called Skyrme term,

L4 = − 1
32e3

Tr
(

[Lµ , Lν ]2
)

(4)

and a potential
L0 = −µ2V (Tr U) . (5)

The inclusion of these terms seems to be quite natural. The sigma model
part corresponds to the standard kinetic term for the mesonic field. The
quartic term is, on the other hand, needed from the stability point of view.
Namely, it allows to circumvent the Derrick’s arguments for the nonexistence
of static soliton solutions. Moreover, the Skyrme term L4 is a rather special



A BPS Skyrme Model — Mathematical Properties and Physical . . . 2719

one as it leads to equations of motion which are of the second order in time
and allows for the semiclassical quantization procedure [4]. The potential
term provides masses for the perturbative pseudoscalar pions.

In spite of its apparent success, the Skyrme model as well as its further
generalizations have several serious problems.

Derivation of the model. The typical way to derive the Skyrme type
models is to simultaneously perform the large Nc and small derivative
expansion. In practice, one calculates one-fermion-loop contributions
to the low energy effective action and truncates it at a given power of
derivatives. For the fourth order Lagrangian this procedure gives two
new terms which contribute at the same level as the standard Skyrme
term [5,6]

2Tr
(
∂2
µU
†∂2
νU
)

and − Tr
(
∂µU

†∂µU
)2
.

However, these terms are rather problematic as they lead to second
order time derivatives in the action (or four power of the first order).
Usually, for models with Lagrangians containing second order deriva-
tives one has to extend the variational principle to get equations of
motion. Such equations are of the fourth order and therefore require
extended, rather unphysical Cauchy data. It also results in a very non-
standard time dynamics and serious difficulties with the semiclassical
quantization. Moreover, the second term tends to destabilize solitons.
In the case of sixth order Lagrangians, even more terms appear without
any grading between them [7].
There is an additional conceptual obstacle which makes the small
derivative expansion disputable. Baryons, being solitons in a pure
mesonic model, are configurations with significant values of the spa-
tial derivatives. Because of that, higher derivative terms seem to be
as important as quadratic or quartic [8–14] ones. In other words, one
should consider the complete derivative Gasser–Leutwyler expansion
of an unknown correct effective theory which finally would provide
us with a model containing infinitely many terms. As higher power
derivative terms give rise to higher n-body interactions, such a La-
grangian describes a strongly correlated system for which many body
interactions are not small perturbations to the two-body interaction.
Undoubtedly, such a picture is plausible in the context of the low en-
ergy QCD which, indeed, is believed to be an example of a strongly
correlated system. Of course, we do not know the complete expansion
of the effective theory and, even if we knew it, it would be very difficult
to treat this model in an analytical way.
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Large binding energies. It has been proved that stable solitonic solu-
tions of the Skyrme model (massless [15] as well massive [16–18], which
are interpreted as nuclei with a certain baryon number B, give non-
physically large binding energies. They are significantly bigger than
the experimental energies which do not exceed 1% of the masses of
the nuclei. The reason for that is a certain mathematical property of
the Skyrme model i.e., the fact that it is not an exact BPS theory.
As a consequence, the corresponding energy-topological charge bound
cannot be saturated by soliton solutions resulting in the appearance
of nonlinear energy-baryon charge relations and binding energies.
From the point of view of the large Nc expansion this indicates that the
binding energies scale like NcΛQCD, instead of ΛQCD/Nc as expected
for the weakly bound nuclear matter [19].

Shell-like baryons. Another feature of the Skyrme model is that shell-
like structures are preferred rather than core or ball configurations. In
fact, in the massless Skyrme model all stable solitons possess fulleren-
like structure with empty regions inside (almost zero energy density).
Further, the size of the solutions scales wrongly with the topological
charge R ∼

√
B [15]. In the case of the massive Skyrme model, the

situation is improved and one asymptotically gets the correct size-
baryon number relation R ∼ 3

√
B. However, for physically acceptable

values of the model parameters, the first few skyrmions are of the shell
type again [16–18].

Crystal state of matter. Numerical results, especially in the limit of the
large baryon charge, show that the matter described by the Skyrme
model behaves like a crystal [15]. This is obviously in contradiction
with the standard, liquid picture of nuclear matter. This result is
further supported by analytical calculations for Nc →∞ [20].

Strong forces. Because of the enhancement of the pion coupling con-
stant in the Skyrme model gπNN ∼ N

3/2
c , the axial coupling constant

grows linearly with Nc. This results in strong spin–isospin forces at
distances larger than the size of the nucleus, and, obviously, is in con-
tradiction to experimental as well as lattice data [21].

Quantitative results. The quantitative agreement between observables
derived from the Skyrme model (masses of light baryons and nuclei,
charge radii, magnetic moments, coupling constants etc.) and experi-
mental data is on the level of approximately 10–20%. Nonetheless, for
some observables as for example the axial coupling constant gA, one
observes much bigger disagreement.
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Taking into account all the problems indicated above, one may wonder
whether the Skyrme proposal in general, and the Skyrme model in particular,
can have a chance to be the right framework for the description of the
low energy QCD. Indeed, Skyrme’s main idea, i.e., the existence of the
pure mesonic effective model has been criticized, and some generalizations
or totally new theories have been proposed. Basically, they consist in the
inclusion of quarks to the low energy effective action even at the lowest order.

On the other hand, the Skyrme model is able to reproduce a vast number
of experimental values with reasonably good precision. It allows also for
an extremely precise calculation of the excitation spectra of several light
nuclei [18]. In fact, it has been established that many properties of Skyrme
type models are model-independent, while others are only weakly modified
by the inclusion of some additional terms. So, why the model works at all?

A possible answer, supported by the model-independent results, is that,
as proven by largeNc calculations, the bosonic matrix field is indeed a proper
degree of freedom, at least for Nc →∞. Thus, baryons are still topological
solitons i.e., collective excitations of the primary mesonic field. The main
problem is that we do not know the right effective action and apparently the
small derivative expansion does not lead to a satisfactory approximation.
Therefore, we believe that one does not have to abandon Skyrme’s idea but
rather should significantly modify the action.

Of course, if we doubt the relevance of the small derivation expansion,
we cannot build the action starting with the sigma model term. We need a
different principle to propose the new model. The unique tool, which may
help us, is again the topological concept of Skyrme. Namely, we want to
consider the most topological action for the matrix field, which seems to be
quite natural as we would like to describe the strongly correlated system.
In other words, we apply the Skyrme proposal to the extreme and try to
encode as many properties of baryons as possible into topological aspects of
the model.

To summarize, our strategy is the following:

(i) we use the standard mesonic d.o.f. U ∈ SU(2),

(ii) baryons are still topological solitons,

(iii) we build the action using the “maximal topology” principle.

