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To the memory of Wu-Ki Tung

We review basic ideas and recent developments on the determination
of the parton substructure of the nucleon in view of applications to pre-
cision hadron collider physics. We review the way information on PDFs
is extracted from the data exploiting QCD factorisation, and discuss the
current main two approaches to parton determination (Hessian and Monte
Carlo) and their use in conjunction with different kinds of parton parame-
terisation. We summarise the way different physical processes can be used
to constrain different aspects of PDFs. We discuss the meaning, determi-
nation and use of parton uncertainties. We briefly summarise the current
state of the art on PDFs for LHC physics.

PACS numbers: 12.38.–t, 12.39.St

1. QCD in the LHC era

The theory and phenomenology of the strong interactions [1] have wit-
nessed an impressive development in the last two decades, driven first by
the availability of HERA [2] — a QCD machine — and then by the needs
of present (Tevatron) and especially upcoming (LHC) hadron colliders [3].
The LHC will be looking for new physics in hadronic collisions.

The last time this happened was back in the early eighties, when the W
and Z were discovered at the SPS collider [4] — and, of course, one may argue
to which extent the W and Z then were genuinely “new” physics. At the
time, QCD was at best a semi-quantitative theory: for example, in Ref. [5] a
measuredW cross-section of 0.63±0.10 nb (at

√
s = 630 GeV) was described

as “in agreement with the theoretical expectation” [6] of 0.47+0.14
−0.08 nb. One
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reason why at that time a NLO calculation could not be expected to agree
with the data to better than 20% is that the knowledge of nucleon structure
was at the time extremely sketchy: a parton set consisted of three parton
distributions (valence, quark sea, and gluon), differences at the 30% level
between sets would be standard, and, of course, there would be no idea on
the associate uncertainty (see Fig. 1).

Fig. 1. Comparison of two parton distribution sets [7, 8] from the early eighties
(From Ref. [9]).

The evolution in time of parton distributions (see Fig. (2)) since then
shows that it is only during the HERA age that predictions from different
groups converged: this is both a consequence and a cause of the fact that
perturbative QCD has now turned into a quantitative theory, which leads to
predictions for hard processes with typical accuracies below 10%, and often
of a few percent. Perturbative QCD today is an integral part of the Standard
Model, and it is tested to an accuracy which is comparable to that of the
electroweak sector: in fact, HERA has played for QCD a similar role as LEP
for electroweak theory. In the last decade, theoretical and phenomenological
progress has been impressive: at the LHC we can envisage quantitative
control of QCD contribution to collider signal and background processes at
the percent level, as will be necessary for discovery at the LHC [3].

Progress in QCD has taken place in (at least) five distinct directions,
namely (listing from the bottom beam nucleons up to the final state): First,
the understanding of the structure of the nucleon in terms of parton dis-
tributions has now become a quantitative science. Second, perturbative
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Fig. 2. Historical evolution of the up (left) and down (right) quark distributions
(from Ref. [10]).

computations are being pushed to hard processes with increasingly high
numbers of particles and at increasingly high orders, thanks to the develop-
ment of a variety of techniques which include twistor methods, analyticity
techniques, and the use of exact results from supersymmetric QCD and the
AdS/CFT duality. Third, all-order resummation of perturbation theory is
being extended in various kinematic regimes (small x and large x) to new
classes of observables (typically less inclusive), to higher logarithmic orders,
and it is being accomplished using perturbative renormalisation-group meth-
ods, path integral techniques, and effective field theory methods. Fourth,
definitions of jet observables which are both consistent with perturbative
factorisation to all orders and numerically efficient have been constructed
theoretically and implemented in computer interfaces. Fifth, new collinear
subtraction algorithms have been developed which make the development
and implementation of next-to-leading order Monte Carlo codes possible.

The lectures at the Zakopane school on which this paper is based, am-
bitiously entitled “QCD at the dawn of the LHC”, covered the first three of
these topics: parton distributions (PDFs), perturbative computations, and
resummation. Here we will concentrate on PDFs; recent good reviews of
progress in perturbative computations are in Refs. [11, 12], while a com-
prehensive overview of resummation is unfortunately not available yet. At
Zakopane, jets and Monte Carlos where discussed by other speakers; excel-
lent recent reviews of these topics are in Refs. [13, 14] respectively.

The purpose of this overview of PDFs is both to provide an elemen-
tary introduction to the subject, and also a summary of recent develop-
ments, several of which are little known outside a small group of practition-
ers. Progress in this field has been largely driven by two series of HERA-
LHC workshops 2004–2005 and 2006–2007, which have organised and stim-
ulated the transfer of know-how from deep-inelastic scattering to hadron
collider physics, and whose results are collected in the respective reports
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Refs. [15,16]. Since 2007, the PDF4LHC working group has been formed [17]
with a mandate from the CERN directorate to steer and coordinate research
on PDFs for the LHC community: many of the more recent ideas discussed
here were developed in the context of this working group.

This review is organised as follows. We will start with the more basic
concepts, then work our way to somewhat more advanced developments.
First, we will very briefly review some basic (mostly kinematic) facts on
QCD factorisation. We will then present the two main existing approaches
(Hessian and Monte Carlo) to the determination of PDFs and the way they
are used in conjunction with various forms of parton parameterisation. Next,
we will review standard ideas on how information on PDFs can be extracted
from the data. We will then discuss in some detail the problem of PDF
uncertainties — what they mean and how they are determined. In the final
section, we will briefly summarise the state of the art: the role of theoretical
uncertainties, and the current understanding of standard candle processes
at the LHC.

These lectures are dedicated to the memory of Wu-Ki Tung, who pio-
neered this field, pursued it for more than 30 years, and shaped much of our
current understanding of it. He encouraged me to keep pursuing it in an
e-mail he sent to me on March 27, 2009.

2. Factorisation

Factorisation of cross-sections into hard (partonic) cross-sections and
universal parton distributions is the basic property of QCD which makes it
predictive in the perturbative regime, and which enables a determination of
parton distributions. Here we only review some basic facts which will be use-
ful for our subsequent discussion, while referring to standard textbooks [18]
and recent reviews [1] for a detailed treatment.

2.1. Electro- and hadro-production kinematics
The basic factorisation for hadroproduction processes has the structure

σX
(
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X

)
=
∑
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where fa/hi(xi) is the distribution of partons of type a in the ith incoming
hadron; σ̂qaqb→X is the parton-level cross-section for the production of the
desired (typically inclusive) final state X; the minimum value of xi is clearly
xmin = τ , with

τ ≡ M2
X

s
(2)

the scaling variable of the hadronic process, and in the last step we defined
the parton luminosity

L(x) ≡
1∫
x

dz

z
fa/h1

(
z,M2

X

)
fb/h2

(x
z
,M2

X

)

=

1∫
x

dz

z
fa/h2

(
z,M2

X

)
fb/h1

(x
z
,M2

X

)
. (3)

The hard coefficient function C
(
τ, αs(M2

X)
)
is defined by viewing the

parton-level cross-section as a function of the hard scale M2
X and the di-

mensionless ratio of this scale to the center-of-mass energy ŝ of the partonic
subprocess

M2
X

ŝ
=

τ

x1x2
(4)

in terms of the scaling variable. At the lowest order in the strong interaction,
the partonic cross-section is then either zero (for partons that do not couple
to the given final state at leading order), or else just a function fixed by
dimensional analysis times a Dirac delta, and the hard coefficient function
is thus defined as

σ̂ab→X
(
s,M2

X

)
= σ0Cab

(
τ, αs

(
M2
X

))
,

Cab
(
x, αs

(
M2
X

))
= cabδ(1− x) +O(αs) , (5)

where cab is a matrix with non-vanishing entries only between quark and
antiquark states, which will be discussed explicitly in Sec. 2.2 below (see in
particular Eqs. (18) and (19). For example, for virtual photon (Drell–Yan)
production cab is nonzero when ab is a pair of a quark and an antiquark of
the same flavour, and in such case σ0 = 4

9πα
1
s .
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The factorised result Eq. (1) holds both for inclusive cross-sections and
for rapidity distributions

dσ

dM2
XdY

(
τ, Y,M2

X

)
=
∑
i,j

1∫
x0
1

dx1

1∫
x0
2

dx2 f
1
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(
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2
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2
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× dσ̂ij
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Xdy
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τ

x1x2
, y, αs

(
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X

))
, (6)

where the hadronic cross-section is differential with respect to the rapidity Y
of the final stateX, while the partonic cross-section is differential in partonic
rapidity

y = Y − 1
2

ln
x1

x2
: (7)

the effect of parton emission from the incoming hadrons is to perform a
Lorentz boost from the hadronic center-of-mass frame to a frame in which
the energy of each of the two incoming hadrons are rescaled by x1 and x2,
respectively. The lower limit of integration xmin is then fixed by requiring
that the rapidity of the incoming partons be at least sufficient to yield the
observed final state rapidity

x0
1 =
√
τeY , x0

2 =
√
τe−Y . (8)

At leading order, the two partons couple directly to the final state so y = 0
and

YLO = −1
2

ln
x1

x2
. (9)

Equation (1) is to be contrasted with the standard factorisation for the
deep-inelastic structure functions Fi(x,Q2)

Fi
(
x,Q2

)
= x

∑
i

1∫
x

dz

z
Ci

(x
z
, αs

(
Q2
))
fi
(
z,Q2

)
. (10)

Here in the argument of the structure function x = Q2

2p·q is the standard
Bjorken variable and the hard coefficient function is the structure function
computed with an incoming parton and fi(z,Q2) is the distribution of the
ith parton in the only incoming hadron. Also in this case at lowest O(α0

s )
it is either zero (for incoming gluons) or a constant (an electroweak charge)
times a Dirac delta.
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Note that the structure functions are related to the cross-section which
is actually measured in lepton–hadron scattering by

d2σNC,`±

dxdQ2

(
x, y,Q2

)
=

2πα2

xQ4

[
Y+F

NC
2

(
x,Q2

)∓ Y−xFNC
3

(
x,Q2

)− y2FNC
L

(
x,Q2

) ]
(11)

for neutral-current charged lepton `± DIS, where the longitudinal structure
function is defined as

FL

(
x,Q2

) ≡ F2

(
x,Q2

)− 2xF1

(
x,Q2

)
, (12)

and
Y± ≡ 1± (1− y)2 , (13)

in terms of the electron momentum fraction

y ≡ p q

p k
=
Q2

xs
, (14)

(not to be confused with the partonic rapidity Eq. (7)), where p and k
are respectively the incoming proton and lepton momenta, q is the virtual
photon momentum (q2 = −Q2) and in the last step, which holds neglect-
ing the proton mass, s is the center-of-mass energy of the lepton–proton
collision. Similar expressions hold for charged-current charged and neutral
lepton scattering.

The set of values of y over which the PDF is probed is of course the same
in the hadro- and lepto-production cases, and it ranges from the scaling
variable of the hadronic process to one: x ≤ y ≤ 1 in Eq. (10), and τ ≤
x1, x2 ≤ 1 in Eq. (1). The kinematic region which is typical of the collider
(HERA) or fixed-target DIS experiments is compared in Fig. 3 to that of
LHC processes, whose typical cross-sections are also shown.

There is an important kinematic difference when comparing the hadronic
and deep-inelastic factorisation formulae, Eqs. (1) and (10), respectively.
This is related to the fact that the leading order coefficient function is pro-
portional to a Dirac delta. For DIS, this implies that at leading order, the
value of the structure function at given x determines the quark distributions
at the same value of x, and it is only at next-to-leading order, where the co-
efficient function has a nontrivial dependence on x, that the PDF is probed
for all values x ≤ y ≤ 1. But for hadronic processes, because there are two
partons in the initial state, even at leading order, for inclusive cross-sections
the delta kills one but not both of the convolution integrals in Eq. (1), so all
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values τ ≤ xi ≤ 1 are probed. However, for rapidity distributions because
of the further kinematic constraint (Eq. (9)) the leading order kinematics is
also fixed, and for given Y andM2

X the momentum fractions of both partons
are fixed.

Fig. 3. LHC kinematics (left) and processes (right) (from Ref. [15]).

2.2. Constraints on PDFs

The kinematics of the factorised expressions Eqs. (1) and (10) immedi-
ately implies that, as discussed in Sec. 2.1, at leading order deep-inelastic
structure functions and rapidity distributions provide a direct handle on in-
dividual quark and antiquark PDFs (DIS), or pairs of PDFs (Drell–Yan). It
is possible to understand what is dominantly measured by each individual
process by looking at the leading order expressions, bearing in mind that, of
course, beyond leading order all other contributions turn on (and that NLO
corrections can be quite large, in fact of the same order of magnitude as the
LO for Drell–Yan).

