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This paper concerns the properties of strongly interacting matter at
very high energy density. I begin with the Color Glass Condensate and the
Glasma, matter that controls the earliest times in hadronic collisions. I then
describe the Quark Gluon Plasma, matter produced from the thermalized
remnants of the Glasma. Finally, I describe high density baryonic matter, in
particular Quarkyonic matter. The discussion will be intuitive and based
on simple structural aspects of QCD. There will be some discussion of
experimental tests of these ideas.

PACS numbers: 12.38.Mh, 12.28.Aw

1. Introduction

This paper concerns the properties of strongly interacting matter at high
energy density. Such matter occurs in a number of contexts. The high den-
sity partonic matter that controls the early stages of hadronic collisions at
very high energies is largely made of very coherent gluonic fields. In a single
hadron, such matter forms the small x part of a wavefunction, a Color Glass
Condensate. After a collision of two hadrons, this matter almost instanta-
neously is transformed into longitudinal color electric and color magnetic
fields. The ensemble of these fields in their early time evolution is called
the Glasma. The decay products of these fields thermalize and form a high
temperature gas of quarks and gluons, the Quark Gluon Plasma. In col-
lisions at lower energy, and perhaps in naturally occurring objects such as
neutron stars, there is high baryon density matter at low temperature. This
is Quarkyonic matter.
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There is a very well developed literature concerning these various forms
of matter. It is not the purpose of this paper to provide a comprehensive
review. I will concentrate on motivating and describing such matter from
simple intuitive physical pictures and from simple structural aspects of QCD.
I will attempt at various places to relate what is conjectured or understood
about such matter to experimental results from accelerator experiments.

2. Lecture I: The Color Glass Condensate and the Glasma

The parton distributions of gluons, valence quarks and sea quarks can
be measured for some momentum scale less than a resolution scale Q as
a function of their fractional momentum x of a high energy hadron. The
lowest value of x accessible for a fixed hadron energy E is typically xmin ∼
ΛQCD/Ehadron. The small x limit is therefore the high energy limit.

It is remarkable that as x is decreased, as we go to the high energy limit,
the gluon density dominates the constituents of a hadron for x ≤ 10−1.
The various distributions are shown as a function of x in Fig. 1. The gluon
density rises like a power of x like x−δ, δ ∼ 0.2–0.3 at accessible energies. The
area of a hadron grows slowly with energies. Cross-sections grow roughly as
ln2(1/x) for small x. This means that the rapidly growing gluon distribution
results in a high density system of gluons. At high density, the gluons have
small separation and by asymptotic freedom, the intrinsic strength of their
interaction must be weak.

Fig. 1. The parton distribution as a function of x.

A small intrinsic interaction strength does not mean that interactions are
weak. Consider gravity: The interactions between single protons are very
weak, but the force of gravity is long range, and the protons in the earth
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act coherently, that is always with the same sign. This results in a large
force of gravity. This can also happen for the gluons inside a hadron, if their
interactions are coherent.

To understand how this might happen, suppose we consider gluons of a
fixed size r0 ∼ 1/pT, where pT is its transverse momentum. We assume that
at high energy, the gluons have been Lorentz contracted into a thin sheet,
so we need only consider the distribution of gluons in the transverse plane.
If we start with a low density of gluons at some energy, and then evolve
to higher energy, the density of gluons increases. When the density is of
the order of one gluon per size of the gluon, the interaction remains weak
because of asymptotic freedom. When the density is of the order of 1/αS,
the coherent interactions are strong, and adding another gluon to the system
is resisted by a force of the order of 1. The gluons act as hard spheres. One
can add no more gluons to the system of this size. It is however possible
to add in smaller gluons, in the space between the closely packed gluons of
size r0. This is shown in Fig. 2.

Fig. 2. Increasing the gluon density in a saturated hadron when going to higher
energy.

The physical picture we derive means that below a certain momentum
scale, the saturation scale Qsat, the gluon density is saturated and above
this scale it is diffuse. The saturation momentum scale grows with energy
and need not itself saturate [1–4].

The high phase space density of gluons, dN/dyd2pTd
2rT ∼ 1/αS sug-

gests that one can describe the gluons as a classical field. A phase space
density has a quantum mechanical interpretation as density of occupation
of quantum mechanical states. When the occupation number is large, one
is in the classical limit.

One can imagine this high density gluon field generated from higher
momentum partons. We introduce the idea of sources corresponding to
high x partons and fields as low x partons. Because the high x parton
sources are fast moving, their evolution in time is Lorentz time dilated. The
gluon field produced by these sources is therefore static and evolves slowly
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compared to its natural time scale of evolution. This ultimately means that
the different configurations of sources are summed over incoherently, as in a
spin glass.

We call this high energy density configuration of colored fields a Color
Glass Condensate. The word color is because the gluons that make it are
colored. The word condensate is used because the phase space density of
gluons is large, and because this density is generated spontaneously. The
word glass is used because the typical time scale of evolution of the classical
fields is short compared to the Lorentz time dilated scales associated with
the sources of color.

There is an elaborate literature on the Color Glass Condensate and an
excellent review is by Iancu and Venugopalan [5]. Evolution of the CGC
to small values of x is understood, as well as many relationships between
deep inelastic scattering, deep inelastic diffraction and high energy nucleus-
nucleus, proton–nucleus and proton–proton scattering. The CGC is a univer-
sal form of matter in the high energy limit. The theoretical ideas underlying
the CGC are largely unchallenged as a description of the high energy limit
of QCD, but the issue of when the approximation appropriate for the high
energy limit are valid remains contentious.

In the description of high energy hadron–hadron collisions, we consider
the collision of two sheets of CGC as shown in Fig. 3. The color electric and
color magnetic fields of the CGC are visualized as sheets of Lenard–Wiechart
potentials. These are classical gluon fields whose polarization and color are
random, with an intensity distribution determined by the underlying theory
of the CGC.

Fig. 3. The collision of two sheets of CGC.