Quite surprisingly, a model constructed using this procedure cures all qual-
itative problems indicated above and still gives reasonable numerical values
for masses, radii as well as magnetic momenta of some baryons.
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2. BPS Skyrme model

The most topological model means that its action is built out of topolog-
ical quantities. Of course, it cannot be an example of a topological model,
but a metric tensor must be nontrivially included into the construction.
A topological quantity relevant for the Skyrme field is the baryon current

Bµ =
1

24π2
Tr
(
εµνρσU †∂νU U †∂ρU U †∂σU

)
. (6)

Then, the Lorentz invariant metric dependent term reads

L6 = λ2π4BµBµ , (7)

where index 6 refers to the number of derivatives. Such a term is included in
many generalizations of the standard Skyrme action by many authors and it
usually improves phenomenological results. Effectively, this term is induced
by a massive vector meson ωµ coupled to the baryon density ωµBµ. Due
to that, treating (7) as the main ingredient for our model realizes, in some
sense, the old concept of the vector meson dominance in QCD.

One may show using the Derrick theorem that a model containing only
the L6 term does not allow for stable static soliton configurations. One can
for example consider a scaling transformation for the spatial coordinates
~x → a~x, where a is a parameter of the transformation. Then, the static
energy functional transforms as

E [U(a~x )] =
1
a3
E [U(~x )] .

Therefore, the energy can be lowered to arbitrarily small values taking suf-
ficiently large a, which means that solitons are unstable with respect to
expansion. We have to stabilize solitons by adding a new term which would
scale in opposite direction. The simplest term one may use is a potential
L0, i.e., a non-derivative part of the model. Hence, the model we want to
propose is given by the expression [22,23]

L06 = L6 + L0 . (8)

We call this model the BPS Skyrme model, for reasons explained below. Let
us also underline that although the model contains a term of sixth order in
derivatives it contains maximally time derivatives squared. Because of that,
it gives a second order Euler–Lagrange equation, for which the standard
Cauchy data are enough to uniquely describe the time evolution. Moreover,
such a model possesses a Hamiltonian formulation and, therefore, can be
quantized by the semiclassical method.

Below we present some mathematical properties of the BPS Skyrme
model, which play an important role in its phenomenological applications.
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2.1. Symmetries

First of all, it is convenient to use the following parametrization of the
SU(2) chiral field

U = eiξ~n·~σ = cos ξ + i sin ξ~n · ~σ , ~n2 = 1 ,

where ~τ are the Pauli matrices, ξ is a real field and ~n is an unit three
component vector field, which is further related to a complex field u by
means of the stereographic projection

~n =
1

1 + |u|2
(
u+ ū,−i(u− ū), 1− |u|2

)
.

Then, the BPS model takes the form

L06 = − λ2 sin4 ξ

(1 + |u|2)4
(εµνρσξνuρūσ)2 − µ2V (ξ) , (9)

where we make the additional assumption that the potential depends only
on TrU .

In addition to the standard Poincare symmetries, the BPS model pos-
sesses an infinite number of target space symmetries. The origin of these
symmetries is a very special geometric property of the sextic term L6. It is
the square of the pullback of the volume form on the target space S3, where
the target space volume element is

dV = −i sin2 ξ

(1 + |u|2)2
dξdudū (10)

with the exterior product of the differentials. Therefore, all transformations
which preserve the volume form, i.e., the volume preserving diffeomorphisms
(VPD) on S3, are also symmetries of the sextic term. The potential part, in
general, breaks all or some of these symmetries depending on its particular
form. In our case, L0 = V (ξ), it respects a certain subgroup of the volume
preserving diffeomorphisms. Concretely, it is invariant under those VPD
which act nontrivially only on u, ū leaving ξ unchanged

ξ → ξ , u→ ũ(u, ū, ξ) ,
(
1 + |ũ|2

)−2
dξdũd¯̃u =

(
1 + |u|2

)−2
dξdũdū .

(11)
They form a one parameter family of the groups of the area preserving diffeo-
morphisms on S2 [24]. Such an infinite dimensional family is a symmetry of
the full action, so it is a Noether symmetry with the corresponding infinitely
many conserved currents.
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There are also additional symmetries which are symmetries of the static
energy functional but not the action (for the baby Skyrme model see [25]).
Thus, there are no Noether currents corresponding to them but nevertheless
they are very important for physical applications of the model. Consider the
static energy functional

E =
∫
d3x

(
λ2 sin4 ξ

(1 + |u|2)4

(
εmnliξmunūl

)2
+ µ2V

)
. (12)

Both the base space volume element d3x and εijkξiuj ūk are invariant under
coordinate transformations of the base space which leave the volume form
d3x invariant. In other words, the static energy functional has the volume
preserving diffeomorphisms on base space as symmetries. However, these
symmetries are exactly the symmetries of an incompressible ideal fluid (see
also [26]).

2.2. Integrability

The existence of infinitely many Noether transformations and related
with them infinitely many conserved quantities usually indicates the inte-
grability of a system. Indeed, it is exactly the case in the BPS Skyrme model,
which is integrable in the sense of the generalized integrability [27]. From a
mathematical point of view the BPS Skyrme model belongs to a large family
of models built out of the pullback of the volume form on the target space
squared [28–32] together with a stabilizing potential term, and a procedure
for deriving conservation laws for these models is very well known [33–35].
Following previous works, we may present these currents in an exact form

Jµ =
δG

δū
K̄µ −

δG

δu
Kµ , (13)

where
Kµ =

Kµ

(1 + |u|2)2
, Kµ =

∂

∂ūµ
(εανρσξνuρūσ)2 (14)

and G = G(u, ū, ξ) is an arbitrary function of its arguments. Now, we have
to calculate the four-divergence

∂µJµ = GūūūµK̄µ +GūuuµK̄µ +Gū∂µK̄µ −GuūūµKµ

−GuuuµKµ −Gu∂µKµ +GūξξµK̄µ −GuξξµKµ .

Using the identities satisfied by Kµ,

uµKµ = ξµKµ = ūµKµ = uµK̄µ = 0
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and the equations of motion

∂µKµ = 0 , (15)

we arrive at ∂µJµ = 0. The existence of infinitely many conservation laws
is a very special property and occurs rather rarely for higher dimensional
solitonic theories. However, their appearance may indicate the solvability of
the model, that is, the possibility to find the energy minimum (or minima)
in every topological sector in an exact form. As we show below, this connec-
tion between integrability and solvability holds for the BPS Skyrme model.
The standard Skyrme model, as well as its generalizations, is an example of
a non-integrable theory, which makes analytical computations very difficult.
Fortunately, for some cases (the Skyrme model without potential) one may
apply the rational map ansatz method [36] allowing for an analytical treat-
ment of the model and for a derivation of approximate solutions. However,
in general one has to perform refined numerical calculations1. Therefore, the
possibility for an analytical treatment of the BPS Skyrme model is another
advantage of this theory.