The leading order contributions to the DIS structure functions F1 and
F3 are the following (at leading order F2 = 2xF1)
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NC F1
γ =

∑
i

e2
i (qi + q̄i) ,

NC F1
Z, int. =

∑
i

Bi (qi + q̄i) ,

NC F3
Z, int. =

∑
i

Di (qi + q̄i) ,

CC FW
+

1 = ū+ d+ s+ c̄ ,

CC −FW+

3 /2 = ū− d− s+ c̄ , (15)

where NC and CC denotes neutral or charged current scattering and we have
lumped together the contributions coming from Z exchange and from γZ
interference, with couplings given by

Bq
(
M2
X

)
= −2eqV`VqPZ +

(
V 2
` +A2

`

) (
V 2
q +A2

q
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P 2
Z , (16)

Dq
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= −2eqA`AqPZ + 4V`A`VqAqP 2

Z (17)

in terms of the electroweak couplings of quarks and leptons listed in Table I
and the propagator correction PZ = M2

X/(M
2
X +M2

Z).

TABLE I

Electroweak couplings of fermions.

Fermions ef Vf Af

u, c, t +2/3
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+1/2
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(−1/2 + 2/3 sin2 θW

) −1/2
νe, νµ, ντ 0 +1/2 +1/2
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(−1/2 + 2 sin2 θW
) −1/2

The leading order contribution to Drell–Yan is given by

γ
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in terms of the differential leading order parton luminosity

Lij (x1, x2) ≡ qi
(
x1,M

2
X

)
q̄j
(
x2,M

2
X

)
+ qi(x2,M

2
X)q̄j

(
x1,M

2
X

)
(19)

and the CKM matrix elements Vij , with x0
i given by Eq. (8). This shows

explicitly that, as already mentioned, for a rapidity distribution the leading
order parton kinematics (i.e. the values of xi) is completely fixed by the
hadronic kinematics (i.e. the values of y and M2

X).
Note that while at a pp collider (or when a p beam collides with a p fixed

target) such as the LHC it makes no difference whether the incoming quark
and antiquark come from either of the initial-state hadrons, at a pp̄ collider
such as the Tevatron (or when a p beam collides with a deuterium fixed
target) there are two different contributions, according to whether each of
the incoming partons is extracted from either of the initial-state hadrons.

Fig. 4. Leading order diagrams for inclusive jet production from gluons.

Leading-order information on the gluon can be extracted from jet pro-
duction (see Fig. 4), or from scaling violations, as measured for instance by
the Q2 dependence of deep-inelastic structure functions. The latter are cou-
pled to the gluon even at leading order through the singlet QCD evolution
equations, which in terms of Mellin moments

fi
(
N,Q2

) ≡ 1∫
0

dxxN−1fi
(
x,Q2

)
(20)

of parton distributions take the form

d

dt

(
Σ
(
N,Q2

)
g
(
N,Q2

)) =
αs(t)
2π

(
γS
qq (N,αs(t)) 2nfγS

qg (N,αs(t))
γS
gq (N,αs(t)) γS

gg (N,αs(t))

)

×
(
Σ
(
N,Q2

)
g
(
N,Q2

)) , (21)

d

dt
qNS
ij

(
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)
=

αs(t)
2π

γNS
ij (N,αs(t)) qNS

ij

(
N,Q2

)
, (22)
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where the singlet combination of quark distributions is defined as

Σ
(
x,Q2

) ≡ nf∑
i=1

(
qi
(
x,Q2

)
+ q̄i

(
x,Q2

))
, (23)

and the remaining nonsinglet combinations can be taken as any linearly in-
dependent set of 2nf − 1 differences of quark and antiquark distributions,
qNS
ij (N,Q2) = qNS

i (N,Q2) − qNS
j (N,Q2) which all evolve according to indi-

vidual, decoupled equations.
The leading order anomalous dimensions are shown in Fig. 5, while at

leading order all nonsinglet γNS
ij are equal to each other and are also equal

to γqq. The qualitative behaviour of perturbative evolution is then deduced
recalling that Mellin transformation maps the large (small ) x→ 1 (x→ 0)
region into the large (small) N →∞ (N → 0) region. A first relevant feature
is that as the scale increases all PDFs decrease at large x and increase at
small x. A second important feature is that because the gluon has the
rightmost singularity at small N it drives small x scaling violations, and

Fig. 5. The matrix of leading order anomalous dimensions shown as a function of
the Mellin variable N (Eq. (20)).
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thus in particular at sufficiently small x and large Q2 all PDFs have the
same shape, driven by the gluon. Finally, the evolution of the gluon (driven
by γgg) is strongest at either large or small x but its coupling to the quark
(driven by γqg) is only large at small x, so it is only at not too large x that
scaling violations provide leading constraints on the gluon.

Finally, it is important to note that constraints on PDFs come from their
cross-talk imposed by sum rules: specifically the conservation of baryon
number

1∫
0

dx
(
up
(
x,Q2

)− ūp (x,Q2
))

= 2 = 2

1∫
0

dx
(
dp
(
x,Q2

)− d̄p (x,Q2
))

(24)

and the conservation of total energy-momentum

1∫
0

dxx

 Nf∑
i=1

(
qi
(
x,Q2

)
+ q̄i

(
x,Q2

))
+ g

(
x,Q2

) = 1 . (25)

Clearly, these sum rules provide constraints on the behaviour of parton dis-
tributions even in the region where there are no data.

3. Statistics

A determination of parton distributions is a determination of at least
seven independent functions: three light quark and antiquark distributions
and the gluon at some initial scale, from which PDFs at all other scales can
be obtained solving evolution equations. More functions must be determined
if one wishes to keep open the possibility [19] that heavy quarks PDFs are at
least in part of “intrinsic” nonperturbative origin, rather than being deter-
mined radiatively from gluons by QCD evolution. A determination of PDFs
with uncertainties thus involves determining a probability distribution in a
space of several independent functions. Because experimental data used for
this determination will always be finite in number, this is in principle an
ill-posed (or unsolvable) problem.

The time-honoured [20,21] method to make this problem tractable is to
assume a specific functional form for parton distributions, which projects
the infinite dimensional problem onto a finite-dimensional parameter space.
This method is justified because PDFs are expected to be smooth functions
of the scaling variable x. Because 0 ≤ x ≤ 1, a representation of these
functions with finite accuracy must be possible on a finite basis of functions:
hence, a representation of PDFs must be possible in terms of a finite number
of parameters. The problem is then reduced to the choice of an optimal
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parameterisation, namely, one that for given accuracy minimises the number
of parameters without introducing a bias. We will discuss below two such
parameterisations.

Whatever the parameterisation, determining a set of PDFs involves com-
puting a number of physical processes with a given set of input PDFs, and
extremising a suitable figure of merit, such as a χ2 or likelihood function
in order to determine a best-fit set of PDFs. Existing sets of parton dis-
tributions which are made available for the computation of LHC processes
through standard interfaces are determined and delivered following two main
strategies: a “Hessian” approach, in which the best-fit result is given in the
form of an optimal set of parameters and an error matrix centered on this
optimal fit to compute uncertainties, and a Monte Carlo approach, in which
the best fit is determined from the Monte Carlo sample by averaging and
uncertainties are obtained as variances of the sample.

It turns out that available Hessian PDF sets are mostly based on a “stan-
dard” parameterisation, inspired by various QCD arguments. On the other
hand, the only available full Monte Carlo PDF set is based on a rather differ-
ent form of parameterisation, which adopts neural networks as interpolating
functions in an attempt to reduce the bias related to the choice of functional
form [22]. However, Monte Carlo studies based on other standard [23] and
non-standard [24] parameterisations have also been presented.

Here we will summarise the main features of both the Hessian and Monte
Carlo approach, and in each case also discuss the parton parameterisation
which is most commonly used with each approach, and the way the best fit
is determined in each case — which in turn requires a peculiar algorithm
within the neural network approach.

3.1. Hessian uncertainties and the “standard” approach

The standard approach to PDF determination is based on assuming for
PDFs at some reference scale Q0 a functional form inspired by counting
rules [25], which suggest that PDFs should behave as fi(x) ∼

x→1
(1−x)βi , and

Regge theory, which suggest [26] that they should behave as fi(x) ∼
x→0

xαi .
Note that these limiting behaviours are necessarily approximate, because
even if they hold at some scale, at any other scale perturbative evolution will
correct them by logarithmic terms which behave as ln(1−x) as x→ 1 and as
lnx as x → 1. Therefore, even if counting rules and Regge theory actually
provide predictions for the values of the exponents βi and αi respectively
(for given parton and parent hadron), they are taken as free fit parameters.

Based on this, typically PDFs are assumed to have the form

fi
(
x,Q2

0

)
= xαi(1− x)βigi(x) , (26)
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where gi(x) tends to a constant for both x → 0 and x → 1. For instance,
the CTEQ/TEA Collaboration assumes generally [27,28]

xf
(
x,Q2

0

)
= a0x

a1(1− x)a2 exp
(
a3x+ a4x

2 + a5

√
x+ a6x

−a7
)

(27)

with different parameters ai for each PDF, but some parameters fixed or set
to zero for some PDFs — for example, parameters a6 and a7 are nonzero only
for the gluon distribution. Other groups assume that gi(x) is a polynomial
in x or in

√
x: for instance HERAPDF [29] assumes gi(x) = 1 + εi

√
x+Dix

+ Eix
2.

Different choices are possible for the set of linearly independent combi-
nations of PDFs for which the parameterisation Eq. (26) is adopted, and for
the total number of free parameters to be used. For instance CTEQ/CT
parameterises the “valence” light combinations uv = u − ū, dv = d − d̄, the
antiquark distributions ū and d̄, the two strangeness combinations s± = s±s̄
(but in the CTEQ6.6 [27] and CT10 [28] fits it is assumed that s−s̄ = 0) and
the gluon, with 22 (CTEQ6.6) or 26 (CT10) free parameters; MSTW08 [30]
parameterises also uv, dv, s± and the gluon, and then the two combinations
ū± d̄ with a total of 28 parameters, and so forth.

Given a parameterisation of PDFs, the problem is reduced to that of
determining best fit values and uncertainty ranges for the parameters. In a
Hessian approach, this is done by minimising a figure of merit such as

χ2(~a ) =
1

Ndat

∑
i,j

(
di − d̄i(~a )

)
covij

(
dj − d̄j(~a )

)
, (28)

where the sum runs over all data points, di are experimental data with exper-
imental covariance matrix covij (including all correlated and uncorrelated
statistical and systematic uncertainties), d̄i(~a ) are theoretical predictions
which are obtained by evolving the starting PDFs at any scale Q2 using
the evolution equations Eq. (22), and then folding the result with known
partonic cross-sections according to the factorisation theorems Eqs. (1), (6),
(10), and ~a denotes the full set of parameters on which the PDFs at scale
Q0 depend, which we may view as a vector in parameter space (which is
26-dimensional for CT10, and so on). The χ2 thus is a function of the ~a
through the predictions d̄i(~a ).

Note that the χ2 Eq. (28) is normalised to the number of data points:
this is conventionally done in order to allow for approximate comparisons of
fit quality between fits with different numbers of data points; in practice, this
is likely to be close to the χ2 per degree of freedom because typical datasets
include thousands of data, while the total number of parameters needed to
describe accurately all PDFs with functional forms like Eq. (26), though of
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course unknown, is likely to be rather lower than a hundred. For the sake
of future discussions it is convenient to also introduce an unnormalised

χ̄2 = Ndatχ
2 . (29)

It is important to note that there are subtleties in the definition of the χ2,
which may make the comparison of χ2 values from different groups only
qualitatively significant, because slightly different definitions are used. The
main subtlety is related to the inclusion of normalisation uncertainties, which
cannot be simply introduced in the covariance matrix, as this would bias the
fit [31]: a full unbiased solution [32] requires an iterative construction of the
covariance matrix, but other approximate solutions are also adopted.

