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We present a short review describing the use of noncommutative space-
time in quantum-deformed dynamical theories: classical and quantum me-
chanics as well as classical and quantum field theory. We expose the role of
Hopf algebras and their realizations (noncommutative modules) as impor-
tant mathematical tool describing quantum-deformed symmetries: quan-
tum Lie groups and quantum Lie algebras. We consider in some detail
the most studied examples of noncommutative space-time geometry: the
canonical and κ-deformed cases. Finally, we briefly describe the modifi-
cations of Einstein gravity obtained by introduction of noncommutative
space-time coordinates.

PACS numbers: 11.10.Nx, 02.20.Uw, 02.40.Gh

1. Introduction

The idea that it should be useful to introduce noncommutative space-
time coordinates comes already from the thirties of past century (see e.g. [1]);
the first published papers on the noncommutativity of space-time appeared
in forties (see e.g. [2]). Subsequently in eighties there was formulated the
mathematics of noncommutative geometries (see e.g. [3, 4]) as well as foun-
dations of the theory of quantum groups were given (see e.g. [5–7]). The
papers in which firstly appeared the quantum deformations of Poincaré sym-
metries (Poincaré algebras and Poincaré group) were published about 20
years ago [8–10].

From the physical point of view the issue of noncommutative structure
of space-time is linked with short distance behavior of phenomena or equiv-
alently with the domain of extremely high energies. The notion of classical
∗ Lecture presented at the L Cracow School of Theoretical Physics “Particle Physics at
the Dawn of the LHC”, Zakopane, Poland, June 9–19, 2010.
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(pseudo) Riemannian manifold as describing the totality of physical phe-
nomena, including quantum-mechanical and gravitational effects, appears
to be not valid. If one combines together the dynamics of general relativity
(Einstein equations) with the uncertainty principle of quantum mechanics,
one can demonstrate that the exact localization of classical space-time events
is not possible. Measuring the position of coordinate x with accuracy ∆x
means adding during the measurement process to small volume (∆x)3 the
big energy E ∼ 1

∆x . Due to Einstein equations such measurement — in-
duced modification of local energy density — creates the Planckian black
holes with Schwarzschild radius R ' λP

E
MP

, where λP is the Planck length
(∼ 10−33 cm) and MP describes the Planck mass (∼ 1019 GeV in energy
units). By formalizing above considerations Dopplicher, Fredenhagen and
Roberts (DFR) [11] introduced new algebraic uncertainty relations between
the relativistic space-time coordinates, which are caused by the quantum
gravity effects

[x̂µ, x̂ν ] =
i

M2
P

θ(0)
µν , θ(0)

µν = −θ(0)
νµ ,

[
θ(0)
µν , x̂ρ

]
= 0 . (1.1)

The deformation (1.1) is called usually the canonical one, under assump-
tion that θ(0)

µν is a numerical matrix. It should be added that little later,
by considering the quantization of ten-dimensional free string, Seiberg and
Witten [12] did demonstrate that the D-brane coordinates located at the
end points of the string satisfy as well the relation (1.1), however, in gen-
eral case with point-dependent noncommutativity (θ(0)

µν → θµν(x̂)). One can
postulate, therefore, more general relations

[x̂µ, x̂ν ] =
i

M2
P

θµν (MPx) =
i

M2
P

θ(0)
µν +

i

MP
θ(1)
µν

ρx̂ρ

+iθ(i)
µν
ρτ x̂ρx̂τ + . . . . (1.2)

The first term in (1.2) describes the canonical (DFR) deformation, the sec-
ond one introduces the so-called Lie-algebraic deformation and the last one
the quadratic deformation. It should be added that due to proper insertions
of mass parameter MP the tensors θ(0)

µν , θ
(1)
µν

ρ, θ
(2)
µν

ρτ are sets of dimensionless
numbers. Among Lie-algebraic deformations the earliest one is the so-called
κ-deformation [10], introducing in its standard version noncommutative time
coordinate by means of the following relations

[x̂0, x̂i] =
i

κ
x̂i , [x̂i, x̂j ] = 0 . (1.3)
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From the second relation (1.3) follows that the nonrelativistic physics needs
not to be changed in κ-deformed theory1; only for very high energies the
first relation (1.3) implies the modification of Lorentz boost transformations
and new relativistic kinematics.