2.3. Bogomolny bound

Now, we show that our solitons are of the BPS type and saturate a
Bogomolny bound. The energy functional reads

E =
∫
d3x

(
λ2 sin4 ξ

(1 + |u|2)4
(εmnliξmunūl)2 + µ2V

)
=
∫
d3x

(
λ sin2 ξ

(1 + |u|2)2
εmnliξmunūl ± µ

√
V

)2

∓
∫
d3x

2µλ sin2 ξ
√
V

(1 + |u|2)2
εmnliξmunūl

≥ ∓
∫
d3x

2µλ sin2 ξ
√
V

(1 + |u|2)2
εmnliξmunūl

= ±
(
2λµπ2

)[−i
π2

∫
d3x

sin2 ξ
√
V

(1 + |u|2)2
εmnlξmunūl

]
≡ 2λµπ2C[V ]|B|,(16)

1 There is one exceptional case for charge one sector, where the hedgehog configuration
allows for the reduction of the full system of PDEs to an ODE. A plausible explanation
may be again formulated in the language of the generalized integrability. The Skyrme
model possesses integrable sectors if one imposes some additional constraints, so-
called integrability conditions. The hedgehog ansatz obeys these constraints for an
arbitrary profile function, which remains to be determined by the reduced equation
of motion.
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where B is the baryon number (topological charge) and the sign has to be
chosen appropriately (upper sign for B > 0). The constant C[V ] depends
on the potential but not on a particular solution. If we replace

√
V by one,

then the result (i.e., the last equality in (16)) follows immediately (and the
constant C[V ] = 1). Indeed, for V = 1 the expression in brackets is just the
topological charge, see e.g. [37], chapter 1.4. An equivalent derivation, which
shall be useful below, starts with the observation that this expression is just
the base space integral of the pullback of the volume form on the target
space S3, normalized to one. Further, while the target space S3 is covered
once, the base space S3 is covered B times, which implies the result. The
same argument continues to hold with the factor

√
V present (remember

that V = V (ξ)), up to a constant C[V ]. Indeed, we just have to introduce
a new target space coordinate ξ̄ such that

sin2 ξ
√
V (ξ) dξ = C[V ] sin2 ξ̄ dξ̄ . (17)

The constant C[V ] and a second constant C2, which is provided by the
integration of Eq. (17), are needed to impose the two conditions ξ̄(ξ = 0) = 0
and ξ̄(ξ = π) = π, which have to hold if ξ̄ is a good coordinate on the target
space S3. Obviously, C[V ] depends on the potential V (ξ). Specifically, for
the standard Skyrme potential V = 1− cos ξ, C[V ] is

C[V ] =
32
√

2
15π

as may be checked easily by an elementary integration. We remark that an
analogous Bogomolny bound in one lower dimension has been derived in [38]
for the baby Skyrme model.

The Bogomolny inequality is saturated by configurations obeying the
first order Bogomolny equation

λ sin2 ξ

(1 + |u|2)2
εmnliξmunūl = ∓µ

√
V .

The saturation of the energy-charge inequality by our solutions proves their
stability. It is not possible to find configurations with lesser energy in a
sector with a fixed value of the baryon charge.

2.4. Axially symmetric ansatz

The field equations for the BPS model read
λ2 sin2 ξ

(1+|u|2)4
∂µ
(
sin2 ξ Hµ

)
+ µ2V ′ξ = 0 ,

Hµ = ∂
∂ξµ (εανρσξνuρūσ)2 , (18)

∂µ

(
Kµ

(1+|u|2)2

)
= 0 . (19)
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As we are interested in static topologically nontrivial solutions, u must cover
the whole complex plane (~n covers at least once S2) and ξ ∈ [0, π]. Then
the natural ansatz is an axially symmetric generalization of the hedgehog
configuration

ξ = ξ(r) , u(θ, φ) = g(θ)einφ , (20)

where (r, θ, φ) are spherical coordinates. Then, the field equation for u reads

1
sin θ

∂θ

(
g2gθ

(1 + g2)2 sin θ

)
−

gg2
θ

(1 + g2)2 sin2 θ
= 0 ,

and the solution with the right boundary conditions is

g(θ) = tan
θ

2
. (21)

Observe that this solution holds for all values of n. The equation for the
real scalar field is

n2λ2 sin2 ξ

2r2
∂r

(
sin2 ξ ξr
r2

)
− µ2Vξ = 0 .

This equation can be simplified by introducing the new variable

z =
√

2µr3

3|n|λ
. (22)

It reads
sin2 ξ ∂z

(
sin2 ξ ξz

)
− Vξ = 0 (23)

and may be integrated to

1
2 sin4 ξ ξ2

z = V , (24)

where we chose a vanishing integration constant to get finite energy solu-
tions. We remark that this first integration of the field equation is equivalent
to a Bogomolny equation and, thus, to a Bogomolny bound for the dimen-
sionally reduced, effectively one-dimensional problem. It is easy to see that
this equation can be derived from the full Bogomolny equation without any
symmetry reduction, once the ansatz is inserted.

2.5. Qualitative results

In terms of the variable r the integrated (Bogomolny) equation reads

n2λ2

4µ2r4
sin4 ξξ2

r = V (25)
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and it is this form which will be useful for the discussion of the energy to be
performed next. Indeed, the energy is

E =
∫
d3x

(
− λ2 sin4 ξ

(1 + |u|2)4
(∇rξ)2(∇θu∇φū−∇φu∇θū)2 + µ2V

)
, (26)

or, after inserting the hedgehog ansatz with the solution (21) for u,

E = 4π
∫
r2dr

(
λ2n2 sin4 ξ

4r4
ξ2
r + µ2V

)
. (27)

It follows from the Bogomolny equation for r, (25), that the sextic term and
the potential contribute the same amount to the energy density for arbitrary
values of r. Therefore, we may further simplify the expression for the energy
like

E = 4π 2µ2

∫
r2drV (ξ(r)) = 4

√
2πµλ|n|

∫
dzV (ξ(z)) . (28)

Further, we may already draw some qualitative conclusions about the behav-
ior of the energy density profiles for different types of potentials. Finiteness
of the energy requires that the fields take values in the vacuum manifold of
the potential V in the limit r →∞. For the class of potentials V = V (ξ) we
consider this just means that limr→∞ V (ξ(r)) = 0. Further, the topology of
skyrmion fields requires that the matrix field U takes a constant, direction-
independent value in the limit r → ∞. Within the hedgehog ansatz this
implies that the field ξ must take one of its two boundary values ξ = 0, π in
this limit. For skyrmions with finite energy, therefore, at least one of these
two boundary values must belong to the vacuum manifold of the potential.
Without loss of generality, let us assume that ξ takes the value ξ = 0 in the
limit r → ∞. For a wide class of potentials this implies that ξ must take
the opposite boundary value ξ = π at r = 0, because it follows easily from
(25) that ξ is a monotonous function of r in the region, where V 6= 0. These
observations lead to the following conclusions. For one-vacuum potentials
with the only vacuum at ξ = 0, the energy density cannot be zero inside
the skyrmion. If, in addition, the potential is a monotonous function of ξ in
the range of ξ, then the energy density is a monotonous function of r and
takes its maximum value at r = 0, i.e., the soliton is of the core type. If the
potential has the two vacua ξ = 0, π, then the energy density is zero also at
r = 0, and the soliton is of the shell type. For more complicated vacuum
manifolds of V , more complicated soliton structures emerge, but they may
still be found by a variant of the simple qualitative reasoning applied in this
paragraph. We remark that a qualitatively similar relation between the vac-
uum manifold of the potential and the skyrmion structure also is observed
in the original Skyrme model with a potential. The difference is that in
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the latter case this relation is the result of complicated, three-dimensional
numerical integrations, whereas in our case it follows from some simple,
analytical arguments.