Once the χ2 is defined, for given data χ2 is a function of the PDF pa-
rameters through the predictions d̄i which in turn depend on the PDFs.
Hence, the best fit set of parameters can be identified with the absolute
minimum of the χ2 in parameter space. Furthermore, the variance of any
observable X which depends on parameters ~a (such as a physical cross-
section, or indeed the PDFs themselves), if we assume linear error propaga-
tion X(~a ) ≈ X0 + ai∂iX(~z ), is given by

σ2
X = σij∂iX∂jX . (30)

Here σij is the covariance matrix of the parameters which, in turn, assuming
that the χ2 is a quadratic function of the parameters in the vicinity of the
minimum, is given by (see e.g. [33, 34])

σij = ∂i∂jχ̄
2|min (31)

i.e. it is the (Hessian) matrix of second derivatives of the unnormalised χ̄2

Eq. (29), evaluated at its minimum.
The Hessian method for the determination of uncertainties thus in par-

ticular implies that the one-σ (i.e. 68% confidence level) for the parameters
themselves is the ellipsoid in parameter space which is fixed by the condition
χ̄2 = χ̄2

min + 1. As we will discuss in Sec. 5.1, in practice this argument may
have to be modified in realistic cases, in order to account for various effects
(such as incorrect estimation of the covariance matrix of the data).

However, for the time being let us stick to the textbook argument, and
make a couple of observations on it. The first observation is that we are
always free to adjust the parameterisation in such a way that all eigenvalues
of the Hessian matrix σij are equal to one, by simply diagonalising the matrix
and rescaling the eigenvectors by the eigenvalues, i.e. by looking for new
parameters a′j(ai) such that

σij
(
ai − amin

i

) (
aj − amin

j

)
=

Npar∑
i=1

(
a′i
)2 (32)
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which immediately implies that

σ2
X =

∣∣∣~∇′X∣∣∣2 , (33)

where the gradient is computed with respect to ~a ′. Equation (33) has the
immediate interesting consequence that the total contribution to the uncer-
tainty due to two different sources, being the length of a vector, is simply
found by adding the components i.e. the different uncertainties in quadra-
ture (even when the two uncertainties are correlated). This has been empha-
sised recently in Ref. [35], where it is shown explicitly that, contrary to what
one may naively think, the total uncertainty due to PDF parameters and
some other parameter (such as the value of the strong coupling constant) is
simply found adding the two uncertainties in quadrature.

The second comment has to do with the fact that the one-σ interval
in parameter space corresponds to the contour ∆Ndatχ

2 = 1 about the
minimum. This is identical to the statement that the Hessian Eq. (31) is
the covariance matrix in parameter space. This simple fact is sometimes a
source of confusion because it seems to contradict the observation that the
standard deviation of the (unnormalised) χ2 distribution with Ndof degrees
of freedom is

√
2Ndof : in fact, sometimes (see e.g. [36]) it is incorrectly stated

that one-σ contours correspond to ∆χ̄2 ∼ Ndof . However, the contradiction
is only apparent: ∆χ̄2 ∼ Ndof sets a hypothesis-testing criterion [37], namely,
it gives the size of fluctuations of ∆χ̄2 upon repetition of the experiment,
and thus the range of χ̄2 values away from the mean 〈χ̄2〉 = Ndat which are
acceptable for a given theory (experiment). On the other hand, ∆χ̄2 = 1
provides a parameter-fitting criterion [37]: it gives the range of parameter
values which are compatible at one sigma for a given experimental result
(and theory).

A simple example may help in understanding the distinction. Consider
the case of a simple linear fit, in which one has a set of data which are
expected to satisfy a linear law y = x + k, with unknown intercept k that
one wishes to determine by fitting to data (see Fig. 6). Define the deviation
∆i ≡ di− d̄i(xi) between the ith data point di and the linear prediction d̄i =
xi+k. If∆i are Gaussianly distributed with standard deviation σ about their
true values, then clearly the average square deviation σ2

∆ = 〈∆2〉 = Ndatσ
2.

This is the “hypothesis testing” fluctuation range of the χ̄2. However, the
best-fit intercept k is just the average deviation k = 〈∆〉, and the square
uncertainty on it is σ2

k = σ2
∆

Ndat
: so the “parameter fitting” range for k is

indeed by a factor Ndat smaller than the expected total square fluctuation,
because the best-fit value is determined as a mean, whose square fluctuation
is by a factor Ndat smaller than the fluctuation of the individual data.



Parton Distributions at the Dawn of the LHC 2875

Fig. 6. Fit to data Gaussianly distributed about a linear law.

3.2. Monte Carlo uncertainties and the NNPDF approach

A Monte Carlo approach differs from the Hessian approach in the way
the uncertainty on the observable is determined in terms of the uncertain-
ties in parameter space: the distinction Hessian versus Monte Carlo thus
has to do only with the way uncertainties are propagated from parameters
to observables. However, the Monte Carlo way of propagating uncertainties
is especially convenient when used together with a parameterisation whose
functional form is less manageable, for instance because the number of pa-
rameters is particularly large, or because the functional form is less simple
than that of Eq. (26), or, more, in general, whenever linear error propagation
and the quadratic approximation to the χ2 in parameter space are not ad-
visable, for reasons of principle or of practice. Therefore, we will first discuss
the distinction between Hessian and Monte Carlo per se, then turn a brief
review of the way a Monte Carlo approach has been used by the NNPDF
group together with a choice of basic underlying functional form for PDFs
which differs from that of Eq. (26), and finally addresses some issues related
to the determination of the best fit PDFs when such functional forms are
adopted.

3.2.1. Monte Carlo uncertainties

Whereas in a Hessian approach parameters are assumed to be Gaussianly
distributed with covariance matrix σij given by the Hessian Eq. (31), in a
Monte Carlo approach the probability distribution in parameter space is
given by assigning a Monte Carlo sample of replicas of the total parameter
set. For example, if one uses the parameterisation Eq. (26) one would then
simply give a list of Nrep replica copies of the vector of parameters ~s. Any
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observable X is then computed by repeating its determination Nrep times,
each time using a different parameter replica: the central value for X is the
average of these Nrep results, the standard deviation is the variance, and in
fact any moment of the probability distribution can be determined from the
sample of Nrep values of X thus obtained.

Of course, this begs the question of how the distribution of parameter
values, i.e. the distribution of parameter replicas is determined in the first
place. In fact, this may look like a hopeless task: let us say that for each
parameter the probability distribution in parameter space is given for each
parameter as a histogram with three bins, one corresponding to the one-σ
region about the central value of the given parameter, and two for the two
outer regions. Then, for Npar parameters the total number of bins is equal
to 3Npar ∼> 3 × 109 with Npar = 20 parameters. Hence it looks like the
total number of replicas must be hopelessly large in order to have sufficient
statistics. This, however, is not necessarily the case, because it may well
turn out that most of the bins are actually empty. To understand this,
recall the Hessian computation of the uncertainty on X Eq. (33): it is clear
that in order to determine the uncertainty on X, it is sufficient to know
the distribution in parameter space along the direction of ~∇′X. Hence, for
this specific observable only one parameter is relevant. Even if one wants
to determine the uncertainty on observables which probe any direction in
parameter space, for any reasonably smooth function the number of bins
which is needed in order to get an accurate representation of the probability
distribution is likely to be much smaller than 109. This then again raises
the question of how one should sample the replica distribution in parameter
space.

The answer is found by noting that the maximum likelihood method
gives a way of mapping the probability distribution in data space onto the
probability distribution in parameter space. Namely, assume one has data di
with covariance matrix covij . Then, generate Nrep data replicas dαi , with
α = 1, 2, . . . , Nrep. For each value of α, i.e. for each replica, the whole set
of data i = 1, 2, . . . Ndat is replicated, in such a way that if one takes the
average over the Nrep replicas dαn of the nth data point, then in the limit
Nrep →∞ this average tends to the original data value dn; if one computes
the variance of these Nrep values in the same limit it tends to the standard
deviation of the data; and if one computes the covariance of the nth and
mth data replicas it tends to the covariance matrix element covnm. Now, for
each data replica, determine a best-fit parameter vector ~a α by minimising
the χ2 Eq. (28), but of the fit to the replica data dαi , rather than the original
data. We end up with a Monte Carlo set of best-fit parameter vectors ~a α:
again, the average over these α+ 1, 2, . . . , Nrep vectors ~a α gives us the best-
fit parameters ~a α, and the covariance of the nth and mth components of the
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parameter vector gives us the covariance matrix σmn. In fact, it is easy to
check (see e.g. [32]) that for Gaussianly distributed data the results coincides
with the Hessian covariance matrix Eq. (31).

The procedure is summarised in Fig. 7: one starts with experimental
data (denoted as Fi in the figure), generates data replicas (denoted as
Fi(1) . . . Fi(N)) and fits a set of PDFs to each data replica (denoted as
q0(i)). The PDFs can be parameterised in any desired way at some refer-
ence scale, and they are fitted to the data replicas in the way discussed in
Sec. 3.1, namely by evolving them to the scale of the data, using them to
compute observables, and minimising the χ2 of the comparison to the data
with respect to the parameters.

Fig. 7. Schematic representation of the construction of a Monte Carlo representa-
tion of parton distributions.

But then, the problem of constructing an adequate sampling of parame-
ter space has been reduced to that of constructing an adequate Monte Carlo
representation of the original data: i.e. the space of parameters is sampled
in a way which is determined by the distribution of the data (“importance
sampling”). Whether a given set of replicas provides an accurate enough
representation of the data is then something that may be checked explicitly
for a given sample, by comparing means, variances and covariances from
the sample with the desired features of the data. For a typical set of data
used in a parton fit the numbers of replicas required turn out to be surpris-
ingly small: for instance, in Fig. 8 we show a scatter plot of the averages
versus central values and variances versus standard deviations for the set of
Ndat = 3372 data points included in the NNPDF1.2 [38] parton fit, com-
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puted using Nrep = 10, 100, 1000 Monte Carlo Replicas. It is clear that
the scatter plot deviates by just a few percent from a straight line already
for Nrep = 10 for central values, and for Nrep = 100; Nrep = 1000 replicas
turn out to be only necessary in order to get percent accuracy on correlation
coefficients.
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Fig. 8. Scatter plot of central values and uncertainties of a Monte Carlo sample
compared to the data for the dataset of the NNPDF1.2 parton fit [38].

It should finally be mentioned that within a Monte Carlo approach it is
possible to sidestep the problem of choosing an adequate parameterisation
by using Bayesian inference [39]. Namely, one starts from some prior Monte
Carlo representation of the probability distribution based on some initial
subset of data, or even on assumptions. Then, the initial Monte Carlo set is
updated by including the information contained in new data through Bayes’
theorem. Without entering into details, it is clear that this can be done
by changing the distribution of replicas: more or less copies are taken for
those replicas which agree or respectively do not agree with the new data,
in a way which is specified by Bayes’ theorem. To the extent that results
do not depend too much on the choice of prior, which is often the case if
the information used through Bayes’ theorem is sufficiently abundant, final
results are then free of bias. Whereas the construction of a parton set fully
based on this method has so far not been completed, preliminary results
have been presented [40] on the inclusion of new data in an existing Monte
Carlo fit using this methodology.

3.2.2. Neural network parameterisation and cross-validation

The Monte Carlo approach has been recently used for the determination
of a PDF set in conjunction with the use of neural networks as a parton
parameterisation. Neural networks are just another functional form. In
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analogy to polynomial forms, they have the feature that any function (with
suitable assumptions of continuity) may be fitted in the limit of infinite num-
ber of parameters; unlike polynomial forms they are nonlinear, and they are
“unbiased” in that a finite-dimensional truncation of the neural network pa-
rameterisation is adequate to fit a very wide class of functions (for instance,
both periodic and non periodic) without the need to adjust the form of the
parameterisation to the desired problem.

A very simple example of neural network is the function

f(x) =
1

1 + e
θ
(3)
1 −

ω
(2)
11

1+e
θ
(2)
1 −xω(1)

11

−
ω
(2)
12

1+e
θ
(2)
2 −xω(1)

21

, (34)

where θ(i)
n and ω

(i)
nm are free parameters. This is a 1-2-1 neural network,

parameterised by six free parameters: 1-2-1 refers to the way the neural
network is constructed, by iterating recursively the response function g(x) =

1
1+eθ−βx

on nodes arranged in layers which feed forward to the next layer,
with the first (last) layer containing the input (output) variables.

In Refs. [38–41] PDFs are parameterised using 2-5-3-1 neural networks,
with 37 free parameters (the input has two variables because x and lnx are
treated as two independent inputs, thereby increasing the redundancy of the
parameterisation). The six light flavours and antiflavours are parameterised
and the gluon are parameterised in this way, so that the total number of pa-
rameters is 37 × 7 = 259, thus rather larger than the typical numbers used
when dealing with parameterisations of the form Eq. (26). Such a large
number of parameters clearly reduces considerably the risk of a parameter-
isation bias, but it poses the problem that if the best fit is determined as
the absolute minimum of the χ2 one may end up fitting data fluctuations,
which is clearly not desirable. Even if these fluctuations average out when
averaging over Monte Carlo replicas this would be a very inefficient way of
proceeding.