It should be added still another reason for studying noncommutative
space-times: the quantum gravity; when it is formulated as four dimen-
sional quantum field theory with canonically quantized Einstein action, is
not renormalizable in standard perturbative framework. There were tried
various ways in order to overcome this difficulty: supplementing additional
space dimensions (Kaluza–Klein idea), introducing additional fields and new
symmetries (e.g. supersymmetries), or proposing as fundamental the ex-
tended objects (strings or, in general, case p-branes). Replacing the com-
mutative coordinates by its noncommutative counterparts is also one of pos-
sible theoretical concepts, which, it was hoped, could lead to new quantum
gravity formalism without devastating nonrenormalizable infinities. Such an
approach has been proposed also in the framework of canonical quantiza-
tion scheme of Einstein gravity by introducing new nonlocal parametrization
based on invariant loop variables which became the fundamental geometric
objects. Unfortunately, till present time the nonlocal structure of quan-
tum loop gravity still has not produced an effective way for dealing with
calculational challenges of quantum gravity.

The formalism of noncommutative geometry historically was developed
in two complementary ways: on one side there was studied the formalism
of quantum groups and their representations (noncommutative modules)
[5–7], in other way the noncommutative geometry was considered as the ex-
tension of functional analysis and differential calculus to the noncommuta-
tive algebras [3,4]. Mathematical physics with its stress on the consideration
of symmetries as basic concepts tends to be closer to the first approach where
the notion of deformed symmetries is a primary one; in this minireview we
shall follow such way.

Firstly, in Section 2 we shall present the mathematical preliminaries,
in particular the properties of Hopf algebras and their representations. In
Section 3 we shall derive, starting from the noncommutative examples of
space-times (see (1.2)), the corresponding deformed quantum space-time
symmetries. We stress that for quantum Lie groups and quantum Lie al-
gebras, which are the noncommutative extensions of classical Lie groups
and classical Lie algebras, the basic algebraic tool is provided by Hopf al-
gebras (see e.g. [13]). In this paper we shall consider in some detail only
two examples of quantum deformations of relativistic (Poincaré) symmetries:

1 In relation (1.3) the parameter κ is a fundamental mass parameter, which should be
phenomenologically related with the Planck mass MP.
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the canonical one (see (1.1)) and the κ-deformation (see (1.3))2. It appears
that the canonical deformation is much milder; in particular the canonically
deformed Poincaré–Hopf algebra provides an example of so-called twisted
quantum algebra. In effect, the theory of irreducible representations of
canonically deformed and standard Poincaré algebras are the same; the dif-
ference due to deformation occurs only if we introduce the reducible tensor
product representations. In the case of κ-deformations of Poincaré alge-
bra the change of physical picture is more substantial: also the irreducible
Poincaré representations are modified, what is linked with the deformation of
relativistic kinematics (see Section 4). In Section 5 we shall consider briefly
the canonical (see e.g. [16–20]) as well as the κ-deformed (see e.g. [21–24])
noncommutative field theory. We shall present as the basic building block
in noncommutative QFT the notion of deformed quantized free fields. Usu-
ally, it is conjectured that such noncommutative quantum fields should be
introduced if we take algebraically into consideration the effects of quantum
gravity. In Section 6 we briefly outline the recent noncommutative modifi-
cations of Einstein gravity. In the last Section 7 we present a brief outlook.

2. Hopf algebras and the description of quantum symmetries

The continuous symmetry transformations of a physical system which is
described by finite-dimensional vector space are represented by matrix Lie
group G given by the set of invertible matrices T = (tij), classified further by
the choice of additional conditions (e.g. T+T = TT+ = 1 for unitary groups,
where t+ij = t∗ji). Local (infinitesimal) description of undeformed continuous
symmetries is given by the Lie algebra ĝ = (IA), where [IA, IB] = fCABIC
(A = 1 . . . N = dim G). For matrix groups the Lie algebra generators are
described by matrices IA = (IA)ij which provide group matrix T via the
exponential map

T (α1 . . . αN ) = exp

(
N∑
i=1

αiIi

)
, (2.1)

where the set of numbers (α1 . . . αN ) describe the continuous group param-
eters.

In order to describe the new symmetries of physics based on finite-
dimensional noncommutative geometries (e.g. noncommutative space-time)
one should introduce suitable extensions of Lie groups and Lie algebras, de-
scribed by quantum matrix Lie groups and quantum Lie algebras. These
new mathematical objects are examples of Hopf algebras, which permit to
introduce matrix groups with noncommutative entries.

2 For other deformations of Minkowski spaces, in particular the quadratic ones,
see [14,15].
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The Hopf algebra H = (A,m,A, S, ε) is the unital associative algebra A
with multiplication m: A⊗ A→ A (m(a⊗ b) = ab, a, b ∈ A) and the coal-
gebraic structure described by the coproduct ∆ : A→ A⊗A (in shorthand
notation ∆(a) = a(1) ⊗ a(2)) satisfying the property

∆(a)∆(b) = ∆(ab) . (2.2)

Further Hopf-algebraic structure contains the notion of coinverse (antipode)
S : A→ A and counit ε : A→ C.