2.6. The Skyrme potential

The first obvious possibility is to consider the standard Skyrme potential

V = 1
2Tr(1− U) → V (ξ) = 1− cos ξ . (29)

Imposing the boundary conditions for topologically non-trivial solutions
we get

ξ =

{
2 arccos 3

√
3z
4 z ∈

[
0, 4

3

]
,

0 z ≥ 4
3 .

(30)

The corresponding energy is

E = 8
√

2πµλ|n|
4/3∫
0

(
1−

(
3z
4

) 2
3

)
dz =

64
√

2π
15

µλ|n| . (31)

The solution is of the compacton type, i.e., it has a finite support [39]
(compact solutions of a similar type in different versions of the baby Skyrme
models have been found in [31, 40]). The function ξ is continuous but its
first derivative is not. The jump of the derivative is, in fact, infinite at the
compacton boundary z = 4/3, as the left derivative at this point tends to
minus infinity. Nevertheless, the energy density and the topological charge
density (baryon number density) are continuous functions at the compacton
boundary, and the field equation (23) is well-defined there. The reason
is that ξz always appears in the combination sin2 ξ ξz, and this expression
is finite (in fact, zero) at the compacton boundary. We could make the
discontinuity disappear altogether by introducing a new variable ξ̃ instead
of ξ which satisfies

ξ̃z = sin2 ξ ξz .

We prefer to work with ξ just because this is the standard variable in the
Skyrme model.

In order to extract the energy density it is useful to rewrite the energy
with the help of the rescaled radial coordinate

r̃ =

(√
2µ

4λ

) 1
3

r ≡ r

R0
=
(

3|n|z
4

) 1
3

(32)
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(here R0 is the compacton radius) like

E = 8
√

2µλ

4π

|n|
1
3∫

0

dr̃r̃2(1− |n|−
2
3 r̃2)


such that the energy density per unit volume (with the unit of length set
by r̃) is

E = 8
√

2µλ
(

1− |n|−
2
3 r̃2
)

for 0 ≤ r̃ ≤ |n|
1
3

= 0 for r̃ > |n|
1
3 . (33)

r̃ does not depend on the topological charge B = n, so the dependence of E
on n is explicit.

In the same fashion we get for the topological charge (baryon number),
see e.g. Chapter 1.4 of [37]

B = − 1
π2

∫
d3x

sin2 ξ

(1 + |u|2)2
iεmnlξmunūl = −2n

π

∫
dr sin2 ξ ξr

= −2n
π

∫
dz sin2 ξ ξz =

4n
π

4
3∫

0

dz

(
1−

(
3
4

) 2
3

z
2
3

) 1
2

= sign(n)
4
π2

4π

|n|
1
3∫

0

dr̃r̃2
(

1− |n|−
2
3 r̃2
) 1

2

 = n (34)

and for the topological charge density per unit volume

B = sign(n)
4
π2

(
1− |n|−

2
3 r̃2
) 1

2 for 0 ≤ r̃ ≤ |n|
1
3

= 0 for r̃ > |n|
1
3 . (35)

Both densities are zero outside the compacton radius r̃ = |n|
1
3 . We remark

that the values of the densities at the center r̃ = 0 are independent of the
topological charge B = n, whereas the radii grow like n

1
3 . For n = 1, we plot

the two densities in Fig. 1, where we normalize both densities (i.e., multiply
them by a constant) such that their value at the center is one.
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Fig. 1. Normalized energy density (left figure) and topological charge density (right
figure) as a function of the rescaled radius r̃, for topological charge n = 1. For
|n| > 1, the height of the densities remains the same, whereas their radius grows
like |n| 13 .

3. Classical aspects

After having discussed the properties of the Lagrangian and its classical
solutions in the preceding sections, let us now try to apply it to the de-
scription of some properties of nuclei. After all, this possibility is one of the
rationales for the original Skyrme model and its generalizations. We are,
of course, far from considering this model as the correct effective model of
QCD, but one may wonder whether solitons of this integrable model can be
related in one way or another to some properties of real baryons. Here we
shall first focus on the classical theory and solutions, and we will find that
at this level the model already reproduces quite well some properties of the
nuclear drop model. In a next step, we perform the semi-classical quantiza-
tion of the (iso)rotational degrees of freedom of the B = 1 soliton, i.e., the
nucleon. Further, we choose the standard Skyrme potential V = 1 − cos ξ
for simplicity throughout this and the next section.

We find immediately that the classical solutions of the BPS Skyrme
model seem to describe surprisingly well some static properties of nuclei. As
was discussed already in [22], it provides an alternative starting point for
an effective soliton model of baryons, which by construction is much more
topological in nature.

3.1. Mass spectrum and linear energy-charge relation

As a consequence of the BPS nature of the classical solutions, the energy
of the solitons is proportional to the topological (baryon) charge

E = E0|B| ,
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where E0 = 64
√

2πµλ/15. Such a linear dependence is a well established fact
in nuclear physics. For the moment (i.e., in the context of the purely classical
reasoning), let us fix the energy scale by assuming that E0 = 931.75 MeV.
This is equivalent to the assumption that the mass of the solution with
B = 4 is equal to the mass of He4. One usually assumes this value because
the ground state of He4 has zero spin and isospin [17]. Therefore, possi-
ble corrections to the mass from spin–isospin interactions are absent. In
Table I we compare energies of the solitons in the BPS model with experi-
mental values and energies obtained in the vector-Skyrme [13] and standard
massive Skyrme model [16]. (We use the numerical data, if accessible, or
calculate them from fitted functions [16]. The energy scale is set by the same
prescription.) It is interesting to note that instead of the approximate 7%
accuracy typical for the soliton energies of standard Skyrme theories we get
maximally only a 0.7% discrepancy. Besides, the masses of the BPS Skyrme
model solitons are slightly smaller than the experimental masses in all cases
(except for the He4 used for the fit, of course). This goes into the right
direction, because the (iso)rotational excitation energies should be added to
the classical soliton masses (except for the He4, of course) for a more reliable
comparison with physical masses of nuclei.