The advantage of a neural network parameterisation can be understood
from Fig. 9, where a gluon distribution determined using neural networks
is compared to the simplest version of parameterisation Eq. (26), and also
to a very flexible parameterisation based on orthogonal polynomials. The
neural network gluon distribution shown in Fig. 9 corresponds to Nrep = 25
replicas from the Monte Carlo set of Ref. [41], and it is displayed along with
the average and one-σ contour computed from the set. On the same plot a
parameterisation of the form Eq. (26) is also shown, with typical values of
the parameters α and β, and with g(x) = 1. It is compared to a set of Monte
Carlo replicas of the gluon which were constructed in Ref. [24] by expanding
the gluon distribution on a basis of 15 independent Chebyshev polynomials,
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while also imposing an increasing penalty p to fits with large arc-length (and
thus more oscillations). The fits based on orthogonal polynomials display
large uncontrolled oscillations which are only tamed by appropriately tun-
ing the length penalty. The fits based on neural networks, despite having
a number of free parameters which is more than double than those using
orthogonal polynomials, do not display a similarly unstable behaviour, even
though they do show considerable flexibility, and in fact the ensuing one-σ
band, though accounting well with its width for the functional freedom is
actually quite stable.
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Fig. 9. Upper: 25 gluon replicas based on a neural network parameterisation, to-
gether with their one-σ range, compared to a toy gluon distribution of the form
Eq. (26) with g(x) = 1 and typical values of the parameters α and β (from Ref. [41]).
Lower: gluon replicas based on a parameterisation on a basis of Chebyshev polyno-
mials together with their one-σ range; subsequent plots correspond to an increas-
ingly high penalty proportional to the length of the fitted curve (from Ref. [24]).

The best fit is instead determined using a cross-validation method (see
Fig. 10). Namely, the data are randomly divided into a training and a vali-
dation sample. The χ2 is computed both for the data in the training sample
and those in the validation sample. Only the training χ2 is minimised, but
the validation χ2 is also monitored as the minimisation proceeds. The best
fit is defined as the point at which the validation χ2 stops improving even
though the training χ2 may keep improving: this is the point at which one is
starting to fit the statistical noise of the training sample. In order to ensure
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a lack of bias, the partitioning of the data is done randomly in a different
way for each data replica. Also, in practice, in order to minimise the effect
of random fluctuations in the data (or of the minimisation algorithm) the
stopping criterion must be imposed after a suitable averaging, such as for in-
stance the moving average of values of the χ2 found in the last Ns iterations
of the minimisation algorithm.

Fig. 10. Determination of the best-fit by cross-validation: the χ2 of the fit to points
in the training set (upper curve) and the validation set (lower curve) are shown as
a function of the number of iterations of the minimization algorithm (left plots),
but only the χ2 for training data is minimized. The data are shown in the right
plot, along with the best fit: the validation set (dark) includes the 1st, 2nd and 4th
point, the training set (light) the other points, while the best fit points are those
without error band. The upper plots show the best fit at stopping point (optimal
fit) and the χ2 up to this point, the lower plots show the χ2 up to and the best fit
at an “overlearning” point.

4. From data to PDFs

Once a parton parameterisation and a methodology have been chosen,
the determination of a PDF set relies on the choice of a set of physical
observables. The problem is that, even after projecting the problem on a
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finite-dimensional parameter space, we must still determine seven indepen-
dent PDFs, which means that we need seven linearly independent pieces of
information at fixed scale for each value of x. For instance, a determination
of deep-inelastic structure functions F1 and F3 for charged-current deep-
inelastic scattering provides, according to Eq. (15) four independent linear
combinations of quark distributions (if W± can be distinguished), with two
more linear combinations provided by neutral current structure functions.
All individual light quark and antiquark flavours then can be determined by
linear combination. This situation would be realistic at a neutrino factory
with both neutrino and antineutrino beams and the possibility of identifying
the charge of the final state lepton on an event-by-event basis [42,43].

Unfortunately, this theoretically and phenomenologically very clean op-
tion is at best far in the future, so at present the information on individual
PDFs can only be achieved by combining information from different pro-
cesses into so-called “global” fits. The idea is that, even though each elec-
troproduction or hadroproduction observable depends on all PDFs through
the factorisation formulae Eqs. (1), (10), inclusion of specific processes or
combination of processes may give a specific handle on individual PDFs or
combinations of PDFs on which it depends most strongly (typically, through
its leading order form). We will now review one at a time each of these in-
dividual handles on PDF, then briefly discuss how they are combined in
modern more or less global fits.

4.1. Isospin singlet and triplet

Neutral current deep-inelastic (DIS) structure function data only provide
a determination of the charge-conjugation even combination qi+ q̄i of quarks
and antiquarks, for each quark flavour i. Specifically, photon DIS data only
determine the fixed combination in which each flavour is weighted by the
square of the electric charge, see Eq. (15). However, one may separate off the
isospin triplet and singlet components by considering DIS on both proton
and deuteron targets, assuming that the deuterium structure function is
simply the incoherent sum of the proton and neutron ones F d2 = 1

2(F p2 +Fn2 )
(up to small nuclear corrections which can be accounted for through models,
such as that of Ref. [44]), and then using isospin symmetry to relate the
quark and antiquark distributions of the proton and neutron

up
(
x,Q2

)
= dn

(
x,Q2

)
, dp

(
x,Q2

)
= un

(
x,Q2

)
. (35)

One then has

F p2
(
x,Q2

)− F d2 (x,Q2
)

= 1
3

[
(up + ūp)− (dp + d̄p

) ]
[1 +O(αs)] (36)
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so that the difference of proton and deuteron structure functions provides a
leading-order handle on the isospin triplet combination

T3

(
x,Q2

) ≡ u (x,Q2
)

+ ū
(
x,Q2

)− [d (x,Q2
)

+ d̄
(
x,Q2

) ]
. (37)

Note that even beyond leading order F p2 − F d2 only depends on T3, which
can thus be determined without further assumptions: a theoretically very
clean, though necessarily not especially accurate determination [45].

4.2. Light quarks and antiquarks

Modern DIS data are available over a wide range of values of Q2, ex-
tending well into the region where the CC contributions are sizable: in
fact HERA-I data are available both for CC and NC scattering, both with
electron and positron beams. Unfortunately, collider data only provide a
fixed combination Eq. (11) of the structure functions F1 and F3, because
for given x and Q2 Eq. (11) implies that y can be varied only by chang-
ing the center-of-mass energy of the hadron–lepton collision. Hence, HERA
data only provide three independent combinations of structure functions
and thus of parton distributions (NC and CC with positively or negatively
charged leptons). However, a fourth combination is provided because the
Q2 dependence of the γ∗ and Z contributions to NC scattering is different
(see Eq. (17). It follows that the very precise HERA data can determine
four independent linear combinations of PDFs, which can be chosen as the
two lightest flavours and antiflavours, with strangeness then determined by
assumption.

Even without a neutrino factory, data on neutrino deep-inelastic scatter-
ing are available, but typically on approximately isoscalar nuclear targets.
Because the energy of the neutrino beam typically has a (more or less broad)
spectrum, the value of y Eq. (14) is not fixed, and the contributions of F1

and F3 to the cross-section can be disentangled. On an isoscalar target at
leading order

F ν2 = x
(
u+ ū+ d+ d̄+ 2s+ 2c̄

)
+O(αs) ,

F ν̄2 = x
(
u+ ū+ d+ d̄+ 2s̄+ 2c

)
+O(αs) ,

F ν3 = u− ū+ d− d̄+ 2s− 2c̄+O(αs) ,
F ν̄3 = u− ū+ d− d̄− 2s̄+ 2c+O(αs) (38)

so neutrino data provide an accurate handle on the total valence component

V
(
x,Q2

)
=

nf∑
i=

(
q
(
x,Q2

)− q̄i (x,Q2
))
. (39)
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A more direct determination of the light flavour decomposition can be
obtained by exploiting the fact that the Drell–Yan cross-section probes var-
ious parton combinations, which can be selected by looking at different final
states. In particular one can notice [46] that for neutral-current Drell–Yan if
both data on proton and neutron (or deuteron) targets are available, using
isospin Eq. (35) one gets at leading order

σpn

σpp
∼

4
9u

pd̄p + 1
9d

pūp

4
9u

pūp + 1
9d

pd̄p
+O(αs) + heavier quarks , (40)

where we have omitted the dependence on the kinematic variables, which
at leading order is as in Eq. (18). As discussed there, if the rapidity dis-
tribution is measured, the leading order partonic kinematic is completely
fixed: for given y and Q2 only partons with x1, x2 given by Eq. (8) con-
tribute. Here “heavier quarks” denote strange and heavier flavours, which
give a smaller contribution at least in the region of x ∼> 0.1 in which most
of the contribution to the sum rule integrals Eq. (25) is concentrated.

In particular, because of the sum rule Eq. (24), in the the region which
gives the dominant contribution to the integral (the “valence” region x ∼> 0.1)
the up distribution is roughly twice as large as the down distribution (assum-
ing ū ∼ d̄) so the first term in both the numerator and the denominator of
Eq. (40) gives the dominant contribution, and the ratio reduces to σpn

σpp ≈ d̄p

ūp .
Hence this particular combination of cross-sections provides a sensitive probe
of the ū/d̄ ratio: indeed, it has been used to provide first evidence that this
ratio, though of order one, deviates from unity [47,48].

In the charged current case, one may exploit the fact that using charge-
conjugation symmetry to relate the p and p̄ PDFs

qpi = q̄p̄i (41)

at leading order one gets

σpp̄
W+

σpp̄W−
=

up(x1)dp(x2) + d̄p(x1)ūp(x2)
dp(x1)up(x2) + ūp(x1)d̄p(x2)

+O(αs) + Cabibbo suppressed + heavy quarks , (42)

where heavy quarks denotes charm and heavier flavours. In writing Eq. (42)
we have assumed that the cross-sections are differential in rapidity. If the
kinematics is chosen in such a way that xi are in the “valence” region, in
which quark distributions are sizably larger than antiquark ones, the ratio
Eq. (42) is mostly sensitive to the light quark ratio u/d [49, 50] and indeed
it has been used to provide the first accurate determinations of it [51].
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The sizable impact of Drell–Yan data on a PDF fit is demonstrated in
Fig. 11, where we compare the value and uncertainty of PDF combinations
which are sensitive to the light flavour decomposition before and after inclu-
sion of Drell–Yan data in a DIS fit, namely the total valence Eq. (39) and
the light sea asymmetry

∆s

(
x,Q2

) ≡ d̄(x,Q2)− ū (x,Q2
)
. (43)

The DIS fit includes both the fixed-target proton and neutron data (which
thus determine well the isotriplet component and give a handle on the
singlet–triplet separation), the precise HERA data (which give a handle
on each individual light flavour and antiflavour), and several neutrino data
(which determine well the valence component). The Drell–Yan data included
contain both proton and deuteron fixed target γ production data, and W
production. It is apparent that the accuracy on the valence, which is already
quite good in the DIS-only fit, is reduced by a large factor by the inclusion
of Drell–Yan data, and the effect is even more impressive on the light an-
tiquark asymmetry which, despite the accuracy of the HERA data, is only
determined with large uncertainties by DIS data.
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Fig. 11. Impact of Drell–Yan data on the NNPDF2.0 [41] parton fit. Left: the total
valence distribution; right: the light antiquark asymmetry.

The strong impact of W and Z production data can be seen quantita-
tively by computing the correlation coefficient between the W and Z cross-
section and individual parton distributions, which can be computed both in
a Hessian approach using standard error propagation, or in a Monte Carlo
approach from the covariance of the cross-section and the parton distribu-
tion over the Monte Carlo sample. Results obtained in the Hessian approach
using CTEQ6.6 [27] are shown in Fig. 12: correlations are quite large, even
though results shown here are obtained using the total cross-section, which is
a much less sensitive probe of PDFs than the rapidity distributions discussed
above.
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Fig. 12. Correlation between the total W and Z cross-section at the Tevatron and
individual parton distributions (from Ref. [27]).