The classical matrix Lie groups and Lie algebras have the universal for-
mulae for the coproduct

G : ∆(0)tij = tik ⊗ tkj ,
(
∆(0)(T ) = T ⊗̇T

)
, (2.3)

ĝ : ∆(0)(IA) = IA ⊗ 1 + 1⊗ IA , (A = 1, 2 . . . dim ĝ) . (2.4)

The co-algebraic structure due to the relation (2.2) can be extended
to the algebra of polynomial functions f(T ) on the group G and to the
enveloping algebra U(ĝ) of Lie algebra ĝ.

The quantum extension G → Ĝ of matrix groups permits to introduce
the noncommutative entries T̂ = (t̂ij) satisfying the quadratic equation
RT̂ T̂ = T̂ T̂R, or more explicitly

Rijkl t̂km t̂ln = t̂jl t̂lk Rklmn , (2.5)

where the quantum R-matrix, R = R(1)⊗R(2) ∈ A⊗A, satisfies the quantum
Yang–Baxter equation

R12R13R23 = R23R13R13 , (2.6)

where R12 = R(1)⊗R(2)⊗1, R13 = R(1)⊗1⊗R(2) and R23 = 1⊗R(1)⊗R(2).
The relation (2.6) follows from the associativity of the algebra of quan-

tum matrices T̂ . It should be stressed that for quantum matrix groups the
classical coproduct formula (2.3) remains unchanged

Ĝ : ∆
(
t̂ij
)

= t̂ij ⊗ t̂kj . (2.7)

The quantum counterpart of the pairs of classical groups G and Lie
algebras ĝ linked by the exponential map (2.1) is the pair H, H̃ of dual Hopf
algebras related by the Hopf-algebraic duality relations (a, b ∈ H, ã, b̃ ∈ H̃)

〈∆(ã), a⊗ b〉 = 〈ã, a · b〉 ,〈
ã⊗ b̃, ∆(a)

〉
=
〈
ãb̃, a

〉
,

〈1, a〉 = ε(a) , 〈ã, 1〉 = ε(ã) , (2.8)
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where the nondegenerate scalar product 〈ã|a〉 describes the evaluation map
ã ∈ H̃ calculated on element a ∈ H.

From relations (2.8) follows that duality links the multiplication/comul-
tiplication sectors in Hopf algebras H and H̃, i.e. one can draw the following
figure (Fig. 1), where ! denotes duality relation

Hopf algebra H Hopf algebra H̃

multiplication multiplication

comultiplication comultiplication

Fig. 1. Hopf-algebraic duality links.

One can supplement Fig. 1 by the following comments:

(i) The variety of quantum matrix groups described by the solutions of
YB equation (2.6) corresponds to the variety of choices of coproducts
for the classical Lie algebras. These various coproducts are described
in the lowest order of deformation parameter by so-called classical
r-matrices.

(ii) In the case of quantum Lie algebras one can choose different algebra
bases. There are the ones with more complicated (more deformed)
algebraic sector and simpler (less deformed) coalgebraic formulae —
and vice versa: with main part of deformation present in coalgebraic
relations. In particular, one can find a special basis of quantum Lie al-
gebra in which its algebraic sector is described by classical Lie algebra
and the whole “quantum nature” is contained in coproduct formulae.
The opposite statement, that whole deformation of the quantum Lie
algebra is put in the algebraic sector (i.e. the coproduct can be chosen
primitive, as in (2.4)) is not true — all quantum-deformed Lie alge-
bras have non-primitive (non-cocommutative) coproducts. It should
be added however that the freedom of choice of the bases of quantum
Lie algebras is only a mathematical property. In physical context, for
example if the symmetries include the time translations, in principle
only one choice of basis of time translation generator can be promoted
to the physical Hamiltonian — it is the choice which describes shifts
in physical time variable.