TABLE I

Energies of the solutions in the BPS Skyrme model, compared with masses for
the vector-Skyrme and Skyrme model, as well as with the experimental date. All
numbers are in MeV.

B EBPS Evec−Skyrme ESkyrme Eexperiment

1 931.75 996 1024 939
2 1863.5 1999 1937 1876
3 2795.25 2913 2836 2809
4 3727 3727 3727 3727
6 5590.5 — 5520 5601
8 7454 — 7327 7455
10 9317.5 — 9113 9327

3.2. No binding energy

It follows from the BPS nature of the model that the binding energy
is zero. This is different from the standard Skyrme model, where binding
energies are rather big. For example, the energy of the baryon number
two skyrmion exceeds the topological energy bound by 23%. Of course,
such binding energies are significantly larger than experimentally observed,
which usually do not reach 1%. Therefore, as pointed out by Sutcliffe [18],
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a BPS Skyrme theory seems to be a better starting point to get realistic
binding energies. Small (non-zero) binding energies could be produced by
small perturbations around a BPS theory [41].

3.3. Size of nuclei and compactons

Due to the compact nature of the solitons, their radius is well defined
and can be easily computed

RB = R0
3
√
B , R0 =

(
2
√

2λ
µ

) 1
3

,

which again reproduces the well-known experimental relation. The numeri-
cal value which best reproduces the known radii of nuclei is approximately
R0 = 1.25 fm.

Further, the compact nature of our solutions probably can be viewed
as an advantage of the model rather than a defect. In fact, the absence
of interactions (or, more precisely, of finite range interactions) corresponds
quite well with the very short range of forces between nuclei.

3.4. Core type energy density

For the ansatz of Section 2.4, which provides spherically symmetric en-
ergy densities for all baryon numbers, the resulting energy density takes its
maximum value at the origin. It is of some interest to compare this result
with the densities in the standard massless or massive Skyrme models. For
the massless Skyrme model, solitons are geometrically complicated shell-like
structures with empty space regions inside [15]. In addition, the size of the
shell-skyrmions grows like

√
B, which is in contradiction to the experimental

data. In the case of the massive Skyrme model, the situation is slightly more
subtle [16–18]. The proper size-charge relation has been reported [16]. More-
over, depending on the mass of the pion field and baryon number, squeezed
clustered solutions, instead of shell ones, begin to be preferred. Precisely
speaking, for a fixed value of the mass parameter, the first few skyrmions
possess a shell-like structure, whereas for higher baryon charge a clustered
solution is the true minimum. The critical charge, for which shell-skyrmion
occurs seems to be smaller if the mass is increased [17]. However, even for
the physically acceptable value m = 1 (which is more or less twice the bare
pion mass), skyrmions with B ≤ 9 are shells. In the modern interpretation
this problem can be cured by treating the massive parameter as a renor-
malized pion mass which should be adjusted to best reproduce observed
data [17, 42]. Then, increasing m one gets rid of unwanted shell solutions,
leaving only clustering ones.
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Let us also notice that there is a reminiscence of this clustering phe-
nomenon in the BPS Skyrme model, even though it is quite trivial. Namely,
due to the compact and BPS nature of the solutions of the BPS Skyrme
model, it is possible to construct a collection of separated components pro-
vided they are sufficiently separated (they do not touch each other). Such
a clustered configuration has a total baryon number equal to the sum of
the components. In the BPS Skyrme model, none of these clustered (multi-
center) solutions is energetically preferred, which again is a simple outcome
of the BPS origin of the solitons.

Finally, the values of the energy and charge densities of the solutions of
Section 2.6 at the center do not depend on the baryon number, which, again,
is a property which holds reasonably well for physical nuclei.

3.5. The liquid drop property

The energy functional for static field configurations has the volume-
preserving diffeomorphisms on the three-dimensional base space as sym-
metries. In physical terms, all deformations of solitons which correspond
to these volume-preserving diffeomorphisms may be performed without any
cost in energy. But these deformations are exactly the allowed deformations
for an ideal, incompressible droplet of liquid when surface contributions to
the energy are neglected. These symmetries are not symmetries of a physical
nucleus. A physical nucleus has a definite shape, and deformations which
change this shape cost energy. Nevertheless, deformations which respect
the local volume conservation (i.e., deformations of an ideal incompressible
liquid) cost much less energy than volume-changing deformations, as an im-
mediate consequence of the liquid drop model of nuclear matter. This last
observation also further explains the nature of the approximation our model
provides for physical nuclei. It reproduces some of the classical features of
the nuclear liquid drop model at least on a qualitative level, and the huge
amount of symmetries of the model is crucial for this fact. Its soliton ener-
gies, e.g., correspond to the bulk (volume) contribution of the liquid drop
model, with the additional feature that the energies are quantized in terms
of a topological charge.

This should be contrasted with the expected behavior for large baryon
number for the standard Skyrme model. In the standard Skyrme model,
there remain some long range forces between different Skyrmions, whose
attractive or repulsive character depends on the relative orientation of the
Skyrmions. As a consequence, it is expected that for large baryon number
the energy-minimizing configurations are Skyrmion crystals, where all the
Skyrmions are brought into the right positions and orientations to minimize
the total energy. For physical nuclear matter, there is no sign of this crystal
type behavior. Instead, nuclear matter seems to be in a liquid state, which
is well described by our BPS Skyrme model.
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3.6. Absence of pion fluctuations

In the model, both the quadratic and the quartic kinetic terms are absent.
As a consequence, neither propagating pions nor the two-body interaction
between pions can be described in the model. Nevertheless, already at the
classical level the model seems to describe some nuclear properties reason-
ably well, which seems to indicate that in certain circumstances the sextic
term could be more important than the terms L2 and L4. The quadratic
term is kinetic in nature, whereas the quartic term provides, as a leading
behavior, two-body interactions. On the other hand, the sextic term is es-
sentially topological in nature, being the square of the topological current
(baryon current). So in circumstances where our model is successful this
seems to indicate that a collective (topological) contribution to the nucleus
is more important than kinetic or two-body interaction contributions. This
behavior is, in fact, not so surprising for a system at strong coupling (or for
a strongly non-linear system).

Let us notice that, although the kinetic term for the pion fields is not
included, we do have pions in the model. They enter in the definition of the
meson field U and are partially taken into account in the potential term of
the model. Therefore, one may think about the BPS Skyrme model as a
very nontrivial realization of the concept of the pionless theory of baryons
with hidden pions.