Upon collision of these sheets, the sheets become charged with color mag-
netic and color electric charge distributions of equal magnitude but opposite
sign locally in the transverse plane of the sheets [6–13]. In the high energy
limit sources of color electric and color magnetic field must be treated on an
equal footing because of the self duality of QCD. This induced charge den-
sity produces longitudinal color electric and color magnetic fields between
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the two sheets (Fig. 4). These fields are longitudinally boost invariant and
therefore have the correct structure to account for Bjorken’s initial condi-
tions in heavy ion collisions [14]. The typical transverse length scale over
which the flux tubes vary is 1/Qsat. The initial density of produced gluons
is on dimensional grounds

1
πR2

dN

dy
∼ Q2

sat

αS
. (1)

Because there are both color electric and color magnetic fields, there is a
topological charge density of maximal strength induced FFD ∼ Q2

sat/αS.

Fig. 4. Glasma flux tube produces after the collision.

The decay of products of the Glasma is what presumably makes a ther-
malized Quark Gluon Plasma. It is not clear how this thermalization takes
place. It is quite likely that in the decay of these fields, a turbulent fluid
arises, and perhaps this fluid can generate an expansion dynamics similar to
that of a thermalized QGP for at least some time [15].

2.1. The CGC and electron–hadron scattering

If the only momentum scale that controls high energy scattering is the
saturation momentum, then there will be scaling [16]. In particular, the
cross-section for deep inelastic scattering will be a function

σγ∗p ∼ F
(
Q2/Q2

sat

)
(2)

rather than a function of Q2 and x independently. The x dependence of the
saturation momentum may be determined empirically as Q2

sat ∼ Q2
0/x

δ,
where δ = 0.2–0.3, which is consistent with analysis of evolution equa-
tions [17–26]. The scaling relationship can be derived from the classical
theory for Q2 ≤ Q2

sat. It can further be shown to extend over a much larger
range of Q2 [27]. For large values of Q2 this scaling is a consequence of
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the linear evolution equations, but the global structure is determined by
the physics of saturation. Such a simple scaling relationship describes deep
inelastic scattering data for x ≤ 10−2 as shown in Fig. 5.
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Fig. 5. The geometric scaling in deep inelastic scattering.

Using evolution equations for the CGC including the effects of run-
ning coupling constant [28, 29], one can compute deep inelastic scattering
structure functions at small x [30]. This involves very few parameters,
and provides comprehensive description of deep inelastic scattering data
at x ≤ 10−2. The description of F2 in deep inelastic scattering is shown
in Fig. 6. It should be noted that in the CGC description of deep inelastic
scattering, the gluon distribution function is the Fock space distribution of
gluons inside a hadron. It can never become negative. In the description
of the F2 data, the gluon distribution function is not becoming small at
small Q2 as is the case in some linear evolution fits. This is intuitively rea-
sonable since we have no reason to expect that the Fock space distribution
of gluons in a hadron should become small at small Q2.

The Color Glass Condensate description may also be applied to diffrac-
tive deep inelastic scattering, and with the same parameters that describe
deep inelastic scattering does an excellent job of describing the data. In
addition, there are measurements of the longitudinal structure function, a
quantity directly proportional to the gluon density. Conventional descrip-
tions that use linear DGLAP evolution equations are somewhat challenged
by this data, but the CGC description naturally fits the data.
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Fig. 6. The CGC description of F2 data in deep inelastic scattering.

To summarize, the CGC description of deep inelastic scattering at small x
naturally describes F2, FL and diffractive data. It is a successful phe-
nomenology. Why is the CGC therefore not accepted as the standard de-
scription? The problem is that the linear evolution DGLAP descriptions
describe F2 adequately, except in the region where the perturbative compu-
tations most probably breaks down. They do not do a very good job on the
low Q2 FL data, but this is where there is a fair uncertainty in the data. The
diffractive data is naturally described in the CGC framework, but there are
other successful models. Ultimately, there is no consensus within the deep
inelastic scattering community that the CGC is needed in order to describe
the data.
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2.2. The CGC and heavy ion collisions
2.2.1. Multiplicities in RHIC nuclear collisions

One of the early successes of the CGC was the description of multiplic-
ity distributions in deep inelastic scattering [31–33]. Recall that the phase
space distribution of gluons up to the saturation momentum is of the order
of Q2

sat/αS(Qsat). We will assume that the distribution of initially produced
gluons is proportional to this distribution of gluons in the hadron wavefunc-
tions of the colliding nuclei and further, that the multiplicity of produced
gluon is proportional to the final state distribution of pions. We get

1
σ

dN

dy
∼ 1
αS(Qsat)

Q2
sat ∼ A1/3x−δ . (3)

Here σ is the area of overlap of the two nuclei in the collision and A the num-
ber of nucleons that participate in the collision. σ Q2

sat ∼ A at low energies
assumes no shadowing of nucleon parton distributions and is consistent with
information concerning deep inelastic scattering on nuclear targets. In the
collisions of nuclei one can directly measure the number of nucleonic partic-
ipants in the collisions, a number that varies with the centrality of the colli-
sion. One can then compare the central region multiplicity with the number
of participants so determined. Such a comparison is shown in [34,35], Fig. 7.
The saturation description of Kharzeev and Nardi [31] provides a good de-
scription of the centrality dependence of the collisions. It also does well with
the energy dependence. Refinements of this description can provide a good
description of the rapidity distribution of produced particles [33].

Fig. 7. The multiplicity as a function of the number of nucleon participants in
heavy ion collisions.
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2.2.2. Limiting fragmentation

A general feature of high energy hadronic scattering is limiting fragmen-
tation. If one measures the distribution of particles as a function of rapidity
up to some fixed rapidity from the rapidity of one of the colliding particles,
then the distribution is independent of collision energy. The region over
which this scaling occurs increases as the energy of the colliding particles
increases. Such scaling is shown in Fig. 8. Such limiting fragmentation is
natural in the CGC approach. For example in Fig. 8, we see that the re-
gion of limiting fragmentation increases as beam energy increases [35]. If
we think of the region where there is limiting fragmentation as sources for
fields at small more central rapidities, then we see that going to higher ener-
gies corresponds to treating a larger region as sources. In a renormalization
group language, this simply means that one is integrating out fluctuations
at less central rapidities, to generate an effective theory for the particles at
more central rapidity. A quantitative description of limiting fragmentation
within the theory of the CGC is found in Ref. [36].