(iii) Summarizing, in the Hopf-algebraic description both algebra and coal-
gebra are equally important. Introducing e.g. only nonlinear modi-
fication of Lie-algebraic relations without providing coproducts does
not inform us whether we deal with quantum symmetries.
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The coproduct and coalgebraic structure is necessary if we wish to con-
sider tensor product representations. The representation module V of Hopf
algebra H is a vector space with the action . : A⊗V → V (a.v ∈ V , where
v ∈ V ) satisfying the conditions (see e.g. [13])

ab . v = a . (b . v) , (2.9)
a . vw =

(
a(1)v) · (a(2)w

)
. (2.10)

From (2.9) follows that the map . describes a representation of A, and
relation (2.10) implies that noncommutativity of the representation module
V is uniquely related with the coproduct of H. If we have a pair of modules
V,W (v ∈ V,w ∈ W ) one obtains consistent braided tensor product ⊗̃ if it
satisfies the relation

a .
(
v⊗̃w

)
= a(1)v⊗̃a(2)w , (2.11)

where ⊗ → ⊗̃ describes the deformation of symmetric standard tensor prod-
uct V ⊗W . From (2.11) follows that because for quantum symmetry we get
that a(1) 6= a(2), the flipped standard tensor product ((a ⊗ b) ◦ (c ⊗ d) :=
ac⊗ bd)

(V ⊗W )T = τ0 ◦ (V ⊗W ) = W ⊗W (2.12)

ceases to be a representation (this follows equivalently from the relation
[∆(a), τ0] 6= 0). In order to introduce in an explicit way the properly trans-
posed representations we should assume that in the tensor product of Hopf
algebras exists an invertible element R̂ ⊂ A ⊗ A called universal R-matrix
which satisfies the formula

∆T(a) = τ0 ◦∆(a) ◦ τ−1
0 = R̂−1 ◦∆(a) ◦ R̂ , ∀a ∈ A . (2.13)

If R̂ satisfies also the relations

(∆⊗ 1)R̂ = R̂13 R̂23 , (1⊗∆)R̂ = R̂13 R̂12 , (2.14)

(1⊗ S)R̂−1 = R̂ , (ε⊗ 1)R̂ = (1⊗ ε)R̂ = 1 (2.15)

the Hopf algebra H = (A,m,∆, S, ε, R̂) is called a quasitriangular Hopf
algebra. In such a case the transposed representation should be defined via
R-matrix as follows(

V ⊗̃W
)T = R̂ ◦

(
W ⊗̃V

)
= R̂ ◦ τ0 ◦

(
V ⊗̃W

)
. (2.16)

Because from (2.13) follows that[
∆(a), R̂ τ0

]
◦

= 0 , ∀a ∈ A , (2.17)
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the definition (2.16) is consistent with the action (2.11) of H on the category
of tensor products. In such a way the R-matrix (see (2.16)) enters into the
definition of braided tensor product V ⊗̃W .

A subclass of quasitriangular Hopf algebras are described by the trian-
gular Hopf algebras, for which one can define a twist factor F̂ (F̂ ∈ A⊗A),
which satisfies the relation

R̂ := F̂T ◦ F̂ −1 . (2.18)

The twist factor F̂ describes the deformation of classical Lie algebra and
produces the following change of primitive coproduct ∆(0) (see (2.4))

∆F = F̂ ◦∆(0) ◦ F̂ −1 . (2.19)

The antipode transforms as well as follows

SF = χ̂ F S(0)
(
χ̂ (F )

)−1
, (2.20)

where
χ̂ F = F(1) · S

(
F(2)

)
, ∆

(
F̂
)

= F̂(1) ⊗ F̂(2) . (2.21)

If the twist F̂ is a two-cochain twist, satisfying the relations

F̂12(∆⊗ 1)F̂ = F̂23(1⊗∆)F̂ , (ε⊗ 1)F̂ = 1⊗ 1 , (2.22)

where F23 =1⊗ F(1) ⊗ F(2) and (∆⊗ 1)F =∆(F(1))⊗ F(2), the universal R̂-
matrix described by formula (2.18) is also quasitriangular (see (2.14)–(2.15)).

The algebra sector of twisted classical Hopf–Lie algebras is not modi-
fied. Therefore, in the case of twisted relativistic symmetries the irreducible
Poincaré algebra realizations (e.g. one-particle sector in QFT) remain un-
changed; the deformation enters only into the description of tensor product
representations. Using more physical terminology twisted deformation en-
ters only into the composition formulae for the multi-particle states in terms
of one-particle states. That sort of modification can be described in deformed
QFT by modified algebras of field oscillators.

3. From noncommutative space-time
to quantum relativistic symmetries

The most direct manifestation of noncommutative geometry in physics
is the appearance of quantum space-time3. In standard mathematical ap-
proach one considers the deformed (quantum) space-time symmetry group

3 One can consider deformation of relativistic space-time as well as of the nonrelativistic
one, with Galilean time as the scalar evolution parameter (see e.g. [25, 26]).
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as a primary objects and one studies noncommutative space-time as its fun-
damental representation module. It is, however, instructive to consider the
opposite way — to see how various models of quantum space-time lead to
the appearance of different quantum groups.