A first consequence of the absence of dynamical pions is the compact
nature of the solutions, i.e., the absence of the exponentially decaying pion
cloud. A second consequence is the absence of linear pion radiation, and one
may wonder whether there exists classical radiation at all in this model. The
answer is probably yes, although the study of radiation is inherently nonlin-
ear in compacton-supporting models of this type (the field equations remain
nonlinear in the weak-field limit). The simplest way to find some indications
of radiation is the study of rotating solitons. In the standard Skyrme model
(with a nonzero pion mass), it is found that rotating solutions exist for not
too large angular velocities but cease to exist if the angular velocity exceeds
a certain limit. The reason for this behavior may be understood easily from
the linearized weak-field analysis. If the corresponding angular frequency is
too large (essentially larger than the pion mass), then the formal solution
is oscillatory instead of exponentially decaying, and so has infinite energy.
Physically this is interpreted as the onset of pion radiation at that frequency.
So one may wonder what happens for rotating solitons in the BPS Skyrme
model. Unfortunately, the field equations in this case can no longer be re-
duced to an ordinary differential equation. There exists, however, a baby
Skyrme version of the BPS Skyrme model in one dimension lower, where
the dimensional reduction of a rotating baby Skyrmion ansatz to an ODE
is possible and has been performed in [31]. The result is as follows: the
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rotating baby Skyrmion solution exists and can be found exactly if the an-
gular velocity remains below a certain critical value. It remains compact,
and its radius even shrinks with the angular velocity (although the moment
of inertia increases, as one would expect). For frequencies above the critical
value, on the other hand, a solution does not exist. This may be viewed
as an indication that radiation will set in also for a sufficiently fast rotat-
ing BPS Skyrmion, although we repeat that radiation for compactons is an
inherently nonlinear and, therefore, complicated problem.

Summary. As announced previously, we found that the classical model
already describes rather well some features of the liquid drop model of nu-
clei. These classical results are probably more trustworthy for not too small
nuclei, because:

(i) The contribution of the pion cloud (which is absent in our model) to
the size of the nucleus is of lesser significance for larger nuclei. We
remind that in addition to the core of a nucleus (with a size which
grows essentially with the third root of the baryon number) a surface
term is known to exist for physical nuclei whose thickness is essentially
independent of the baryon number.

(ii) The description of a nucleus as a liquid drop of nuclear matter is more
appropriate for larger baryon number.

(iii) The contribution of (iso)rotational quantum excitations to the total
mass of a nucleus is smaller for larger nuclei, essentially because of the
larger moments of inertia of larger nuclei.

We will find further indication for this behavior in the Section 4.1, where
a rigid rotor quantization of the (iso)rotational degrees of freedom is per-
formed for the B = 1 nucleon. Indeed, as we shall see, both the correspond-
ing (iso)rotational excitations and the (missing) pion cloud will be of some
importance in this case.

4. Quantum aspects

4.1. B = 1 sector

Let us now discuss the issue of quantization of the BPS Skyrme model.
As the model is rather unusual, not containing the quadratic, sigma model
kinetic part, one might doubt whether the quantization procedure can be
performed. However, the sextic derivative term used in the construction, the
square of the pullback of the volume on the target space, is a very special
one. It is the unique term with sextic derivatives which leads to a Lagrangian
of second order in time derivatives. Therefore, we deal with a Hamiltonian
of second order in time derivatives and the system can be quantized in the
standard manner.
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We want to perform the semiclassical quantization about a soliton solu-
tion in the same way it is performed for the standard Skyrme model. Let us
recall that for the nonzero or vibrational modes, the semiclassical quantiza-
tion consists in a quantization of the quadratic oscillations about the classical
solution. These oscillations presumably just amount to renormalizations of
the couplings of the theory and therefore may be taken into account implic-
itly by fitting the model parameters to their physical values. The zero mode
fluctuations related to the symmetries, on the other hand, cannot be ap-
proximated by quadratic fluctuations and have to be treated by the method
of collective coordinates. In principle, one collective coordinate has to be
introduced for each symmetry transformation of the model which does not
leave invariant the soliton about which the quantization is performed. Here,
nevertheless, we only shall consider the collective coordinate quantization of
the rotational and isorotational degrees of freedom. The physical reason for
this restriction is, of course, the fact that the excitational spectra of nuclei
are classified exactly by the corresponding quantum numbers of spin and
isospin. A more formal justification of this restriction could be, for instance,
that the additional collective coordinates do not provide discrete spectra of
excitations but, instead, just renormalize the coupling constants, like the vi-
brational modes do. A definite answer to this question would require a more
detailed investigation of the full moduli space of the theory, where all the
infinitely many symmetries are taken into account. This is probably a very
difficult problem which is beyond the scope of the present paper. A second
justification consists in the assumption that, in any case, the given model
is just an approximation, whereas a more detailed application to the prop-
erties of nuclei requires the inclusion of additional terms in the Lagrangian
which, although being small in some sense, have the effect of breaking the
symmetries down to the ones of the standard Skyrme model.

We start from the classical, static field configuration U0 found in Sec-
tion 2.6. For simplicity, we only consider the hedgehog configuration with
baryon number B = 1. This configuration is invariant under a combined
rotation in base and isotopic space, therefore, it is enough to introduce the
collective coordinates of one of the two. Allowed excitational states will al-
ways have the corresponding quantum numbers of spin and isospin equal, as
a consequence of the symmetries of the hedgehog. Following the standard
treatment, we introduce the collective coordinates of the isospin by including
a time-dependent iso-rotation of the classical soliton configuration

U(x) = A(t)U0(x)A†(t) , (36)

where A(t) = a0 + iaiτi ∈ SU(2) and a2
0 + ~a2 = 1. Inserting this expression

into the Lagrangian, we get

L = −E0 + I Tr
[
∂0A

†(t)∂0A(t)
]
, (37)
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where the energy (mass) of the classical solution is

E0 =
64
√

2π
15

µλ (38)

and the moment of inertia is

I =
4π
3
λ2

∞∫
0

dr
(
sin4 ξξ′2r

)
=

4
√

2π
3

√
λµ

(
3λ√
2µ

)2/3

γ , (39)

where

γ =

∞∫
0

dz
(
z2/3 sin4 ξξ′2z

)
= 4

4/3∫
0

z2/3

(
1−

(
3z
4

)2/3
)
dz =

32
35

(
4
3

)2/3

.

Then, finally

I =
28
√

2π
15× 7

λµ

(
λ

µ

)2/3

. (40)

Introducing the conjugate momenta πn to the coordinates an on SU(2) ' S3

we get the Hamiltonian

H = E0 −
1

8I

3∑
n=0

π2
n = E0 −

~2

8I

3∑
n=0

∂2

∂a2
n

,

where the usual canonical quantization prescription πn → −i~∂/∂an has
been performed. Finally we get

H = E0 +
~2I2

2I
= E0 +

~2S2

2I
,

where I2 is the isospin operator (the spherical Laplacian on S3). We intro-
duced ~ explicitly because later on we want to use units where ~ is different
from one. Further, S2 is the spin operator, and we took into account the
equality of spin and isospin for the hedgehog. It is interesting to note that
the isospin operator automatically allows for wave functions on S3 both for
integer isospin (homogeneous polynomials of even degree) and half-odd in-
teger isospin (homogeneous polynomials of odd degree).