4.3. Strangeness

The determination of strangeness is nontrivial because, of course, it has
the same electroweak couplings as the down distribution, while it is typically
smaller than it (except at small x where all PDFs are the same size, as
discussed in Sec. 2.2). The only way of determining it accurately from
deep-inelastic scattering data is to include semi-inclusive information. A
simple way of doing this is to use data for neutrino deep-inelastic charm
production (known as dimuon production, because charm is tagged by the
muon from its decay together with the muon due to the charged current
neutrino interaction). At leading order the structure functions are then just

F ν,p,c2

(
x,Q2

)
= xF ν,p,c3

(
x,Q2

)
= 2x

(
cd|2 d(x) + |Vcs|2 s(x) + |Vcb|2 b(x)

)
+O

(
α2

s

)
,

F ν̄,p,c2

(
x,Q2

)
= −xF ν̄,p,c3

(
x,Q2

)
= 2x

(
|Vcd|2 d̄(x) + |Vcs|2 s̄(x) + |Vcb|2 b̄(x)

)
+O

(
α2

s

)
(44)

so up to CKM suppressed terms they measure strangeness directly.
In Fig. 13 the behaviour upon inclusion of dimuon data of a fit to a set of

DIS data which includes both neutrino and HERA data is shown: it is clear
that before inclusion of the dimuon data the fit (NNPDF1.1 [52]) cannot
determine either of the two strange combinations

s±
(
x,Q2

) ≡ s+
(
x,Q2

)± s− (x,Q2
)

(45)
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but after their inclusion it determines both, though with limited accuracy
due to the limited accuracy and kinematic coverage of the available dimuon
data. In this plot, we also show the result one obtains for strangeness if
one simply assumes it to be proportional to the light quark sea, i.e. if by
assumption one sets s− = 0 and s+ = 1

2(ū+ d̄). This is often done in PDF
determinations based on DIS data only: the result is then misleadingly ac-
curate. This comparison should thus be taken as a warning that, when using
PDF sets in which some PDFs are fixed by assumption, some uncertainties
may be significantly underestimated.
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Fig. 13. The strange distributions s+ = s + s̄ (left) and s− = s − s̄ (right) deter-
mined in a fit to DIS including dimuon data (NNPDF1.2 [38]) and not including
them (NNPDF1.1 [52]). A fit without dimuon data where strangeness is fixed by
assumption (NNPDF1.0 [53]) is also shown.

Of course the Drell–Yan data discussed above also constrain strangeness.
Specifically, the cross-section ratio Eq. (42) receives a contribution from
strange and charm quarks which, up to CKM matrix elements, is identical
to the contribution from down and up quarks respectively. Well above charm
threshold this contribution is sizable, so comparing Drell–Yan data above
and below charm threshold potentially leads to a rather accurate determi-
nation of strangeness. Indeed, in Fig. 14 we show the impact of including
Drell–Yan data in a fit with DIS data only (same pair of fits already shown
in Fig. 11). The DIS dataset contains dimuon data, and it is similar to the
dataset on which the fit of Fig. 13 is based, from which it mostly differs be-
cause of improvements in the HERA data and in fit methodology; however,
the Drell–Yan data have a visible impact on the total strangeness s+, and
lead to a very striking improvement in the determination of the strangeness
asymmetry s−.
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Fig. 14. Impact of Drell–Yan data on the strange distributions s+ = s + s̄ (left)
and s− = s− s̄ (right) using the NNPDF2.0 [41] parton fit.

4.4. Gluons

The determination of the gluon distribution is nontrivial because the
gluon does not couple to electroweak final states. It does, however, mix at
leading order through perturbative evolution: so, even using parton-model
(i.e. O(α0

s )) expressions for cross-sections and structure functions, the gluon
does determine their scale dependence. Indeed

d

dt
F s

2

(
N,Q2

)
=
αs

(
Q2
)

2π

[
γqq(N)F s

2 +2nfγqg(N)g
(
N,Q2

)]
+O

(
α2

s

)
, (46)

where by F2(N,Q2) we denote the Mellin moments, Eq. (20), of the singlet
component (defined as in Eq. (23)) of the F2 structure function.

It follows that the gluon is mostly determined by scaling violations, or
by its coupling to strongly-interacting final-states, i.e. jets. The main
shortcoming of the determination from scaling violations is that, as al-
ready pointed out in Sec. 2.2, the gluon only couples strongly to other PDFs
for sufficiently small x: for instance, Fig. 5 shows clearly that for N > 2
the γqg term rapidly becomes negligible in comparison to the γgg term. On
the other hand, the gluon distribution is expected to be quite small at large x,
and, as also discussed in Sec. 2.2, to further shift towards smaller x as the
scale increases. Hence, the large x gluon is likely to be small and affected by
large uncertainties, which can only be reduced by looking at hadronic (jet)
final states.

Indeed, in Fig. 15 we show the effect of the inclusion of jet data in
a PDF fit based on DIS data. At small x there is essentially no effect:
scaling violations are sufficient to determine the gluon quite accurately. At
large x, even though the determination of the gluon from scaling violations
is reasonably accurate, its accuracy is still quite significantly improved by
the inclusion of jet data. A feature of this plot which is worth noting is
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the beautiful consistency of these two determinations. This is an extremely
strong consistency check for the perturbative QCD framework: the gluon
determined from scaling violation and evolved up to the much higher jet
scale is in perfect agreement with the jet data, and indeed the best accuracy
is obtained combining the two determinations.
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Fig. 15. Impact of jet data on the gluon distributions at small x (left) and large x
(right) using the NNPDF2.0 [41] parton fit.

4.5. Global fits

It is clear that the wider the number of different processes, the greater
the amount of information which is being used in the determination of PDFs.
The price to pay for this, as we will discuss in Sec. 5, is that the determi-
nation of PDFs and especially their uncertainties from diverse and possibly
inconsistent data might be nontrivial — at the very least, it is going to be
computationally intensive. Current global fits use all the processed discussed
so far in order to control as much as possible different aspects of PDFs.

The dataset used in one such fit (NNPDF2.0 [41]) is shown in Fig. 16.
Different data in this set constrain different aspects of PDFs, along the lines
of the preceding discussion, in a way which, referring to this specific dataset,
can be summarised as follows:

• information on the overall shape of quarks and gluons at medium
x as well as on the isosinglet–isotriplet separation come from fixed-
target DIS data on proton and deuterium targets (dominated by γ∗
exchange), denoted in the plot as NMC [54], NMCpd [55], SLAC [56]
and BCDMS [57];

• an accurate determination of the behaviour of the gluon and quark at
small x (where it is dominated by the singlet) and by individual light
flavours at medium x (where CC and NC data play a role in separating
individual flavours) is found from the very precise HERA CC and NC
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Fig. 16. The data set used in a typical global PDF determination (NNPDF2.0 [41]).

data denoted in the plot as HERAI-AV [58], which were obtained by
combining the ZEUS and H1 data from the HERA-I run. More recent
HERA-II ZEUS NC [59] and CC [60] data (ZEUS-H2) are also used;

• information on the flavour separation at small x comes from Tevatron
Drell–Yan data (in particular the W asymmetry, as discussed above)
denoted in the plot as CDFWASY [61], CDFZRAP [62], D0ZRAP [63];

• the flavour separation at medium x is mostly controlled by the Teva-
tron Drell–Yan data on fixed proton and nucleus target, DYE605 [64]
and DYE866 [65–67] in the figure;

• the total valence component is constrained by the neutrino inclusive
DIS data, denoted as CHORUS [68] in the plot;

• strangeness is controlled by neutrino dimuon data (NTVDMV [69,70]),
as well as by the interplay of the W and Z production data with lower
scale DIS and Drell–Yan data;

• the large x gluon, already determined by DIS scaling violations, is fur-
ther constrained by Tevatron jet data (CDFR2KT [71], D0R2CON [72]).

Other global fits may differ in some detail, such as the specific choice
of experiments or the addition or subtraction of some set of data, but are
mostly based on datasets constructed on the basis of a similar logic. Smaller
datasets, typically a subset of the above, are also considered.
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Future improvements on some of these processes, in particular Drell–Yan
(includingW and Z) production and jet production will certainly come from
the LHC, both because of the higher available center-of-mass energy (com-
pare Fig. 3), and because of the higher statistics which will be accumulated
once higher or design luminosity are reached. Some other processes which
are likely to become important at the LHC are prompt photon and heavy
quark production, as well as Higgs production (if the Higgs is found and
understood), all of which are sensitive probes of the gluon distribution. We
will briefly come back on these issues in Sec. 6.2, after discussing the current
main difficulty in the understanding of PDFs, namely, the treatment of PDF
uncertainties.

5. PDF uncertainties

The accurate determination of PDF uncertainties is clearly necessary if
one wants to be able to obtain meaningful predictions from the factorised
QCD expressions of Sec. 2. Because PDFs are determined by comparing
QCD predictions to the data, as discussed in Sec. 3, any uncertainty in the
theory used to obtain these predictions will propagate onto the PDFs them-
selves. Such uncertainties include genuine theoretical uncertainties, such as
a lack of knowledge of higher-order perturbative corrections: these, gener-
ally, do not have a simple statistical interpretation (and in particular they
are generally not Gaussian). They also include a lack of knowledge of param-
eters in the theory, in particular the value of the strong coupling constant αs

and the heavy quark masses mc and mb, which generally do follow Gaussian
statistics. The treatment of these uncertainties is in principle straightfor-
ward, in the sense that all one has to do is propagate them onto the PDFs
— their effect on PDFs is no different from their effect on the calculation
of a physical observable, and PDFs do not entail any new problem. For ex-
ample, if it is agreed that higher order corrections on cross-sections can be
conventionally estimated by varying renormalisation and factorisation scales
in a certain range, to be interpreted, say, as a 90% confidence level with flat
distribution, the associate PDF uncertainty is simply found by repeating the
PDF determination while performing this variation. We will refer to these
as “theoretical uncertainties”, and come back to them in Sec. 6.1.

On top of these, however, PDFs are affected by statistical uncertainties
which are related to the way the information contained in the data is propa-
gated onto a PDF determination following the process summarised in Fig. 7.
The determination of these uncertainties is highly nontrivial because, as dis-
cussed in Sec. 3, the desired final outcome of this process is the determination
of a probability distribution in a space of functions: these uncertainties are
supposed to behave as genuine statistical uncertainties, with a well-defined



2892 S. Forte

probability distribution, and it is not obvious how to make sure, and then
verify, that this is the case. These will be referred to as “PDF uncertainties”
for short.

First attempts to determine PDF sets which include PDF uncertain-
ties are only quite recent [73–75]; they immediately met with the difficulty
that as soon as wide enough datasets (such as those discussed in Sec. 4.5)
are fitted, a standard statistical approach does not seem to be adequate
[76, 77]. Furthermore, results obtained for relevant LHC processes such
as Higgs production using various different sets [78] do not always agree
well with each other. On both of these issues, there has been considerable
progress over the last several years. On the one hand, the understanding
of statistical issues related to PDF uncertainties has advanced considerably,
and it will be reviewed in the remainder of this section. On the other hand,
existing PDF determination show a distinct convergence as various phe-
nomenological and theoretical issues are addressed and understood, as we
will see in Sec. 6.2.

5.1. Tolerance

Available fits to wide enough sets of data based on the Hessian approach
and the “standard” parton parameterisation, Eq. (26), discussed in Sec. 3.1
run into the difficulty that the best-fit is not simultaneously a best-fit for
individual datasets. Specifically, one can test for the possibility that the χ2

of the fit to individual datasets entering the global fit may be improved by
moving away from the global minimum by introducing Lagrange multipliers
to select which dataset to minimise [37]. Results, shown in Fig. 17, are
disquieting: not only the minima of individual experiments do not coincide
with the global minimum but some of these minima seem to deviate much
more than one might expect on the basis of statistical fluctuations, and there
even seem to be runaway directions for some experiments.

This suggests that likelihood contours (for example one-σ) for the global
fit can only be determined while simultaneously testing for the degree of
agreement of individual experiments with it. The way this is done is by
introducing the concept of “tolerance”, defined as follows [76]. First, the
Hessian matrix is diagonalised. Next, one moves the value of each eigen-
vector away from the minimum of the global fit in either direction, and one
computes the χ2 of each experiment. Then, for each experiment one deter-
mines both the position of the minimum of the χ2 and the one-σ interval
about it (corresponding to the ∆χ̄2 = 1 variation about the minimum), or
equivalently the 90% confidence level (obtained by rescaling the former in-
terval by the factor C90 = 1.64485 . . . [34]). Finally, one takes the envelope
of the error bands for individual experiments at the desired confidence level
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Fig. 17. Decrease of the χ2 for various dataset entering a global fit plotted as a
function of the increase in χ2 of the global fit when moving away from the global
minimum (from Ref. [37]).

(C.L., henceforth). For example, at the 90% C.L. one determines the range
of variation in parameter space along this eigenvector about the minimum
such that the 90% C.L. interval of each experiment overlaps with this range.
This gives a tolerance interval for the given eigenvector. The width of this
interval can be measured in units of the variation of the χ2 of the global
fit. This defines a tolerance: T 2 = ∆χ2 is the width of the envelope (see
Fig. 18).