We shall consider three general classes of deformations.

3.1. Canonical noncommutative space-time
and canonical quantum Poincaré algebra

Let us consider the noncommutative space-time (1.1), with constant com-
mutator of noncommutative coordinates x̂µ. In such a space-time the trans-
lations

x̂µ
′ = x̂µ + aµ (3.1)

remain classical because if we assume the covariance of relations (1.1), i.e.

[
x̂µ
′, x̂ν

′] =
i

κ2
θ(0)
µν (3.2)

it follows that
[aµ, aν ] = [x̂µ, aν ] = 0 . (3.3)

If we assume undeformed Lorentz symmetries, the presence of constant ten-
sor θµν in (1.1) breaks Lorentz invariance (in nondegenerate case of θµν
matrix to O(2)×O(1, 1) subgroup). It appears that in such approach the
noncommutativity parameters describe Lorentz symmetry breaking. How-
ever, in the last decade it was realized that when we treat the relation (1.1) as
a one describing the noncommutative representation module of suitably cho-
sen quantum Poincaré group, these relations become covariant (see e.g. [17]).
From the relation (see also (2.9))

Mµν . [x̂ρ, x̂τ ] = 0 (3.4)

follows that for the canonically deformed Poincaré algebra one should intro-
duce the nonprimitive coproducts of Mµν

∆(Mµν) = ∆(0)(Mµν)− 1
κ2
θ(0)
µ

ρ Pν ∧ Pρ . (3.5)

Such coproducts are obtained4 if we deform the classical Poincaré–Hopf al-
gebra by the following twist

F̂ = exp
(
i

κ2
θ(0)
µν P

µ ⊗ P ν
)
. (3.6)

Using (2.19) we obtain from (3.6) the formula (3.5).
4 The coproducts ∆(Pµ) are not changed.
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The presence of twist F̂ permits to introduce the explicit multiplication
rule (star product) describing deformed product of functions on classical
Minkowski space xµ [17, 27,28]

f(x) ? g(x) = m
(
F̂ −1 ◦ f(x)⊗ g(x)

)
. (3.7)

Star product (3.7) via homomorphic map (called Weyl map)

f(x̂)g(x̂) W−→ f(x) ? g(x) (3.8)

represents the noncommutative multiplication in the algebra of functions
f(x̂). For twist (3.6) the star product formula (3.7) is provided by the
Moyal product

f(x) ?θ g(x) = f(x) exp
{
i

κ2

�
∂
µ θ(0)

µν

�
∂
ν

}
g(x) , (3.9)

which is obtained from (3.6)–(3.7) if we insert the differential realization of
classical Poincaré algebra generators

Pµ =
1
i
∂µ , Mµν =

1
i

(xµ∂ν − xν∂µ) . (3.10)

In particular, one can confirm by putting f = xµ, g = xν that ([A,B]? :=
A ? B −B ? A)

[xµ, xν ]?θ =
i

κ2
θ(0)
µν . (3.11)

3.2. Lie algebraic deformations and the example of κ-deformation

Next class of space-time deformations is described by Lie-algebraic rela-
tion

[x̂µ, x̂ν ] =
1
κ
θ(1)
µν

ρx̂ρ , (3.12)

where the constant dimensionless coefficients θ(1)
µν

ρ should satisfy the Jacobi
identities

θ(1)
µν

ρ θ(1)
ρλ
τ + cycl(µ, ν, λ) = 0 . (3.13)

The introduction of noncommutative translations

x̂µ
′ = x̂µ + âµ , (3.14)

which preserve unchanged the relations (3.12) leads to the following condi-
tions

[âµ, âν ] =
1
κ
θ(1)
µν

ρâρ , [âµ, x̂ν ] = 0 . (3.15)
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The addition relation (3.14) can be represented as a primitive coproduct of
the noncommutative translation generators x̂µ

∆(x̂µ) = x̂µ ⊗ 1 + 1⊗ x̂µ , (3.16)

where we identify in (3.16) x̂µ ⊗ 1 ≡ âµ and 1⊗ x̂µ = x̂µ.
The relation (3.16) for particular choices of the structure constant θ(1)

µν
ρ

can be extended to the quantum Poincaré group P q
4 = (x̂µ, Λ̂µν), where

Λ̂µ
ν describes the deformed Lorentz group parameters. We add that almost

complete classification of the Hopf-algebraic deformations of Poincaré group
has been presented by Podleś and Woronowicz ([29]; see also [30]). How-
ever, only a part of the Lie-algebraic deformations of Poincaré group can be
described by the introduction of the twist factor F [31]. In particular first
and the most familiar Lie-algebraic deformation of Poincaré symmetries, the
κ-deformation, cannot be described by a twist5. The κ-deformed Minkowski
space [35–37]