The soliton with baryon number one is quantized as a fermion. Con-
cretely, the nucleon has spin and isospin 1/2, whereas the ∆ resonance has
spin and isospin 3/2, so we find for their masses

MN = E0 +
3~2

8I
, M∆ = E0 +

15~2

8I
⇒ M∆ −MN =

3~2

2I
(41)
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which is exactly like the nucleon and delta mass splitting formula of the stan-
dard Skyrme model. The difference comes only from particular expressions
for E0 and I. These expressions may now be fitted to the physical masses
of the nucleon (MN = 938.9 MeV) and the ∆ resonance (M∆ = 1232 MeV)
which determines fitted values for the coupling constants. Concretely we get

λµ = 45.66 MeV ,
λ

µ
= 0.2556 fm3 ,

where we used ~ = 197.3 MeV fm. These may now be used to “predict”
further physical quantities like, e.g. the charge radii of the nucleons. For
this purpose, we need the linear (i.e., per unit radius) isoscalar and isovector
charge densities. These expressions have already been determined for a
generalized Skyrme model including the sextic term in [12], so we just use
their results in the appropriate limit.

For the isoscalar (baryon) charge density per unit r we find

ρ0 = 4πr2B0 = − 2
π

sin2 ξξ′r (42)

and for the isovector charge density per unit r

ρ1 =
1
I

4π
3
λ2 sin4 ξξ′2r . (43)

Then the electric charge densities for proton and neutron, ρE,p(n) = 1
2(ρ0±ρ1)

read

ρe,p(n) =
2
√

2
π

µ

λ
r2

√
1−

(
µ

2
√

2λ

)2/3

r2

1± 4
√

2π2λµr2

3I

√
1−

(
µ

2
√

2λ

)2/3

r2

 .

(44)
The corresponding isoscalar and isovector mean square electric radii are

〈
r2
〉
e,0

=
∫
drr2ρ0 =

(
λ

µ

)2/3

, (45)

〈
r2
〉
e,1

=
∫
drr2ρ1 =

10
9

(
λ

µ

)2/3

. (46)

Further, the isoscalar magnetic radius is defined as the ratio

〈
r2
〉
m,0

=
∫
drr4ρ0∫
drr2ρ0

=
5
4

(
λ

µ

)2/3

. (47)

With the numerically determined values of the coupling constants we find
the values for the radii displayed in Table II.
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TABLE II

Compacton radius and some charge radii and their ratios for the nucleon. The
numbers for the massive Skyrme model are from Ref. [8]. All radii are in fm.

Radius BPS Skyrme Massive Skyrme Experiment

Compacton 0.897 — —
re,0 0.635 0.68 0.72
re,1 0.669 1.04 0.88
rm,0 0.710 0.95 0.81

re,1/re,0 1.054 1.529 1.222
rm,0/re,0 1.118 1.397 1.125
re,1/rm,0 0.943 1.095 1.086

In relation to Table II, some comments are appropriate. Firstly, observe
that in the BPS Skyrme model all radii are bound by the compacton radius
R0 =

√
2(λ/µ)(1/3). This bound holds because all radii can be expressed

as moments of densities (
∫
drrnρi)(1/n), where ρi is a density normalized to

one. Secondly, all radii in the BPS Skyrme model are smaller than their
physical values, as well as significantly smaller than the values predicted in
the standard massive Skyrme model. This, however, has to be expected,
because we know already that the pion cloud is absent in the BPS Skyrme
model, and the densities strictly go to zero at the compacton radius. We also
display the ratios of some radii for the following reason. If the deviations
of the BPS Skyrme model radii from their physical values are mainly due
to the same systematic error (the absence of the pion cloud in the model),
then we expect that this systematic error should partly cancel in the ratios.
This is precisely what happens. The errors in the radii themselves are of the
order of 30%, whereas the errors in the ratios never exceed 15%, providing
us with a nice consistency check for our interpretation of the model. The
understanding of the origin of errors in the BPS Skyrme model is undoubt-
edly an advantage of this model, if compared with the standard Skyrme
models, where quantitative errors seem to be distributed randomly without
any deeper explanation.

Finally, let us display the numerical results for the magnetic moments of
the proton and neutron. The corresponding expressions are

µp(n) = 2MN

(
1

12I
〈
r2
〉
e,0

+ (−)
I

6~2

)
, (48)

and the resulting numerical values are given in Table III.
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TABLE III

Proton and neutron magnetic moments. The numbers for the massive Skyrme
model are from Ref. [8].

BPS Skyrme Massive Skyrme Experiment

µp 1.918 1.97 2.79
µn −1.285 −1.24 −1.91

|µp/µe| 1.493 1.59 1.46

The quality of the values is comparable to the case of the standard mas-
sive Skyrme model, so the absence of the pion cloud apparently does not
have such a strong effect on the magnetic moments.

4.2. B > 1 sector

For the standard Skyrme theory and its generalizations, higher Skyrmions
have rather complicated discrete symmetries and are known only in numer-
ical form, so their quantization is a rather complicated procedure. Nev-
ertheless, recently the rotational and isorotational excitations of the rigid
rotor quantization of the solitons of the standard massive Skyrme model
have been applied quite successfully to the corresponding spectra of exci-
tations of light nuclei [18]. As the solutions in the standard Skyrme model
are sometimes quite different from ours, one might think that this fact casts
some serious doubts on the applicability of our model to the phenomenology
of nuclei. Here we just want to point out that this does not have to be the
case. In fact, the information which is most important for the spectra of
excitations consists in the symmetries of the solitons, and not in the full
dynamical contents of the soliton solutions. These symmetries determine
the Finkelstein–Rubinstein constraints on the allowed excited states and,
therefore, the spectra of excitations for each baryon number. Further, the
solutions in our model typically have higher symmetry due to the special
properties of this model.

As a consequence, the following picture is quite plausible. Our model
as it stands already describes quite well some bulk properties of nuclei like
masses and charge and energy densities. A more detailed description does
require the addition of further terms, but these will be small in some sense
(e.g. their contribution to the total mass is small). On the other hand,
these additional terms will break the symmetries of the resulting soliton
solutions, and the resulting solutions probably have the symmetries of the
standard Skyrme model, and, consequently, their spectra of excitations. If
this symmetry breaking is small, then the spectral lines should still show
some approximate degeneracy, that is, some spectral lines should be spaced
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more narrowly than others. A detailed investigation of this issue is beyond
the scope of the present paper and will be presented in future publications.
Of course, in the simplest baryon number one case (the hedgehog), the
symmetries and the excitational spectra coincide.