The 90% C.L. is finally taken to be ∆χ2 = T 2 instead of ∆χ2 = c2
60

(equivalently, the one σ contour is ∆χ2 = T 2/c2
60). The logic behind this

is that PDFs should allow one to obtain predictions for new processes at
the desired confidence level: for instance, the actual result for a new mea-
surement should have a 68% chance of actually falling into the predicted
one-σ band. If new experiments behave as the experiments which are al-
ready included in the fit do on average, then this will happen for the one-σ
band defined in this way, while if the one-σ band were defined on the basis
of standard statistics the chances of the measurements falling outside the
band would be much higher. It should be stressed that therefore a tolerance
analysis is required for a fit based on this methodology to be reliable (unless
the dataset adopted is very small and/or consistent).
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band shown, corresponding to ∆χ̄2 = 100 is just wide enough to accommodate the
ZEUS (upper variation) and CCFR2 (lower variation) experiments.

In Ref. [76] it was found that in practice T 2 = 100 worked for all eigen-
values and experiments at 90% C.L. for the dataset and fit considered there,
corresponding to ∆χ2 = T 2/c2

60 ≈ 37 at one sigma. A similar analysis in
Ref. [77] found instead T 2 = 50. Taken at face value, this would imply
that all experimental uncertainties have been underestimated by a factor
of about T/c60 ≈ 6 (for T 2 = 100) or T/c60 ≈ 4 (for T 2 = 50). While
some uncertainty underestimation is possible, such a large factor is at best
puzzling, and thus its origin deserves further investigation.

The concept of tolerance was subsequently refined, by suggesting that
instead of a global tolerance value for all eigenvalues, a different tolerance
value, determined as above, be adopted along each eigenvector direction.
This is called “dynamical” tolerance [30]. Proceeding in this way, one finds
a tolerance T ∼< 6.5, with most values being in the range 2 < T < 5, so
the large tolerance problem is somewhat mitigated. Also, in this approach
it is possible to trace which individual experiment is controlling the toler-
ance range for each eigenvalue. This, together with the expression of the
eigenvector in terms of the original parameters, provides insight on the rela-
tion between data and PDF parameters and their mutual consistency. Such
an analysis is displayed in Fig. 19, where both the tolerance analysis for
one specific eigenvector, and then the experiments and corresponding band
which control the tolerance interval for each eigenvector.

It is interesting to contrast this treatment of uncertainties in the Hessian
approach with “standard” parameterisation with the Monte Carlo approach
together with neural network parameterisation discussed in Sec. 3.2.2. In
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Fig. 19. Dynamical tolerance for the MSTW08 PDF fit. Upper: the tolerance
interval for the 13th eigenvector; the inner and outer uncertainty bands correspond
for each experiment to the 68% C.L. and 90% C.L. ranges. Lower: the tolerance
interval for each eigenvector, along with the experiments which determine it; the
T 2 = 50 and T 2 = 100 previously [76,77] adopted are also shown (from Ref. [30]).
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that approach, uncertainty bands corresponding to any given confidence
level can be computed directly from the Monte Carlo sample: the one-σ
interval is just the standard deviation of the sample, and one may even
check whether it indeed corresponds to the central 68% of the distributions
of PDF replicas. This is shown in Fig. 20 for the gluon distribution (from
Ref. [38]): in this case (and in fact [41] in most cases) the one-σ and 68% C.L.
intervals coincide. In a Monte Carlo approach, whether or not the fits behave
consistently when comparing fit results to new data, and then including these
new data into the fit, can be verified a posteriori by performing statistical
tests on the fit results. These tests were performed successfully for the fits
of Refs. [38,41,53].
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Fig. 20. One-σ interval computed from a distributions of 100 replicas of the gluon
distribution.

The question of the appropriate range in global χ2 which corresponds to
one sigma is thus side-stepped. In principle, it can be answered a posteriori:
in a Monte Carlo approach, the χ2 of the mean is a property of the Monte
Carlo sample, so one could compute the one-σ interval from the sample
itself. In practice, it is nontrivial to do this accurately because, as explained
in Sec. 31, the χ̄2 has fluctuations of order Ndat, and in a Monte Carlo
approach these fluctuations take place replica by replica, so one needs a
very large sample to determine the χ2 accurately.

However, the issues which may be responsible for the large tolerances
can be addressed both in a Hessian and in a Monte Carlo approach as we
will now discuss.
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5.2. Parametrisation bias and data incompatibility

The large tolerance values discussed in Sec. 5.1 are, by definition, a
manifestation of the poor mutual compatibility of the experiments that go
into the global fit. One possible explanation for this is that experiments are
genuinely incompatible with each other within their stated uncertainties,
i.e. that their published uncertainties are underestimated. We will refer to
this possible explanation as “data incompatibility”.

Another possible explanation is that the way uncertainties are propa-
gated from experiments onto PDFs leads to underestimating the uncertainty
in the latter. For example, assume that experiment A does not depend on
some PDF parameter, and that one determines PDFs from this experiment,
but instead of leaving the undetermined parameter free, one fixes it in some
arbitrary way. If the ensuing PDF is then used to predict another experi-
ment B which happens to depend on the undetermined parameter the like-
lihood of results being in agreement with the prediction will not depend on
statistics, but rather in the arbitrary way the parameter has been fixed. We
will refer to this as “parameterisation bias”.

Of course, other options are possible: for example, that the theory which
is being used is not adequate. In the latter case, however, one would have
to find a convincing argument why this theoretical inadequacy has not been
seen elsewhere.

Data incompatibility in the Hessian approach was recently studied in a
quantitative way in Ref. [79], exploiting the observation [80] that once the
χ2 has been written in the form of Eq. (32) one can perform a further lin-
ear transformation of the parameters which preserves this form, while also
diagonalising the contribution to the χ2 from some specific subset of data.
After this simultaneous diagonalisation, the χ2 is written as the sum of a
contribution from the data in the given subset and the rest: the distance of
the minima of these two contributions to the χ2 in units of the corresponding
standard deviation measures the compatibility of the given subset of data
with the rest of the global dataset. The idea is then to study the distribu-
tion of such distances, in all cases in which the experiment does contribute
significantly to the global minimum. If experimental uncertainties are cor-
rectly estimated, they should be Gaussianly distributed. The results of this
analysis, shown in Fig. 21, suggest that the distribution of discrepancies
deviates significantly from a Gaussian distribution, and that if it is fitted
to a Gaussian its uncertainty should be rescaled by about a factor 2. This
suggests uncertainty underestimation by a similar factor, which corresponds
to a value of the tolerance for 90% C.L. of order of T 2 ∼ 10.

This suggest that data incompatibility can explain only in part the need
for large tolerance. Further evidence that data incompatibility is at most
moderate can be obtained in a Monte Carlo approach, by comparing the
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Fig. 21. Distribution of discrepancies between each experiment entering a global fit,
and the global best fit. The solid (red) curve is the standard Gaussian distribution,
the dashed (green) curve is a Gaussian distribution with σ rescaled by a factor 1.88,
the dotted (blue) curve is a Lorentzian distribution (from Ref. [79]).

effect of the subsequent inclusion of different datasets into a fit. Indeed,
if some datasets were incompatible with others, then the effect of their in-
clusion in the global fit would change according to whether the global fit
already includes the data with which they are incompatible or not. Assume
for example that the gluon determined from jets is compatible with that
found exploiting scaling violations in DIS data, but less compatible with
that found from scaling violations in Drell–Yan: then, inclusion of jet data
in a pure DIS fit would have a different effect than their inclusion in a fit
which contains both DIS and Drell–Yan. When such tests are performed [41]
no evidence for data incompatibility is found, as demonstrated in Fig. 22.

Let us now turn to the possibility that parameterisation bias may be
responsible for the effect. The way this could happen in a Hessian approach
was recently exemplified in Ref. [81]. Assume a relevant parameter on which
PDFs depend is not fitted, but rather fixed by assumption at a value which
is away from its best-fit. Then, clearly (see Fig. 23) the one-σ range for
the other parameters when this parameter is kept fixed corresponds to a
variation of χ2 which is greater than the standard ∆χ2 found when moving
away from the minimum. A first estimate of the possible size of this effect
was also provided in Ref. [81] by simply repeating the PDF fit of Ref. [27], but
with a much more general parameterisation, based on expanding the gluon
on a basis of orthogonal polynomial, analogous to that of Ref. [24] shown
in Fig. 9. With this more general parameterisation, fits whose χ2 is similar
to or better than the best-fit χ2 of the more restrictive parameterisation are
found to span a band which corresponds roughly to the ∆χ̄2 = 10 range
for the restrictive parameterisation. So this suggests a tolerance of at least
T 2 = 10 just to account for the bias on the gluon shape imposed by the
parameterisation of Ref. [27].
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Fig. 22. Tests of data compatibility by changing the order of inclusion of data in
fits with different datasets, based on the NNPDF2.0 [41] PDF determination. Top:
effect on the gluon distribution of the inclusion of jet data in a fit to DIS data
only (left) or on a fit to DIS+Drell–Yan data (right). Bottom: effect on the sea
asymmetry Eq. (43) of the inclusion of Drell–Yan data in a fit to DIS data only
(left) or on a fit to DIS+jet data (right).

Fig. 23. Parametrisation bias. Left: the one-σ range for parameter z when param-
eter y is kept fixed away from the best-fit value corresponds to a range which is
larger than ∆χ2 = 1. Right: various gluons (dashed curves) based on a general
parameterisation which lead to the same or better fit quality as the best-fit gluon of
Ref. [27], compared to the ∆χ2 = 10 band about the latter gluon (from Ref. [81]).
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The issue of parton parameterisation and bias thus deserves further in-
vestigation. First, one may ask whether the Gaussian assumption is by itself
a source of bias. This has been investigated in Ref. [23], using a Monte Carlo
approach together with a standard parton parameterisation. Data replicas
based on the HERA DIS data (Fi(n) of Fig. 7) have been generated either
using a Gaussian or a lognormal distribution (see Fig. 24), and used for a
PDF fit based on the “standard” functional form Eq. (26). Results are shown
in Fig. 24, and are seen to be essentially indistinguishable. The choice of the
probability distribution of the data does not seem to play any major role,
as one might have expected from the central limit theorem: with so many
data, everything looks Gaussian. On the other hand, in the same figure we
also show the gluon obtained in a fit to exactly the same data, but using the
neural network functional form and associate cross-validation methodology
of Ref. [53]. It is clear that the uncertainty is now much wider. This suggests
that it is the form of parameterisation which plays a dominant role, rather
than the form of the probability distribution.

The issue has been investigated further in the HERAPDF [29] PDF fits,
where the standard ∆χ2 = 1 PDF uncertainty based on a “standard” func-
tional form Eq. (26) has been supplemented by a further parameterisation
uncertainty, obtained by varying the assumed functional form (in particular,
the large x behaviour, the number of terms in the polynomial Eq. (27), and
the assumptions on strangeness which is not fitted). It is clear from Fig. 25
that this leads to a sizable enlargement of the PDF uncertainty band.

The Monte Carlo approach together with neural network offers an in-
teresting way of searching for the origin of uncertainties, in that different
sources of uncertainty can be switched on and off one at a time. In particular,
one may perform the following exercise. First, one freezes the generation of
data replicas, and one takes each replica dataset equal to the central values
of the data. Recall from Sec. 3.2.2 that each replica is fitted to a different,
randomly chosen subset of the data. Hence, all datasets Fi of Fig. 7 are now
the same, and only the way they are partitioned in validation and training
sets changes between replicas. Each PDF replica is thus obtained as the fit
to a different partition of the central experimental data. The (square) fluc-
tuation of the data are reduced by a factor two: instead of having replicas
which fluctuate about experimental data which in turn fluctuate about their
“true” values, one only has different subsets of central data fluctuating about
their true values.