Fig. 8. Limiting fragmentation in RHIC nuclear collisions.

2.2.3. Single particle distributions in dAu collisions

Some of the early predictions of the CGC were generic features of the sin-
gle particle inclusive distributions seen in hadron–nucleus collisions. There
are two competing effects. The first is multiple scattering of a hadron as it
traverses a nucleus. This effect is included n the CGC gluon distributions as
an enhancement of the gluon distribution for pT at transverse momentum
of the order of the saturation momentum, with a corresponding depletion at
smaller momentum. There is little effect at high pT. The other effect is that
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in the evolution of the gluon distribution to small x, the saturation momen-
tum acts as a cutoff in the bremsstrahlung like integrals that generate such
small x gluons. Nuclei have a larger saturation momentum than do hadrons,
so the small x gluon distribution for nuclei will be suppressed relative to that
for hadrons. To put it another way, this effect will generate a suppression
for more central collisions. The sum of these effects is shown in Fig. 9
[37–42]. The different curves correspond to different rapidities of the pro-
duced particle, beginning with the top curve being near the fragmentation
region of the nucleus. As one evolve further in rapidity, the enhancement at
intermediate transverse momentum disappears and is replaced by a smooth
curve with an overall suppression of produced particles.

Fig. 9. The ratio of particles emitted in dA and AA collisions to that in proton due
to CGC effects.

The pattern of suppression suggested by the Color Glass Condensate
was first seen in dAu collisions in the Brahms Collaboration [43], and later
confirmed by the other experiments [34, 35, 44]. The Brahms experiments
demonstrated that in the nuclear target fragmentation region that at inter-
mediate pT there was en enhancement in RdA as a function of centrality, but
in the deuteron fragmentation region, there was a depletion as a function
of centrality. The CGC provided the only model that predicted such an
effect, and it remains the only theory that can quantitatively explain the
suppression seen in the deuteron fragmentation region.
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2.2.4. Heavy quark and JΨ production

If the saturation momentum is small compared to a quark mass, it can
be treated as very heavy. It should have perturbative incoherent production
cross-sections. If the saturation momentum is large compared to a quark
mass, the quarks should be thought of as light mass. Cross-sections for
production should be coherent, and for example in pA collisions, scale as
A2/3. In the deuteron fragmentation region of dAu collisions we would ex-
pect suppression of heavy quark and charmonium cross-sections relative to
the nuclear fragmentation region. In Fig. 10, the ratio of central to periph-
eral cross-sections for J/Ψ production is shown as a function of centrality
and rapidity. Note the strong suppression in the forward region for central
collisions, as expected from the CGC. Precise computations are difficult for
the charm quark since its mass is close to the saturation momentum. Such
computations are in agreement with the data at forward rapidity [45–47].

Fig. 10. The J/Ψ production cross-section as a function of centrality and rapidity.
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2.2.5. Two particle correlations

The Glasma flux tubes induced by the collision of two hadrons will gen-
erate long range correlations in rapidity. In heavy ion collisions, this may
be seen in forward–backward correlations, as measured in STAR. The cor-
relation increases in strength with higher energy collisions or more central
collisions. This is expected in the CGC–Glasma description because for
more central collisions the saturation momentum is bigger, so that the sys-
tem is more correlated. (The coupling becoming weaker means the system
is more classical, and therefore the leading order contribution associated

Fig. 11. The strength of forward–backward correlations as a function of rapidity
and centrality.
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with Glasma flux tubes becomes relatively more important.) Such forward–
backward correlations are shown in Fig. 11 as a function of rapidity and
centrality [48,49]. The value of the correlation coefficient b can be shown to
be bounded b ≤ 1/2.

Such two particle correlations in the Glasma can generate ridge like struc-
tures seen in two particle correlation experiments in azimuthal angle and ra-
pidity [50,51]. The long range rapidity correlation is intrinsic to the Glasma.
The angular correlation might be generated by flow effects at later times in
the collision, by opacity and trigger bias effects, or by intrinsic angular cor-
relations associated with the decay of Glasma flux tubes [52–56].

2.2.6. The negative binomial distribution

The decay of a single Glasma flux tube generates a negative binomial
distribution of produced particles [57]. A sum of negative binomial dis-
tributions is again a negative binomial distribution. Such a form of the
distribution describes the RHIC data well. It is difficult with the heavy ion
data to isolate those effects due to an intrinsic negative binomial distribution
and those due to impact parameter. It is possible to isolate the effects of
impact parameter, but it demands a high statistics study.

2.2.7. Two particle azimuthal angular correlations in dA collisions

The CGC will de-correlate forward–backward angular correlations when
the transverse momentum of produced particles is of the order of the satu-
ration momentum [58–60]. This is because near the produced particles get
momentum from the CGC and therefore are not back-to-back correlated. In
dAu collisions such an effect will be largest at forward rapidities near the

Fig. 12. Forward rapidity, forward–backward angular correlations in dAu collisions
as a function of centrality.



2812 L. McLerran

fragmentation region of the deuteron, since this corresponds to the smallest
values of x for the nuclear target. This kinematic region is least affected
by multiple scattering on the nucleus. This effect has been seen by the
STAR and PHENIX collaborations [61, 62]. There is a good quantitative
description by Tuchin [59] and by Albacete and Marquet [60] as shown in
Fig. 12.

2.3. Concluding comments on the CGC and the Glasma

There is now a wide variety or experimental data largely consistent with
the CGC and Glasma based description. There is a well developed theoreti-
cal framework that provides a robust phenomenology of both electro-hadron
scattering and hadron scattering, There are new areas that are developing
that I have not had time to discuss. One is the possibility to see effects
of topological charge change in heavy ion collisions, the Chiral Magnetic
Effect [63]. Another area is pp collisions at the LHC, where some work
concerning recent experimental data was developed at this school [64].