The first step in the derivation of spectra of nuclei with higher baryon
numbers has been recently done by Bonenfant and Marleau [43]. The authors
investigate a version of the BPS Skyrme model with a different potential.
They first calculate the exact static soliton solutions plus the (iso)rotational
energies in the rigid rotor quantization for the general baryon charge B = n
for the spherical symmetric ansatz and observe the appearance of a non-
zero binding energy. It may be explained by the fact that the semiclassi-
cal quantization takes into account time dependence of the static solutions
and therefore breaks the volume preserving diffeomorphism symmetry of the
static energy functional. The obtained binding energies agree to some extent
with the experimental data: one gets smaller values for light nuclei with a
saturation around B = 7. For higher nuclei the binding energies per nucleon
are almost the same forming a plateau. A significantly better agreement
is achieved if one allows for small contributions to the total energy from
the quadratic and quartic Skyrme terms treated perturbatively (explicitly
broken VPD symmetry). Then, they fit the resulting binding energies to
the experimental binding energies of the most abundant isotopes of higher
nuclei, assuming, as is usually done, that these correspond to the states with
the lowest value of the isospin. The resulting agreement between calculated
and experimentally determined masses and binding energies is impressive,
lending further support to the viability of the BPS Skyrme model as the
leading contribution to an effective theory for the properties of nuclear mat-
ter.

5. Issue of Nc → ∞

First, let us emphasize again the possible relevance of the BPS Skyrme
model in the limit of a large number of colors Nc of the underlying QCD-
type theory. Indeed, as was pointed out, e.g., in [19], some problems of the
standard Skyrme model when applied to QCD-like theories become more
severe in the large Nc limit. For instance, in the Skyrme model rather
strong forces of the order of Nc are generated between nuclei, and the ground
state of sufficiently high baryon number tends to be a Skyrmion crystal
with binding energies again of the order of Nc. Both of these findings are
in conflict with lattice simulations and with known properties of physical
nuclei, respectively. Let us, therefore, discuss properties of the BPS model
from a large Nc perspective. First of all, three qualitative results are Nc

independent, i.e., they are not sensitive to how Nc enters the parameters
of the model and are observed for any finite as well as infinite value of Nc.
Namely,
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(i) BPS nature of solitons and linear energy-baryon number relation,
which leads to zero classical binding energies,

(ii) compact baryons and contact interaction, i.e., no medium or long
range forces,

(iii) incompressible liquid property.

Thus, both above mentioned problems are absent in the BPS Skyrme model
(there are no long-range forces and no binding energies) although in a rather
radical way. Here, two comments are appropriate.

Firstly, in the large Nc expansion the meson–meson couplings are of the
order of 1/Nc. Hence, mesons become free and noninteracting at Nc = ∞.
From this perspective, the BPS Skyrme model (at Nc = ∞) provides an
acceptable, although again radical, result. That is to say, it not only holds
that mesons do not interact; they disappear completely from the particle
spectrum, their only remnants being some collective (solitonic) excitations,
and the chiral symmetry breaking aspects of pion dynamics taken into ac-
count by the potential. This fact is crucial to cure the unwanted strong
forces at intermediate range in the Skyrme model at large Nc.

Secondly, in QCD at Nc =∞ the instanton liquid becomes incompress-
ible, as well. Whether this appearance of an incompressible liquid at large
Nc, both in the BPS Skyrme model and in the instanton liquid, is more than
a mere coincidence remains to be seen.

Further, assuming that both terms in the BPS model depend linearly
on Nc, i.e., µ2, λ2 ∼ Nc (which is a natural assumption for Skyrme-type
models), some additional remarks can be made. Classical energies of solu-
tions are proportional to the number of colors, E ∼ Nc, while their radii are
Nc independent, R ∼ N0

c . Moreover, this does not change after taking into
account the semiclassical quantization corrections, that is, 〈r2〉 ∼ N0

c . As
the moment of inertia scales as I ∼ Nc, we get the following relations for
the nucleon-Delta mass splitting d and binding energies δE

d = MN −M∆ ∼ N−1
c and δE ∼ N−1

c .

Thus, one observes a degeneracy in the B = 1 spectrum and vanishing
quantum binding energies at Nc =∞.

So one might speculate that the BPS Skyrme model provides more accu-
rate results as an effective field theory in the large Nc limit. Unfortunately,
however, there is no obvious large Nc limit which would produce just the
BPS Skyrme model as its leading order, so the rather good large Nc prop-
erties of the model must be due to some more subtle mechanism. A better
theoretical understanding of the conditions under which the BPS Skyrme
theory provides a reasonable limit as an effective field theory for large Nc
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QCD-like theories would be highly desirable. For instance, the two terms
might be enhanced by two different physical mechanisms, where the sextic
term is related to some collective or topological excitations, whereas the
potential is related, e.g., to the chiral quark condensate of QCD.

6. Perspectives

We believe that we have identified and solved an important submodel in
the space of Skyrme-type effective field theories, which is singled out both
by its capacity to reproduce qualitative properties of the liquid drop ap-
proximation of nuclei and by its unique mathematical structure. The model
directly relates the nuclear mass to the topological charge, and it naturally
provides a finite size of the nuclei, as well as the liquid drop behavior, which
probably is not easy to get from an effective field theory. So our model solves
a conceptual problem by explicitly deriving said properties from a (simple
and solvable) effective field theory and may be a good starting point for
an effective field theory description of nuclei. For a further development of
this application of the model, however, the following problems have to be
resolved or further investigated.

(i) Symmetry breaking: the infinitely many symmetries of the model are
not shared by physical nuclei. In addition, it is not clear how to select
the correct soliton from the infinitely many ones related by symmetries
or how to quantize these infinitely many symmetries. Therefore, a re-
alistic phenomenological application will require the breaking of these
symmetries. The challenge will be to identify a breaking mechanism
which effectively breaks the unwanted symmetries without perturbing
too much the good properties of the model (like weak binding energies,
weak internuclear forces, etc.).

(ii) Quantization of higher nuclei: the semiclassical quantization of higher
solitons should be performed and applied to higher nuclei, along the
lines of what was done for the standard Skyrme model. Investiga-
tions of the semiclassical quantization with the inclusion of higher ex-
citations of nuclei and electrostatic effects, among others, is the next
necessary step.

(iii) Motivation from QCD: it would be very interesting to see whether the
rather good phenomenological properties of the model can be justified
in a more rigorous manner from the fundamental theory of strong in-
teractions, i.e., QDC. We want to emphasize that the two terms of the
BPS Skyrme model are rather specific. The sextic term is essentially
topological in nature and is, therefore, naturally related to collective
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excitations of the underlying microscopic degrees of freedom. The
potential, on the other hand, provides the chiral symmetry breaking
and might therefore be related to collective degrees of freedom of the
quarks, like the quark condensate. A related issue is the behavior for
a large number of colors Nc. Indeed, the good phenomenological prop-
erties of the BPS Skyrme model seem to further improve in the limit
of large Nc, but a deeper understanding of this fact is still missing.
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