[x̂j , x̂i] =
i

κ
x̂0 , [x̂i, x̂j ] = 0 (3.17)

is enlarged to κ-deformed Poincaré group by supplementing of the following
deformed Lorentz sector [38]

[Λµν , Λ
ρ
τ ] = 0 , ΛµνΛντ = δµτ , (3.18)

[Λµν , xρ] = − i
κ

[
(Λµ0 − δ

µ
0)Λρν + (Λ0

ν − δ0
ν)δµρ

]
. (3.19)

For the physical applications more useful appears to be the dual picture
of the κ-deformed quantum Poincaré algebra [9, 36]. We shall present it
below in a so-called bicrossproduct form6:

(a) algebraic sector (Pµ = (P0, Pi), Mµν = (Mi, Ni))

[Mµν ,Mρτ ] = i (ηµτMνρ − ηµρMντ + ηνρMντ − ηντMµρ) ,
[Mi, Pj ] = iεijkPk , [Mi, P0] = i Pi ,

[Ni, Pj ] = i δij

[
κ

2

(
1− e−

2P0
κ

)
+

1
2κ

~P 2

]
− i

κ
Pi Pj ,

[Ni, P0] = i Pi ; (3.20)

5 We add here that κ-deformation has been described by various twists (see e.g. [32–34])
only in the approximate sense.

6 For the definition of bicrossproduct Hopf algebra see [13]. In bicrossproduct basis it is
technically easier to construct the dual pair of quantum Poincaré group and quantum
Poincaré algebra.
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(b) coalgebraic sector

∆(P0) = P0 ⊗ 1 + 1⊗ P0 ,

∆(Pi) = Pi ⊗ e−
P0
κ + 1⊗ Pi ,

∆(Mi) = Mi ⊗ 1 + 1⊗Mi ,

∆(Ni) = Ni ⊗ e−
P0
κ + 1⊗Ni −

1
κ
εijkMj ⊗ Pk ; (3.21)

(c) coinverse (antipode)
S(P0) = −P0 , S(Mi) = −Mi ,

S(Pi) = −e
P0
κ Pi , S(Ni) = e−

P0
κ Ni +

1
κ
εijke

P0
κ PjMk . (3.22)

Two Casimirs of Poincaré algebra, describing the rest mass and spin, are
described by:

(a) κ-deformed mass Casimir [36,37]

C
(κ)
2 = 2κ

(
sinh

P0

2κ

)2

− ~p 2e−
P0
κ , (3.23)

(b) κ-deformed relativistic spin Casimir [39,40]

C
(κ)
4 =

(
cosh

P0

κ
−

~P 2

4κ2

)
W 2

0 − ~W 2 , (3.24)

W0 = ~P · ~M , Wi = κMi sinh
P0

κ
+ εijk PjMk . (3.25)

We see from (3.20)–(3.21) that only the subalgebra O(3) ⊕ R, describing
space rotations and time translations, remains classical as a Hopf alge-
bra. The deformation of the coproduct for the three-momentum operator
(see (3.21)) leads to the modification of the Abelian addition law of the
three-momenta.

3.3. Quadratic deformations of Minkowski space

Such deformations are described by the algebra

[x̂µ, x̂ν ] = θ(2)
µν

ρτ x̂ρx̂τ , (3.26)

which does not contain any dimensionfull parameter (see e.g. [14,15]). A par-
ticular example of such deformation is obtained if we deform the standard
commutator by q-deformed one (see e.g. [10])

[A,B] = AB −BA→ [A,B]q = AB − qBA . (3.27)
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The noncommutative translations (3.14) which preserve the commuta-
tion relations (3.26) should satisfy the following relations

[âµ, âν ] = θ(2)
µν

ρτ âρ âτ , (3.28)

[âµ, x̂ν ] = θ(2)
µν

ρτ âρ x̂τ . (3.29)

From (3.29) follows that the shift (3.14) cannot be described by the coprod-
uct formula (3.16) unless we introduce the braided tensor product with its
symmetry properties defined as follows

x̂µ⊗̃ x̂ν = θ(2)
µν

ρτ x̂ρ⊗̃ x̂τ , (3.30)

where θ(2)
µν

ρτ plays the role of braid factor.
In such a case the noncommutative translations (3.28)–(3.29) can be

described again by the classical addition formula

∆(x̂µ) = x̂µ⊗̃ 1 + 1⊗̃ x̂µ . (3.31)

Due to the appearance of braided tensor product the quadratic deforma-
tion of space-time is described by the translation sector of braided quantum
group [13, 41]. In such a case the deformation does change besides the al-
gebra and coalgebra relations as well the definition of tensor product. We
add that the braided quantum Poincaré symmetries leading to the choice
of quadratic deformation of space-time coordinates (e.g. the example of so-
called q-deformation of Poincaré algebra) has been investigated already in
early nineties [10,42,43].