3. Lecture II: Matter at high temperature:
The Quark Gluon Plasma

3.1. Matter at finite temperature
3.1.1. Introduction

In this section I will describe the properties of matter at high tempera-
ture. The discussion here will be theoretical. There is a wide literature on
the phenomenology of the Quark Gluon Plasma and its possible description
of heavy ion collisions at RHIC energies. The interested reader is referred to
that literature. I will here develop the ideas of decofinement, chiral symme-
try restoration based in part on a simple description using the large number
of colors limit of QCD.

3.2. Confinement

The partition function is

Z = Tr e−βH+βµBNB , (4)

where the temperature is T = 1/β and NB is the baryon number and µB is
the baryon number chemical potential. Operator expectation values are

〈O〉 =
TrO e−βH+βµBNB

Z
. (5)

Under the substitution e−βH → e−itH , the partition function becomes the
time evolution operator of QCD. Therefore, if we change t → it, and rede-
fine zeroth components of fields by appropriate factors of i, and introduce
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Euclidean gamma matrices with anti-commutation relations

{γµ, γν} = −2δµν (6)

then for QCD, the partition function has the path integral representation

Z=
∫

[dA]
[
dψ
]
[dψ] exp

−
β∫

0

d4x

(
1
4
F 2+ ψ

[
1
i
γ ·D +m+ iµQγ

0ψ

]) .

(7)
Here the fermion field is a quark field so that the baryon number chemical
potential is

µQ =
1
Nc
µB . (8)

This path integral is in Euclidean space and is computable using Monte
Carlo methods when the quark chemical potential vanishes. If the quark
chemical potential is non-zero, various contributions appear with different
sign, and the Monte Carlo integrations are poorly convergent. Boundary
conditions on the fields must be specified on account of the finite length
of the integration in time. They are periodic for Bosons and anti-periodic
for Fermions, and follow from the trace in the definition of the partition
function.

A straightforward way to probe the confining properties of the QCD
matter is to introduce a heavy test quark. If the free energy of the heavy
test quark is infinite, then there is confinement, and if it is finite there is
deconfinement. We shall see below that the free energy of an quark added
to the system is

e−βFq = 〈L〉 , (9)

where
L(~x ) =

1
Nc

TrP ei
R
dtA0(~x, t) . (10)

So confinement means 〈L〉 = 0 and deconfinement means that 〈L〉 is finite.
The path ordered phase integration which defines the line operator L is
shown in Fig. 13. Such a path ordered phase is called a Polyakov loop or
Wilson line.

It is possible to prove that the free energy of a heavy static quark added
to the system is given by Eq. (9) using the effective action for a very heavy
quark

SHQ =
∫
dt ψ(~x, t)

1
i
γ0D0 ψ(~x, t) . (11)

The Yang–Mills action is invariant under gauge transformations that are
periodic up to an element of the center of the gauge group. The center of
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Fig. 13. The contour in the t plane which defines the Polyakov loop. The space is
closed in time because of the periodic boundary conditions imposed by the defini-
tion of the partition function.

the gauge group is a set of diagonal matrices matrix Zp = e2πip/NI, where I
is an identity matrix. The quark contribution to the action is not invariant,
and L → ZpL under this transformation. In a theory with only dynamical
gluons, the energy of a system of n quarks minus antiquarks is invariant
under the center symmetry transformation only if n is an integer multiple
of N . Therefore, when the center symmetry is realized, the only states of
finite free energy are baryons plus color singlet mesons.

The realization of the center symmetry, L → ZpL is equivalent to con-
finement. This symmetry is like the global rotational symmetry of a spin sys-
tem, and it may be either realized or broken. At large separations, the cor-
relation of a line and its adjoint, corresponding to a quark–antiquark pair is

lim
r→∞

〈
L(r)L†(0)

〉
= Ce−κr + 〈L(0)〉

〈
L†(0)

〉
(12)

since upon subtracting a mean field term, correlation functions should vanish
exponentially. Since

e−βFqq(r) =
〈
L(r)L†(0)

〉
(13)

we see that in the confined phase, where 〈L〉 = 0, the potential is linear,
but in the unconfined phase, where 〈L〉 is non-zero, the potential goes to a
constant at large separations.

The analogy with a spin system is useful. For the spin system corre-
sponding to QCD without dynamical quarks, the partition function can be
written as

Z =
∫

[dA] e−
1

g2 S[A]
. (14)

The effective temperature of the spin system associated with the gluon fields
is Teff ∼ g2. By asymptotic freedom of the strong interactions, as real
temperature gets larger, the effective temperature gets smaller. So at large
real temperature (small effective temperature) we expect an ordered system,
where the ZN symmetry is broken, and there is deconfinement. For small real
temperature corresponding to large effective temperature, there is disorder
or confinement.



Strongly Interacting Matter at Very High Energy Density . . . 2815

The presence of dynamical fermions breaks the ZN symmetry. This is
analogous to placing a spin system in an external magnetic field. There is no
longer any symmetry associated with confinement, and the phase transition
can disappear. This is what is believed to happen in QCD for physical
masses of quarks. What was a first order phase transition for the theory in
the absence of quarks becomes a continuous change in the properties of the
matter for the theory with quarks.

Another way to think about the confinement–decofinement transition is
a change in the number of degrees of freedom. At low temperatures, there
are light meson degrees of freedom. Since these are confined, the number
of degrees of freedom is of the order of one in the number of colors. In the
unconfined world, there are 2(N2

c − 1) gluons and 4NcNf fermions, where
Nf is the number of light mass fermion families. The energy density scaled
by T 4 is a dimensionless number and directly proportional to the number of
degrees of freedom. We expect it to have the property shown in Fig. 14 for
pure QCD in the absence of quarks. The discontinuity at the deconfinement
temperature, Td is the latent heat of the phase transition.

Fig. 14. The energy density scaled by T 4 for QCD in the absence of dynamical
quarks.

The energy density can be computed using lattice Monte Carlo meth-
ods. The result of such computation is shown in Fig. 15. The discontinuity
present for the theory with no quarks becomes a rapid crossover when dy-
namical quarks are present.