In Table II we compare some indicators of fit quality and results for a fit
obtained in this way to those of the corresponding standard fit (using the fit
of Ref. [38], based on DIS data). In particular, we compare the χ2 of the best
fit in either case: this is unchanged. However, the average χ2 of each replica
fit is smaller by a factor two. This is as it should be: in both cases the best-fit
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Fig. 24. Comparison of fits based on Gaussianly or log-normally distributed data.
Upper left, upper right, lower left, lower right: Comparison of the Gaussian and
lognormal distribution. Gluon determined from lognormal data. Gluon determined
from Gaussian data (from Ref. [23]). Gluon determined from the same Gaussian
data, but using the neural network parameterisation of Ref. [53] (from Ref. [82]).

is reproducing the same central best-fit value, but the fluctuation of replicas
about it are now suppressed by a factor two, and thus the average χ2 per
replica is reduced by approximately the same factor. The surprising result
however is found when one computes the average percentage uncertainty in
the prediction obtained in either case. This is determined as the percentage
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Ref. [29].

uncertainty of the prediction obtained from the final replica PDF set, for
all datapoints included in the fit, averaged over datapoints. One might
expect that having halved the fluctuations, the average uncertainty should
be reduced by a factor

√
2; in actual fact, it is reduced by a much smaller

amount.
TABLE II

Values of the χ2 for the best fit (first row), the average and standard deviation of
the χ2 of individual replicas (second row), and the percentage uncertainty of the
prediction averaged over all data points (third row) for the PDF determination
of Ref. [38] (first column); the same but with all PDF replicas fitted to different
partitions of the experimental central values (second column); the same but with
all data replicas fitted to the same partition of the experimental central values
(in the latter case the process has been repeated with 5 different choice of fixed
partition and averaged).

Replicas Central value Fixed partition

χ2 1.32 1.32 ∼1.3
〈χ2〉rep 2.79± 0.24 1.65± 0.20 ∼ 1.6± 0.2
〈σ〉dat 0.039 0.035 ∼0.03
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The origin of this state of affairs can be understood by performing an
even more extreme text: one simply produces 100 replicas fitted to exactly
the same partition of the central data. In this case, all Fi contain the same
data, partitioned in the same way into training and validation sets. Naively
one may think that this may lead to simply repeating 100 times the same
fit. This is not necessarily the case because each replica is determined by
initialising the neural networks at random, and then minimising by means
of an (equally random) genetic algorithm. Hence one starts each time from
a different point in the very wide parameter space, and then the minimum
is approached along a different path. Indeed, in Fig. 26 we show the χ2

profiles along the minimisation, as a function of the number of iterations
of the minimisation algorithm, for two individual replicas: it is clear that
even though the final χ2 values are quite similar, the number of iterations
and profiles that take there are quite different, thereby showing that the
minimum is approached along different paths.

Fig. 26. The χ2 for the training dataset and total dataset for two different repli-
cas fitted to exactly the same training subset of the central values of the data
of Ref. [38], shown as a function of the number of iterations of the minimisation
algorithm.

In this case, in order to make sure that results do not depend on the par-
ticular partition that has been picked in the first place, the whole procedure
is repeated five times with five different choice of starting partition and re-
sults are then averaged. Results are shown in Table II (they should be taken
as indicative, because one should use rather more than five fixed partitions
for accurate results). These results are quite surprising. The χ2 of the best
fit and the average over replicas are unchanged, and this is to be expected:
it shows that indeed the five replicas chosen are not special. However, very
surprisingly, the average uncertainty, which one might expect to be tiny, is
more than 50% of that of the original fit. This is also seen by comparing
results for PDFs (see Fig. 27: the uncertainty band is smaller, but of the
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same order of magnitude as that of the full fit. The inevitable conclusion is
that a large fraction of the uncertainty band, probably more than half, does
not depend on the fluctuations in the data. Rather, it is a consequence of
the fact that there is an infinity of functions that provide fits of comparable
quantity to the data. Different minimisation profiles such as those shown
in Fig. 26 land on somewhat different minima; the uncertainty of this fit is
then a measure of the spread of this space of minima. Once understood that
a sizable fraction is simply due to this “functional” uncertainty, it is clear
why it is more difficult to capture with a fixed parameterisation, which then
requires a suitable tolerance in order to mimic it.
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Fig. 27. Comparison of PDFs from the Monte Carlo set of Ref. [38] (NNPDF1.2,
hatched slanted to left) to PDFs determined using the same data and proce-
dure, but fitting all replicas to the central data (dark). The PDFs from Ref. [77]
(MRST2001E, vertical hatched) and Ref. [27] (CTEQ6.6, hatched slanted to right)
are also shown for comparison. The PDFs shown are the gluon (top left), total
valence Eq. (39) (top right), triplet Eq. (37) (bottom left) and total strangeness
s+ Eq. (45) (bottom right).

6. Recent developments

The state of the art in PDF determination is moving very fast and thus
any attempt to review it would necessarily become obsolete quite rapidly: a
recent review of the status of the field as of November 2010 is in Ref. [83].
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Here, in an attempt to discuss issues of somewhat less fleeting value, we will
first briefly review theoretical uncertainties, which are the current frontier
of PDF determination, then summarise what progress has been made and
what remains to be done in the determination of PDFs for the LHC in the
years to come.

6.1. Theoretical uncertainties

As already mentioned, the PDF uncertainties discussed in Sec. 5 are the
result of propagating into the space of PDFs the uncertainty on the data
on which the PDF determination is based. Most of the effort has gone so
far in their determination and understanding because they are likely to be
at present the dominant uncertainty. However, it has been recently realized
that in many cases uncertainties related to the theory used to extract PDFs
from the data may be larger than one may think. These, as already men-
tioned, include both uncertainties in the theory itself (such as higher order
corrections) but also uncertainties in the knowledge of the free parameters
on the theory.

The most obvious source of theoretical uncertainty is the value of the
strong coupling αs. The PDF which depends most strongly on it is the gluon
distribution, which, as discussed in Sec. 4.4 is largely determined by scaling
violations: the rather strong dependence of the gluon on the value of αs is
shown in Fig. 28 for various PDF sets. Note that even though, as discussed
in Sec. 3.1 the total PDF+αs uncertainty can be obtained by determining
these two uncertainties separately and adding results in quadrature [35],
when determining the αs uncertainty, the value of αs in the factorisation
formula Eq. (1) must be varied both in the PDFs and in the partonic cross-
section σ̂. This is especially important when dealing with processes, such
as Higgs production in gluon–gluon fusion [83, 85] (or also top production)
which depend on the gluon PDF and start at a high order in αs. For this
purpose, PDF sets corresponding to different values of αs are necessary and
have thus been produced by several group (using sets with PDFs given as a
continuous function of αs is in principle also possible, but practically more
cumbersome and less accurate).

The only other free parameters in the QCD Lagrangian are the quark
masses, i.e., in the perturbative regime, the heavy quark masses. Depen-
dence of PDFs on them are larger than one might naively expect, and has
two different origins which we will now discuss in turn. The first, is sim-
ply the fact that even though all perturbative computation are done up to
power-suppressed terms in Q2, terms of order m2

c
Q2 and m2

b
Q2 may have a non-

negligible impact on PDF fits. This was brought to general attention by the
comparison [27] of two calculations of theW and Z production cross-sections
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Fig. 28. Dependence on αs of the gluon distribution determined in the fits of
Ref. [27] (CTEQ6.6, upper left), Ref. [30,84] (MSTW08, upper right) and Ref. [38]
(NNPDF1.2, lower) (from Ref. [85]).

based on PDF sets which differ mostly because one does include m2
c

Q2 correc-
tions (CTEQ6.1 [86]) while the other (CTEQ6.6 [27]) does not. It turns out
(see Fig. 29) that these corrections change the result by an amount which is
almost twice the (statistical) PDF uncertainty (as defined in Sec. 5).

In order to understand what is going on here, one must recall the way
heavy quark PDFs are defined, and heavy quarks are treated in perturba-
tive QCD computations. Usually, perturbative QCD computations are per-
formed in a decoupling renormalization scheme [87], in which heavy quarks
decouple from perturbative Feynman diagrams for scales much lower than
the quark mass. In such a scheme, below threshold the number of flavours in
the evolution equation for the strong coupling and for parton distributions
Eq. (22) is equal to the number of light flavours. So in particular whereas
there may still exist a non-perturbative nonvanishing “intrinsic” heavy quark
PDF below threshold [19], it will only start evolving and coupling to other
PDFs through evolution equations above threshold: for all practical pur-
poses, below charm threshold nf = 3. However, for scales which are much
larger that the heavy quark mass, there is no reason to treat the heavy quark
on a different footing from any other light quark: for scales Q2 much larger
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Fig. 29. The total W and Z cross-section at the LHC with
√
s = 14 TeV computed

using PDFs determined including charm mass corrections (red squares [27]) and
neglecting them (blue stars [86]). Other processes and PDF sets not discussed here
are also shown (from Ref. [27]).

than the charm mass, all terms of the order of m2
c

Q2 can be neglected, and
there are nf = 4 massless flavours. The problem arises for scales which are
higher but not much higher than the heavy quark mass: then, the heavy
quark can be produced and it does not decouple, yet it is not necessarily a
good approximation to treat it as massless, i.e. to neglect m2

c
Q2 corrections.

This situation is illustrated in Fig. 30, where we show the neutral-current
photon-induced DIS F c2 structure function (i.e. the contribution to F2 in
which the virtual photon couples to a charm quark) computed in various
approximations. The two curves labelled ZM-VFN (purple, highest curves)
are curves in which charm is simply treated as another massless flavour.
The charm PDF is assumed to vanish below threshold, and above threshold
a (massless) charm component is generated by perturbative evolution —
note that even if an intrinsic component did exist, it should be small, and
only non-negligible for very large x [19]. The two NLO and NNLO ZM-VFN
(zero mass-variable flavour number) curves correspond to the case in which
anomalous dimensions are computed up to O(α2

s ) and O(α3
s ) respectively:

the solution to evolution equations then includes all contributions of the
order of αks lnn Q2

µ2 to all orders in αs, with n ≥ k − 1 at NLO and with
n ≥ k−2 at NNLO. They are called “variable flavour number” curves because
the number of active flavours is increased by one unit when each heavy quark
threshold is crossed. For light quarks, µ2 = Q2

0 — the starting scale of
perturbative evolution — and for the charm contribution µ2 = m2

c . Given
that Q0 ∼ mc, at high scale there is no reason not to include the charm
contribution in evolution equations along with the light contributions.
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Fig. 30. The deep-inelastic charm structure function F2c computed in various ap-
proximations (see text), plotted as a function of scale for fixed x = 10−1. The same
conventional PDFs are used for all plots.

However, the evolution equations neglect all quark mass effects. Indeed,
the curve labelled FFN (fixed flavour number) O(α2

s ) shows the result of the
computation fixed order in αs, but now with the dependence on mc fully
included. This is a fixed-flavour number result because charm is included as
a massive quark in partonic cross-sections, but only the lighter flavours con-
tribute to evolution equations and the running of αs. Its limit for Q2 →∞,
which coincides with the contributions to the VF-ZFN NNLO, but up to
O(α2

s ) only, is labelled as FFN0. The FFN0 and FFN results are different,
and their difference, which is sizable for Q2 ∼< 50 GeV2 is a measure of the
size of mass suppressed contributions (note however that all curves come
together at threshold, where F2c vanishes). In this region, ln Q2

m2
c
is not large

and indeed the ZM-VFN NNLO curve and the FFN0 are quite close: the
inclusion of higher order powers of ln Q2

m2
c
in the ZM-VFN NNLO has little

effect. On the other hand, for Q2 ∼> 100 GeV2 the FFN0 and FFN curve be-
come quite close — their difference are mass-suppressed contributions which
here have little effect — but the ZM-VFN curve is much higher: here ln Q2

m2
c

is large and its all-order inclusion in the ZM-VFN result is important. In
fact, the difference between the FFN curve and the ZM-VFN curve is much
larger than the difference between the NLO and NNLO ZM-VFN curves: it
is important to resum ln Q2

m2
c
to all orders, but whether this resummation is

done to NLO or NNLO has a much smaller impact.
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So summarizing: for low Q2 ∼< 50 GeV2 it is important to include mass
corrections and not important to resum ln Q2

m2
c
to all orders, so the most ac-

curate result is the FFN one. For Q2 ∼< 50 GeV2 the converse is true and
the most accurate result is the ZM-VFN one. The question is whether the
two can be combined. That this is possible in principle to any perturbative
order is a consequence of a factorisation theorem for massive quarks proven
to all orders in Ref. [88]. A practical implementation was suggested and
worked out up to NLO in Ref. [89] — the so-called ACOT method, which
was used to produce the massive CTEQ6.6 result of Fig. 29. Other imple-
mentations were suggested in Refs. [90, 91] (TR method) for deep-inelastic
scattering, and in Ref. [92] for hadroproduction (FONLL method, recently
generalized to DIS and worked out up to NNLO in Ref. [93]). These various
methods, which thus combine both a massive fixed-order FFN computa-
tion and a massless all-order ZM-VFN resummation, are often referred to
as “GM-VFN” (general mass, variable flavour number) methods.