4. Deformation of classical and quantum mechanics

The models of classical and quantum classical mechanics formulated in
phase space YA = (xµ, pµ) are specified if we provide:

(a) Basic symplectic structure described by Poisson brackets (PB)

ωAB(Y ) = {YA, YB} . (4.1)

Antisymmetric two-tensor (4.1) defines the two-form ω2 = ωAB dYA ∧
dYB which due to the Jacobi identities is closed

dω2 = 0 . (4.2)

In quantized dynamical models the symplectic structure determines
the structure of equal time (ET) commutators in quantum phase space
ŶA = (x̂µ, p̂µ).
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(b) The Hamiltonian H(YA) which in Hamiltonian framework specifies the
dynamics. In order to introduce the Lagrangian one should introduce
the Liouville one-form Ω1 = ΩA dYA, where

ω2 = dΩ1 (4.3)

Lagrangian density in phase space is defined as follows

L = ΩA ẎA −H(YA) . (4.4)

The deformed relativistic phase space should incorporate in its prequan-
tized version the PB of space-time coordinates corresponding to the non-
commutativity relation (1.2). In both canonical and κ-deformed quantum
deformations the fourmomentum generators are Abelian, i.e. we can assume
in phase space that their PB counterpart looks as follows

{pµ, pν} = 0 . (4.5)

The remaining “crossed” PB relations {xµ, pν} can be obtained in two ways:

(i) One can always add the “crossed” relations to the PB of coordinates (we
shall consider here explicitly the PB counterparts of (1.1) and (3.17))
and to the relations (4.5) in algebraically consistent way (Jacobi iden-
tities). In such a way we need not to consider the possible quantum
symmetries of the system, and we obtain a large class of possible PB
structures [37,44,45].

(ii) One can derive uniquely the deformed phase space structure from the
dual pair of Hopf algebras describing deformed symmetries: quantum
Poincaré group and quantum Poincaré algebra. For particular de-
formations, if space-time translations and fourmomentum generators
form respectively the pair of dual Hopf subalgebras (Hx, Hp), the cor-
responding quantum phase space is described by the so-called Heisen-
berg double construction [46,47]. If x ∈ Hx and p ∈ Hp, the quantum
deformation of the Heisenberg algebra relation (we put ~ = 1)

[x̂µ, p̂ν ] = i ηµν (4.6)

is given by the cross-multiplication formula (no summation on r.h.s.!)

x̂µ · p̂ν = p̂(1)
ν 〈x̂(1)

µ , p̂(2)
ν 〉x̂(2)

µ , (4.7)

where ∆(x̂µ) = x̂
(1)
µ ⊗ x̂(2)

µ , ∆(p̂µ) = p̂
(1)
µ ⊗ p̂(2)

µ , and 〈x, p〉 denotes the
nondegenerate scalar product in Hx⊗Hp. The standard dual bases in
Hx, Hp are described by the relations

〈x̂µ, p̂ν〉 = i ηµν . (4.8)
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Because x̂µ and p̂µ are the modules of deformed relativistic symmetries,
the construction of phase space based on crossed relations (4.6) is
covariant under the quantum symmetries.

If the Hopf subalgebras Hx and/orHP cannot be extracted respectively from
quantum Poincaré group and/or quantum Poincaré algebra, the Heisenberg
double construction should be applied to the whole dual pair of deformed
Poincaré group and Poincaré algebras. Such generalized phase space will
contain all noncommutative Poincaré group coordinates (x̂µ, Λ̂µν) and gen-
eralized noncommutative momenta (p̂µ, m̂µν). In such a case the phase space
(x̂µ, p̂µ) cannot be considered separately from the angular momentum de-
grees of freedom (Λ̂ ν

µ , m̂µν), and we get the deformation of dynamics which
is formulated on 10-dimensional Poincaré group manifold (for undeformed
case see e.g. [48]).

Now we shall consider our two specific deformations.