The large Nc limit gives some insight into the properties of high tem-
perature matter [65–68]. As Nc → ∞, the energy density itself is an order
parameter for the decofinement phase transition. Viewed from the hadronic
world, there is an amount of energy density ∼ N2

c which must be inserted
to surpass the transition temperature. At infinite Nc this cannot happen,
as this involves an infinite amount of energy. There is a Hagedorn limit-
ing temperature, which for finite Nc would have been the deconfinement
temperature.
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Fig. 15. The energy density scaled by T 4 measured in QCD from lattice Monte
Carlo simulation. Here there are quarks with realistic masses.

The Hagedorn limiting temperature can be understood from the view-
point of the hadronic world as arising from an exponentially growing density
of states. In a few paragraphs, we will argue that mesons and glueballs are
very weakly interacting in the limit of large Nc. Therefore, the partition
function is

Z =
∫
dmρ(m)e−m/T . (15)

Taking ρ(m) ∼ mαeκm, so that

〈m〉 ∼ 1
1/T − κ

(16)

diverges when T → 1/κ.

3.3. A brief review of the large Nc limit

The large Nc limit for an interacting theory takes Nc → ∞ with the
’t Hooft coupling g2

’ t Hooft = g2Nc finite. This approximation has the advan-
tage that the interactions among quarks and gluons simplify. For example,
at finite temperature, the disappearance of confinement is associated with
Debye screening by gluon loops, as shown in Fig. 16 (a). This diagram gen-
erates a screening mass of the order ofM2

screening ∼ g2
’ t HooftT

2. On the other
hand, the quark loop contribution is smaller by a power of Nc and vanishes
in the large Nc limit.
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(a) (b)
Fig. 16. (a) The gluon loop contribution to the heavy quark potential. (b) The
quark loop contribution to the potential.

To understand interactions, consider Fig. 17 (a). This corresponds to a
mesonic current–current interaction through quarks. In powers of Nc, it is of
the order of Nc. Gluon interactions will not change this overall factor. The
three current interaction is also of the order of Nc as shown in Fig. 17 (b).
The three meson vertex, G which remains after amputating the external
lines, is therefore of the order of 1/

√
Nc. A similar argument shows that the

four meson interaction is of the order of 1/Nc. Using the same arguments,
one can show that the 3 glueball vertex is of the order of 1/Nc and the four
glueball interaction of the order of 1/N2

c .

(a)

(b)

Fig. 17. (a) The quark loop corresponding to a current–current interaction.
(b) A quark loop corresponding to a three current interaction.

These arguments show that QCD at large Nc becomes a theory of non-
interacting mesons and glueballs. There are an infinite number of such states
because excitations can never decay. In fact, the spectrum of mesons seen
in nature does look to a fair approximation like non-interacting particles.
Widths of resonances are typically of the order of 200 MeV, for resonances
with masses up to several GeV.

3.4. Mass generation and chiral symmetry breaking

QCD in the limit of zero quark masses has a U(1)×SUL(2)×SUR(2) sym-
metry. (The U5(1) symmetry is explicitly broken due to the axial anomaly.)
Since the pion field, ψτaγ5ψ is generated by an SUL−R(2) transformation of
the sigma field, ψψ, the energy (or potential) in the space of the pion-sigma
field is degenerate under this transformation. In nature, pions have anoma-
lously low masses. This is believed to be a consequence of chiral symmetry
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breaking, where the σ field acquires an expectation value, and the pion fields
are Goldstone bosons associated with the degeneracy of the potential under
the chiral rotations.

Such symmetry breaking can occur if the energy of a particle–antiparticle
pair is less than zero, as shown in Fig. 18. On the left of this figure is the
naive vacuum, where the negative energy states associated with quark are
filled. The right-hand side of the figure corresponds to a particle hole excita-
tion, corresponding to a sigma meson. Remember that a hole in the negative
energy sea corresponds to an antiparticle with the opposite momentum and
energy. If the σ meson excitation has negative energy, the system is unstable
with respect to forming a condensate of these mesons.

Fig. 18. The energy levels of the Dirac equation. Unfilled states are open circles
and filled states are solid circles. For the free Dirac equation, negative energy states
are filled and positive energy states are unoccupied, as shown on the left hand side.
A mesonic excitation corresponding to a particle hole pair is shown on the right-
hand side.

At sufficiently high temperature, the chiral condensate might melt. In-
deed this occurs [69]. For QCD, the chiral and deconfinement phase transi-
tion occur at the same temperature. At a temperature of about 170–200MeV,
both the linear potential disappears and chiral symmetry is restored. It is
difficult to make a precise statement about the identification of the chi-
ral and deconfinement phase transitions, since as argued above, for QCD
with quarks, there is not a real phase transition associated with deconfine-
ment [70, 71]. Also, when quarks have finite masses, as they do in nature,
chiral symmetry is not an exact symmetry, and there need be no strict phase
transition associated with its restoration. Nevertheless, the crossover is quite
rapid, and there are rapid changes in the both the potential and the sigma
condensate 〈ψψ〉 at temperatures which are in a narrow range.
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4. Lecture III: Matter at high baryon number density:
Quarkyonic matter

I now turn to a discussion of the phase diagram of QCD at finite baryon
number density.

In the large Nc limit of QCD, the nucleon mass is of the order of Nc

[65–67]. This means that in the confined phase of hadronic matter, for
baryon chemical potential µB ≤ MN , the baryon number density is essen-
tially zero

〈NB〉 ∼ e(µB−MN )/T ∼ e−Nc . (17)

For temperatures above the deconfinement phase transition the baryon num-
ber is non-zero since there the baryon number density is controlled by
e−Mq/T ∼ 1, and quark masses are independent of Nc. For sufficiently large
chemical potential the baryon number density can be nonzero also. The
Hadronic Matter phase of QCD is characterized in large Nc by zero baryon
number density, but at higher density there is a new phase.