The FONLL curve is also shown in Fig. 30, in a version (called FONLL-B)
which includes all terms which are contained in the ZM-VFN NLO and FFN
O(α2

s ) calculations. It is clear that the FONLL-B curve nicely interpolates
between the FFN curve, more accurate at low scale, and the ZM-VFN one,
more accurate at high scale. Without entering a discussion of these various
prescriptions, which would be quite technical, it is important to understand
that (unless an error is made) all GM-VFN prescriptions include all the
terms included in the ZM-VFN and FFN calculations: they may differ first,
in the orders at which either of the ZM-VFN and FFN terms are included,
and furthermore, because even with the same terms included, subleading
terms are generally different, and may in practice have a non-negligible im-
pact. The impact of these subleading terms can only be reduced by pushing
to higher orders both the ZM-VFN and FFN contributions which are in-
cluded in the GM result. This is illustrated in Fig. 31, where the FFN,
ZM-VFN and GM-VFN results are compared. The GM-VFN are shown in
the version adopted by CTEQ6.6, Ref. [27], of the ACOT method of Ref. [89]
(only available at NLO), in the version adopted by MSTW08 [30] of the TR
method of Refs. [90, 91], and with the FONLL method of Ref. [93]. It is
clear that the differences between the various GM schemes are sizable, and
only start decreasing at NNLO-O(α2

s ).
Considerable progress has been made recently in the benchmarking of all

these GM schemes (see Ref. [94]), and the use of a GM-VFN scheme, which
is highly desirable, has become more widespread. However, a systematic
estimate of the uncertainties related to the choice of specific heavy quark
scheme is not available in existing PDF sets.
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Fig. 31. Comparison of FFN, ZM-VFN and GM-VFN computations of the deep-
inelastic charm structure function F2c: left, FFN O(αs) and ZM-VFN NLO; right,
FFN O(αs) and ZM-VFN NNLO. In each case the various GM-VFN combine all
terms in the FFN and ZM-VFN results, and only differ by subleading terms. Re-
sults are shown as a function of x, at a scale little higher than the threshold. The
same conventional PDFs are used for all plots.

So far we have only discussed one of the two ambiguities related to the
treatment of heavy quarks. The other one has simply to do with the value of
the heavy quark mass. This has a considerable impact because, as we have
seen, apart from possible intrinsic contributions, heavy quark PDFs are ob-
tained by assuming them to vanish at threshold, and then to be generated
by perturbative evolution. But changing the mass changes the position of
the threshold, and thus the amount of evolution. This has been very recently
argued to have a potentially non-negligible impact on phenomenology [96].
A first systematic study has been performed in Ref. [95] within the MSTW08
PDF fit. Some representative results are shown in Fig. 32: when the heavy
quark masses are varied in a range which is representative of their uncer-
tainty, the heavy PDFs vary by an amount (more than 5%) which is of the
same order or larger than the PDF uncertainty. This variation then propa-
gates onto all other PDFs and especially the gluon, both due to mixing upon
perturbative evolution, and to sum rules.

It seems clear that for accurate phenomenology the values of the heavy
quark masses will have to be treated analogously to what is now being done
for the strong coupling: PDF sets with varying heavy quark masses will
have to be provided, and the value of the masses will have to be varied
simultaneously in the partonic cross-section and in the PDF sets.
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Fig. 32. Dependence of the heavy quark PDFs at a typical electroweak scale on the
heavy quark mass: left, charm; right, bottom (from Ref. [95]).

Finally, it should be recalled that there is at present no reliable estimate
of the effect on PDFs of the uncertainty due to the truncation of the pertur-
bative expansion. This is possibly a relatively smaller effect in comparison
to those we discussed so far, but this too will have to be included in PDF
sets, for example by providing sets which correspond to different values of
the renormalization and factorisation scales, whose variation is a way of es-
timating unknown higher order corrections. All in all, a proper treatment
of theoretical uncertainty is the current frontier in PDF uncertainties.

6.2. PDFs for the LHC

An ideal PDF determination should include all of the following features:

• It should be based on a dataset which is as wide as possible in order
to ensure that all relevant experimental information is retained; in
particular, all processes discussed in Sec. 4 should be used.

• It should be based on a sufficiently general and unbiased parton para-
metrization and/or it should include a careful estimate of the effect of
varying the parton parameterisation.

• It should provide PDF uncertainty bands which have been either
a priori (tolerance) or a posterior (Monte Carlo) checked to provide
consistently-sized confidence levels for individual experiments.

• It should include heavy quark mass effects through a GM-VFN scheme,
and provide an estimate of the uncertainties due to subleading terms
not included in the scheme which has been adopted.
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• It should provide PDFs for a variety of values of αs, reasonably thinly
spaced and in a range which is representative of the uncertainty on
this parameter.

• Ditto for the values of heavy quark masses.

• It should be based on computations performed at the highest available
perturbative order, namely NNLO for evolution equations and for most
or all of the processes used for PDF determination.

• It should include an estimate of uncertainties related to the truncation
of the perturbative expansion.

At present, there exists no PDF determination which has all these features si-
multaneously. Which of these features is most important for accurate results
it will be possible to say with certainty only after such a PDF determina-
tion is constructed. However, the various features have been listed in the
approximate (decreasing) likely order of importance, at least in the opinion
of this author, based on the arguments presented so far.

Therefore, existing sets satisfy only some of these requirements. Current
PDF sets are provides through a standard interface, LHAPDF [98], which
is regularly updated for the inclusion of new sets and updates. Current
PDF sets and their salient features include the following (listed in order of
decreasing number of datasets included):

• MSTW08 [30, 84, 95] Latest in the MRS-MRST-MSTW series of fits
(Ref. [99] and subsequent papers). All data of Sec. 4, plus HERA DIS
jets. Hessian approach with parameterisation Eq. (26) for seven inde-
pendent PDFs (three lightest flavour and antiflavours and the gluon);
28 free parameters, 8 of which are held fixed in the determination of
uncertainties; dynamical tolerance uncertainties. GM-VFN scheme.
Results available for various values of αs, mb and mc. NNLO pertur-
bative order (whenever available).

• CT10 [28] Latest in the CTEQ series of fits (Ref. [100] and subsequent
papers, see also [101]). All data of Sec. 4. Hessian approach with pa-
rameterisation Eq. (26) for six independent PDFs (two lightest flavour
and antiflavours, total strangeness and the gluon); 26 free parame-
ters; dynamical tolerance uncertainties. GM-VFN scheme. Results
available for various values of αs. NLO perturbative order.

• NNPDF2.0 [41] Latest in the NNPDF series of fits (Ref. [45] and sub-
sequent papers). All data of Sec. 4. Monte Carlo approach with neu-
ral network parameterisation for seven independent PDFs (the three



Parton Distributions at the Dawn of the LHC 2913

lightest flavours and antiflavours, total strangeness and the gluon);
259 (37× 7) free parameters; cross-validation uncertainties. ZM-VFN
scheme. Results available for various values of αs. NLO perturbative
order.

• JR [102] Latest in the GR-GRV-GJR series of fits (Ref. [103] and
subsequent papers). All data of Sec. 4 except W and Z production.
Hessian approach with parameterisation Eq. (26) for five independent
PDFs (two lightest flavour and antiflavours and the gluon); 20 free
parameters; fixed tolerance uncertainties. Results available for single
value of αs, but Hessian includes αs. FFN scheme. NNLO perturbative
order.

• ABKM [104] Latest in the Alekhin series of fits (Ref. [73] and sub-
sequent papers). All DIS data of Sec. 4 and fixed-target virtual pho-
ton Drell–Yan production. Hessian approach with parameterisation
Eq. (26) for six independent PDFs (two lightest flavour and anti-
flavours, total strangeness and the gluon); 21 free parameters; no toler-
ance. Results available for single value of αs, but Hessian includes αs,
and also heavy quark masses. FFN scheme. NNLO perturbative order.

• HERAPDF1.0 [29] HERA only DIS data Hessian approach with
para-metrization Eq. (26) for five independent PDFs (two lightest
flavour and antiflavours, and the gluon); 10 free parameters; no toler-
ance but inclusion of parameterisation uncertainties. GM-VFN scheme.
Results available for various values of αs. NNLO perturbative order.

Detailed comparisons of these PDF sets is the subject of ongoing bench-
marking exercises, with the aim of arriving at the most accurate common
determination of PDFs. The successfulness of the enterprise can be gauged
by putting side by side (see Fig. 33) predictions for Higgs production via
gluon–gluon fusion at the LHC with different PDF sets obtained as the first
PDF with uncertainties were published [78], with those obtained more re-
cently as first collisions were taking place at the LHC [85] (see Fig. 33). The
improvement is quite clear, and convergence between PDF sets has further
improved since.

The status of the computation of the simplest LHC processes (which
have been suggested as “standard candles”, e.g. as a means to measure
the machine luminosity [106]) is summarized in the plots of Fig. 34, where
predictions for W±, Z and top total cross-sections obtained at NLO us-
ing the ABKM09 [104], CTEQ6.6 [27], HERAPDF1.0 [29], GJR08 [107],
MSTW08 [30] and NNPDF2.0 [41] sets are plotted as a function of αs. The
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Fig. 33. Comparison of the NLO Higgs cross-section at the LHC as a function of the
Higgs mass computed using various PDF sets. Left: status 2004 (from Ref. [78])
using Alekhin2002 [97], CTEQ6 [76] and MRST2001E [77] PDFs (

√
s = 14 TeV).

Right: status 2010 (from Ref. [85]) using CTEQ6.6 [27], MSTW2008 [30] and
NNPDF2.0 [53] PDFs (

√
s = 7 TeV).

dotted lines show how each prediction can be extrapolated to different val-
ues of αs (the extrapolation is not available for the ABKM and GJR sets
since these are only published for a single value of αs, though in principle
the information on the αs dependence is contained in their covariance ma-
trix). It is clear that first, once brought to a common value of αs the various
sets are in fair agreement, and second, the agreement further improves when
restricted to PDF sets that are based on more similar assumptions (such as
common dataset, number of independent PDFs etc.).

An interesting question that remains is how one can proceed when some
disagreement remains, and there is no clear reason to favor one set over the
other. In this case, Bayesian statistics provides an answer [108]: in Bayesian
terms, the probability distribution for PDFs is a distribution of true values,
i.e. P (f) expresses the degree of belief that the true value is indeed f .
Then, given two different, but a priori equally reliable determinations P1(f)
and P2(f) of the probability distribution, the combined probability is just
P (f) = 1

2(P1(f)+P2(f)), with obvious generalizations if the determinations
of the probability distribution are more than two or not all equally likely. In
a Monte Carlo approach this is especially easy to implement: the combined
probability distribution is obtained by simply taking a Monte Carlo sample
in which half of the replicas come from either distribution. A 68% C.L.
of the combined probability is then simply the region which contains the
central 68% of all the given distributions, i.e. 68% of the combined replica
set.
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Fig. 34. LHC “standard candles” computed using various PDF sets: total cross-
section for the production of W+ (top left), W− (top right), Z (bottom left) tt̄
(bottom right) (from Ref. [105]).

In practice, a reasonable approximation to the Bayesian estimate may
well consist of simply taking the envelope (i.e. the union) of the 68% inter-
vals of the probability distributions which are being combined: this typically
leads to a slight overestimate of the error band, because some of the replicas
in the outer 32% of one of the distribution may fall within the central 68% of
another distribution, but this in practice is often a small correction, hence
the envelope prescription can be a simple and effective way of combining
probability distributions.

7. Conclusion

The physics of parton distributions is now close to a beginning, rather
than a conclusion: LHC data for many of the processes discussed in Sec. 4
are being collected and will soon be published. The availability of LHC data
is likely to change significantly our perspective on the subject. The kine-
matic range of “old” processes such as Drell–Yan will be extended and their
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accuracy will improve. Processes which are at present not competitive will
become important (such as perhaps prompt photon production). Entirely
new processes will play a role, such as Higgs production. Hopefully, classes
of new physical processes will be discovered: whatever their nature, they
will be observed in proton collisions, and thus pose new challenges to our
understanding of the nucleon. It may turn out that an interplay with new
machines, such as an electron–proton LHeC collider [109], or perhaps even
a neutrino factory [42] may be necessary in order to exploit fully the LHC
potential. A review of this subject written ten years from now is likely to
be quite different from the present one, and possibly much more interesting.
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and I thank all participants and lecturers, in particular Paul Hoyer, for their
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J. Pumplin, R. Thorne. I also thank all the members of the NNPDF Col-
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