In the large Nc limit, fermion loops are suppressed by a factor of 1/Nc.
Therefore, the contribution to Debye screening from quarks cannot affect
the quark potential until

M2
Debye ∼ α ’ t Hooft µ

2
quark/Nc ∼ Λ2

QCD . (18)

Here the quark chemical potential is µB = Nc µquark. The relationship
involving the Debye mass means there is a region of parametrically large
chemical potential MN ≤ µB ≤

√
NcMN , where matter is confined, and

has finite baryon number. This matter is different than either the Hadronic
Matter or the Deconfined Phases. It is called Quarkyonic because it exists
at densities parametrically large compared to the QCD scale, where quark
degrees of freedom are important, but it is also confined so the degrees of
freedom may be thought of also as those of confined baryons [73,74].

The width of the transition region between the Hadronic phase and the
Quarkyonic phase is estimated by requiring that the baryon number density
becomes of the order of NB/V ∼ k3

Fermi ∼ Λ3
QCD. Recall that the baryon

chemical potential is µB ∼MN +k2
f/2MN for small kF, so that the width of

the transition in µB is very narrow, of the order of 1/Nc. This is δµqaurk ∼
1/N2

c when expressed in terms of µquark which is the finite variable in the
large Nc limit.

The transition from Hadronic Matter to that of the Quark Gluon Plasma
may be thought of as a change in the number of degrees of freedom of
matter. Hadronic Matter at low temperatures has 3 pion degrees of freedom.
The Quark Gluon Plasma has of the order of 2(N2

c − 1) degrees of freedom
corresponding to gluons and 4Nc degrees of freedom for each light mass
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quark. The change in degrees of freedom is of the order of N2
c in the large

Nc limit. At very high baryon number densities, the quarks in the Fermi
sea interact at short distances, and although strictly speaking are confined,
behave like free quarks. The number of degrees of freedom is therefore of
the order of Nc. Each phase has different numbers of degrees of freedom,
and is presumably separated from the other by a rapid crossover.

Quarkyonic matter is confined and, therefore, thermal excitations such
as mesons, glueballs, and Fermi surface excitations must be thought of as
confined. The quarks in the Fermi sea are effectively weakly interacting since
their interactions take place at short distances. So in some sense, the matter
is “de-confined” quarks in the Fermi sea with confined glueball, mesons and
Fermi surface excitations [75].

In Hadronic Matter, chiral symmetry is broken and in Deconfined Matter
it is broken. In Quarkyonic Matter chiral symmetry is broken by the forma-
tion of charge density waves from binding of quark and quark hole excitations
near the Fermi surface [76]. In order that the quark hole have small relative
momentum to the quark, the quark hole must have momentum opposite to
that of the quark. This means the quark–quark hole excitation has total net
momentum, and therefore the finite wavelength of the corresponding bound
state leads to a breaking of translational invariance. The chiral condensate
turns out to be a chiral spiral, where the chiral condensate rotates between
different Goldstone boson as one moves through the condensate [77]. Such
condensation may lead to novel crystalline structures [78].

A hypothetical phase diagram of QCD is shown in Fig. 19 for Nc = 3.
Also shown is the weak liquid-gas phase transition, and the phase associated
with color superconductivity. Although the color superconducting phase
cannot coexist with quarkyonic matter in infinite Nc, for finite Nc there
is such possibility. The lines on this phase diagram might correspond to

Quark-Gluon Plasma

QuarkyonicHadronic

Triple Point Deconfinement

Liquid-GasX

MN

T↑

μB→
Pairing

←Chiral?
Tc

Fig. 19. The revised phase diagram of QCD.
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true phase transitions or rapid crossovers. The confinement–deconfinement
transition is known to be a crossover. In the FPP-NJL model [79–81], the
Hadronic–Quarkyonic transition is first order [82], but nothing is known
from lattice computations. If as we conjecture, there is region where chiral
symmetry is broken by translationally non-invariant modes, then this region
must be surrounded by a line of phase transitions. I call this region Happy
Island because it is an island of matter in the µB–T plane.

A remarkable feature of this plot is the triple point where the Hadronic
Matter, Deconfined Matter and Quarkyonic Matter all meet [83]. This triple
point is reminiscent of the triple point for the liquid, gas and vapor phases
of water.

Since we expect a rapid change in the number of degrees of freedom
across the transitions between these forms of matter, an expanding system
crossing such a transition will undergo much dilution would undergo much
dilution at a fixed value of temperature or baryon chemical potential. One
might expect in heavy ions to see decoupling of particle number changing
processes at this transition, and the abundances of produced particles will
be characteristic of the transition.

In Fig. 20, the expectations for the confinement–deconfinement transition
are shown with the dotted (red) line. It is roughly constant with the baryon
chemical potential, and the constant value of temperature is taken from
lattice estimates. The dark dashed curve represents µB −T = const.×MN ,
corresponding to a simple model for the Quarkyonic transition. Such a very
simple description does remarkably well.

Fig. 20. Chemical potentials and temperatures at decoupling.
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A triple point is suggested at a baryon chemical potential near 400 MeV,
and temperature near 160 MeV. This corresponds to a center of mass energy
for Pb–Pb collisions of 9–10 GeV. This is near where there are anomalies
in the abundances of rations of particles [84], as shown in Fig. 21. Shown
are fits using statistical models of abundances of particles using chemical
potentials and temperature extracted from experimental data. The sharp
peak reflects the change in behavior as one proceeds along the dashed line of
Fig. 20 corresponding to the Quarkyonic transition and joins to the dotted
(red) line of the deconfinement transition.

Fig. 21. Ratios of abundances of various particles.

It is remarkable that the value of beam energy where this occurs corre-
sponds to the hypothetical triple point of Fig. 20, and that this is the density
where the energy density stored in baryons becomes equal to that stored in
mesons, Fig. 22.
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Fig. 22. Energy density stored in baryons compared to that stored in mesons.

I gratefully acknowledge the organizers of the L Cracow School of Theo-
retical Physics, in particular, Michał Praszałowicz, for making this wonderful
and extraordinary meeting. The research of L. McLerran is supported under
DOE Contract No. DE-AC02-98CH10886.

REFERENCES

[1] L.V. Gribov, E.M. Levin, M.G. Ryskin, Phys. Rep. 100, 1 (1983).
[2] A.H. Mueller, J.W. Qiu, Nucl. Phys. B268, 427 (1986).
[3] L.D. McLerran, R. Venugopalan, Phys. Rev. D49, 2233 (1994)

[arXiv:hep-ph/9309289].
[4] L.D. McLerran, R. Venugopalan, Phys. Rev. D49, 3352 (1994)

[arXiv:hep-ph/9311205].
[5] E. Iancu, R. Venugopalan, arXiv:hep-ph/0303204.
[6] A. Kovner, L.D. McLerran, H. Weigert, Phys. Rev. D52, 6231 (1995)

[arXiv:hep-ph/9502289].
[7] A. Kovner, L.D. McLerran, H. Weigert, Phys. Rev. D52, 3809 (1995)

[arXiv:hep-ph/9505320].
[8] A. Krasnitz, R. Venugopalan, Nucl. Phys. B557, 237 (1999)

[arXiv:hep-ph/9809433].
[9] A. Krasnitz, R. Venugopalan, Phys. Rev. Lett. 84, 4309 (2000)

[arXiv:hep-ph/9909203].
[10] A. Krasnitz, R. Venugopalan, Phys. Rev. Lett. 86, 1717 (2001)

[arXiv:hep-ph/0007108].



2824 L. McLerran

[11] A. Krasnitz, Y. Nara, R. Venugopalan, Phys. Rev. Lett. 87, 192302 (2001).
[12] T. Lappi, Phys. Rev. C67, 054903 (2003) [arXiv:hep-ph/0303076].
[13] T. Lappi, L. McLerran, Nucl. Phys. A772, 200 (2006)

[arXiv:hep-ph/0602189].
[14] J.D. Bjorken, Phys. Rev. D27, 140 (1983).
[15] K. Dusling, T. Epelbaum, F. Gelis, R. Venugopalan, arXiv:1009.4363

[hep-ph].
[16] A.M. Stasto, K.J. Golec-Biernat, J. Kwiecinski, Phys. Rev. Lett. 86, 596 (2001)

[arXiv:hep-ph/0007192].
[17] I. Balitsky, Nucl. Phys. B463, 99 (1996) [arXiv:hep-ph/9509348].
[18] J. Jalilian-Marian, A. Kovner, L.D. McLerran, H. Weigert, Phys. Rev. D55,

5414 (1997) [arXiv:hep-ph/9606337].
[19] J. Jalilian-Marian, A. Kovner, A. Leonidov, H. Weigert, Nucl. Phys. B504,

415 (1997) [arXiv:hep-ph/9701284].
[20] J. Jalilian-Marian, A. Kovner, A. Leonidov, H. Weigert, Phys. Rev. D59,

014014 (1999) [arXiv:hep-ph/9706377].
[21] J. Jalilian-Marian, A. Kovner, H. Weigert, Phys. Rev. D59, 014015 (1999)

[arXiv:hep-ph/9709432].
[22] Y.V. Kovchegov, Phys. Rev. D60, 034008 (1999) [arXiv:hep-ph/9901281].
[23] E. Iancu, A. Leonidov, L.D. McLerran, Nucl. Phys. A692, 583 (2001)

[arXiv:hep-ph/0011241].
[24] E. Iancu, A. Leonidov, L.D. McLerran, Phys. Lett. B510, 133 (2001)

[arXiv:hep-ph/0102009].
[25] E. Ferreiro, E. Iancu, A. Leonidov, L. McLerran, Nucl. Phys. A703, 489 (2002)

[arXiv:hep-ph/0109115].
[26] A.H. Mueller, D.N. Triantafyllopoulos, Nucl. Phys. B640, 331 (2002)

[arXiv:hep-ph/0205167].
[27] E. Iancu, K. Itakura, L. McLerran, Nucl. Phys. A708, 327 (2002)

[arXiv:hep-ph/0203137].
[28] J.L. Albacete, Y.V. Kovchegov, Phys. Rev. D75, 125021 (2007)

[arXiv:0704.0612 [hep-ph]].
[29] I. Balitsky, G.A. Chirilli, Phys. Rev. D77, 014019 (2008)

[arXiv:0710.4330 [hep-ph]].
[30] J.L. Albacete, N. Armesto, J.G. Milhano, C.A. Salgado, Phys. Rev. D80,

034031 (2009) [arXiv:0902.1112 [hep-ph]].
[31] D. Kharzeev, M. Nardi, Phys. Lett. B507, 121 (2001)

[arXiv:nucl-th/0012025].
[32] K.J. Eskola, K. Kajantie, P.V. Ruuskanen, K. Tuominen, Nucl. Phys. B570,

379 (2000) [arXiv:hep-ph/9909456].
[33] D. Kharzeev, E. Levin, M. Nardi, Phys. Rev. C71, 054903 (2005)

[arXiv:hep-ph/0111315].
[34] K. Adcox et al. [PHENIX Collaboration], Nucl. Phys. A757, 184 (2005)

[arXiv:nucl-ex/0410003].



Strongly Interacting Matter at Very High Energy Density . . . 2825

[35] B.B. Back et al., Nucl. Phys. A757, 28 (2005) [arXiv:nucl-ex/0410022].
[36] F. Gelis, A.M. Stasto, R. Venugopalan, Eur. Phys. J. C48, 489 (2006)

[arXiv:hep-ph/0605087].
[37] R. Baier, A. Kovner, U.A. Wiedemann, Phys. Rev. D68, 054009 (2003)

[arXiv:hep-ph/0305265].
[38] J.L. Albacete et al., Phys. Rev. Lett. 92, 082001 (2004)

[arXiv:hep-ph/0307179].
[39] D. Kharzeev, Y.V. Kovchegov, K. Tuchin, Phys. Rev. D68, 094013 (2003)

[arXiv:hep-ph/0307037].
[40] D. Kharzeev, Y.V. Kovchegov, K. Tuchin, Phys. Lett. B599, 23 (2004)

[arXiv:hep-ph/0405045].
[41] J. Jalilian-Marian, Nucl. Phys. A748, 664 (2005) [arXiv:nucl-th/0402080].
[42] E. Iancu, K. Itakura, D.N. Triantafyllopoulos, Nucl. Phys. A742, 182 (2004)

[arXiv:hep-ph/0403103].
[43] I. Arsene et al. [BRAHMS Collaboration], Nucl. Phys. A757, 1 (2005)

[arXiv:nucl-ex/0410020].
[44] J. Adams et al. [STAR Collaboration], Nucl. Phys. A757, 102 (2005)

[arXiv:nucl-ex/0501009].
[45] D. Kharzeev, E. Levin, M. Nardi, K. Tuchin, Phys. Rev. Lett. 102, 152301

(2009) [arXiv:0808.2954 [hep-ph]].
[46] D. Kharzeev, E. Levin, M. Nardi, K. Tuchin, Nucl. Phys. A826, 230 (2009)

[arXiv:0809.2933 [hep-ph]].
[47] B.Z. Kopeliovich, I.K. Potashnikova, H.J. Pirner, I. Schmidt,

arXiv:1008.4272 [hep-ph].
[48] B.I. Abelev et al. [STAR Collaboration], Phys. Rev. Lett. 103, 172301 (2009)

[arXiv:0905.0237 [nucl-ex]].
[49] T. Lappi, L. McLerran, Nucl. Phys. A832, 330 (2010) [arXiv:0909.0428

[hep-ph]].
[50] E.V. Shuryak, Phys. Rev. C76, 047901 (2007) [arXiv:0706.3531 [nucl-th]].
[51] A. Dumitru, F. Gelis, L. McLerran, R. Venugopalan, Nucl. Phys. A810, 91

(2008) [arXiv:0804.3858 [hep-ph]].
[52] S. Gavin, L. McLerran, G. Moschelli, Phys. Rev. C79, 051902 (2009)

[arXiv:0806.4718 [nucl-th]].
[53] R.P.G. Andrade, F. Grassi, Y. Hama, W.L. Qian, arXiv:1008.4612

[nucl-th].
[54] K. Werner et al., arXiv:1004.0805 [nucl-th].
[55] B. Alver, G. Roland, Phys. Rev. C81, 054905 (2010) [Erratum Phys. Rev.

C82, 039903 (2010)] [arXiv:1003.0194 [nucl-th]].
[56] A. Dumitru et al., arXiv:1009.5295 [hep-ph].
[57] F. Gelis, T. Lappi, L. McLerran, Nucl. Phys. A828, 149 (2009)

[arXiv:0905.3234 [hep-ph]].
[58] D. Kharzeev, E. Levin, L. McLerran, Nucl. Phys. A748, 627 (2005)

[arXiv:hep-ph/0403271].



2826 L. McLerran

[59] K. Tuchin, Nucl. Phys. A846, 83 (2010) [arXiv:0912.5479 [hep-ph]].
[60] J.L. Albacete, C. Marquet, arXiv:1009.3215 [hep-ph].
[61] E. Braidot [STAR Collaboration], arXiv:1008.3989 [nucl-ex].
[62] B. Meredith, Nucl. Phys. A830, 595C (2009) [arXiv:0907.4832 [nucl-ex]].
[63] D.E. Kharzeev, L.D. McLerran, H.J. Warringa, Nucl. Phys. A803, 227 (2008)

[arXiv:0711.0950 [hep-ph]].
[64] L. McLerran, M. Praszalowicz, Acta Phys. Pol. B 41, 1917 (2010)

[arXiv:1006.4293 [hep-ph]].
[65] G. ’t Hooft, Nucl. Phys. B72, 461 (1974).
[66] G. ’t Hooft, Nucl. Phys. B75, 461 (1974).
[67] E. Witten, Nucl. Phys. B160, 57 (1979).
[68] C.B. Thorn, Phys. Lett. B99, 458 (1981).
[69] F. Karsch, Lect. Notes Phys. 583, 209 (2002) [arXiv:hep-lat/0106019].
[70] A. Bazavov et al., Phys. Rev. D80, 014504 (2009) [arXiv:0903.4379

[hep-lat]].
[71] S. Borsanyi et al., arXiv:1007.2580 [hep-lat].
[72] M.G. Alford, Annu. Rev. Nucl. Part. Sci. 51, 131 (2001)

[arXiv:hep-ph/0102047].
[73] L. McLerran, R.D. Pisarski, Nucl. Phys. A796, 83 (2007)

[arXiv:0706.2191 [hep-ph]].
[74] Y. Hidaka, L.D. McLerran, R.D. Pisarski, Nucl. Phys. A808, 117 (2008)

[arXiv:0803.0279 [hep-ph]].
[75] P. Castorina, R.V. Gavai, H. Satz, arXiv:1003.6078 [hep-ph].
[76] D.V. Deryagin, D.Y. Grigoriev, V.A. Rubakov, Int. J. Mod. Phys. A7, 659

(1992).
[77] T. Kojo, Y. Hidaka, L. McLerran, R.D. Pisarski, arXiv:0912.3800 [hep-ph].
[78] T. Kojo, R. Pisarski, A. Tsvelik, private communication.
[79] K. Fukushima, Phys. Lett. B591, 277 (2004) [arXiv:hep-ph/0310121].
[80] N. Kaiser, S. Fritsch, W. Weise, Nucl. Phys. A697, 255 (2002)

[arXiv:nucl-th/0105057].
[81] R.D. Pisarski, Phys. Rev. D62, 111501 (2000) [arXiv:hep-ph/0006205].
[82] L. McLerran, K. Redlich, C. Sasaki, Nucl. Phys. A824, 86 (2009)

[arXiv:0812.3585 [hep-ph]].
[83] A. Andronic et al., arXiv:0911.4806 [hep-ph].
[84] M. Gazdzicki, M.I. Gorenstein, Acta Phys. Pol. B 30, 2705 (1999)

[arXiv:hep-ph/9803462].