4.1. Canonical deformation
In canonical case we cannot employ the construction of quantum phase

space based on Heisenberg double formula, because in canonically deformed
quantum Poincaré group the algebra of noncommutative translations is not
closed. Due to the formula (3.5) and duality we obtain the following rela-
tion [49]

[x̂µ, x̂ν ] =
i

κ2

(
θ(0)
µν − θ(0)

ρτ Λ̂
ρ
µ Λ̂

τ
ν

)
, (4.9)

i.e. we can only define the θ-deformed covariant phase space on the whole
canonically deformed Poincaré group manifold.

In algebraic approach (see (i)) we can, however, easily complete the
phase space algebra by adding to the relations (1.1) and (4.4) the classical
PB algebra relations

{xµ, pν} = i ηµν . (4.10)

The relations (1.1), (4.4), (4.10) are generated by the following symplectic
form

ω
(0)
AB =

1
κ2
θ(0)
µ

νdpµ ∧ dpν + dpµ ∧ dxµ . (4.11)

It follows that (see (4.3))

Ω
(θ)
1 =

1
κ2
θ(0)
µ

νpµdpν + pµdxµ (4.12)

and the counterpart of free particle Lagrangian in canonically deformed
phase space looks as follows

L (θ)
o = pµẋµ + θµνpµ ṗν −H(xµ, pµ) . (4.13)
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In D = 2 + 1 the model leading to the first order action (4.13) has
been firstly introduced in [50] (see also [51, 52]). The model (4.13) can be
expressed, however, in terms of canonical variables (Xµ, pµ), where Xµ =
xµ − θ ν

µ pν , because modulo total differential the Liouville one-form (4.12)
can be written as describing the standard free classical particle

Ω
(θ)
1 = −Xµdpµ , (4.14)

where {Xµ, Xν} = 0 and {Xµ, pν} = ηµν . We add that more general frame-
work for the classical mechanics in θ-deformed space-time has been presented
in [53].

4.2. κ-deformed classical and quantum mechanics

First studies of κ-deformed classical and quantum mechanics were pre-
sented in [37], where the algebraic approach (see (i)) was used. In particular
in [37] it was initiated the method of representing the κ-deformed phase
spaces in terms of standard relativistic phase space variables. Such a way of
describing κ-deformed phase geometry has been recently further developed
(see e.g. [44, 45]) in the framework of so-called Doubly Special Relativity7.

Here we shall describe the κ-covariant approach, obtained by application
of formula (4.6) to the construction of the κ-deformed phase space. The
κ-deformed dual Hopf subalgebras Hx and Hp take the following form

Hx : [x̂0, x̂i] =
i

κ
, [x̂i, x̂j ] = 0 ,

∆x̂i = x̂i ⊗ 1 + 1⊗ x̂i , (4.15)

Hp : [p̂µ, p̂ν ] = 0 ,
∆(p̂0) = p̂0 ⊗ 1 + 1⊗ p̂0 ,

∆(p̂i) = p̂i ⊗ e−
bp0
κ + 1⊗ p̂i . (4.16)

Using (4.7) one gets from (4.15)–(4.16) the following crossed relations
[46,47,58]

[x̂k, p̂l] = i δkl , [x̂0, p̂l] =
i

κ
p̂l ,

[x̂k, p̂0] = 0 , [x̂0, p̂0] = −i . (4.17)
7 Doubly Special Relativity (DSR) has been initiated by Amelino-Camelia [54]; see
also [55, 56]. In DSR it is considered the extension of Special Relativity framework
introducing besides the light velocity a second fundamental parameter describing
mass or length. The κ-deformation of relativistic symmetries and the theory of non-
linear realizations of classical Poincaré symmetries are two mathematically the most
complete realizations of DSR ideas [57].
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The phase space relations (4.17) are generated by the following symplectic
form

ω
(κ)
2 = dpµ ∧ dxµ −

1
κ

(xidpi ∧ dp0 + pidxi ∧ dp0) . (4.18)

One gets

Ω
(κ)
1 = pµdxµ −

1
κ

(~p ~x)dp0 . (4.19)

The κ-deformed Lagrangian based on the one-form (4.18) has been recently
considered in [59]. It should be added that if we introduce the variables

X0 = x0 −
1
κ
~p~x , (4.20)

the one-form (4.19) can be transformed into the standard one, given by
(4.14).

The property that deformed phase space can be embedded into the stan-
dard undeformed one tells us that the quantum deformation can be rep-
resented by the noncanonical transformations of the standard phase space
which makes the phase space curved [60, 61]. In particular, it has been
shown [62] that the classical curved structure in fourmomentum space due
to κ-deformation can be described by de Sitter geometry. We conclude that
the formulation of deformed dynamics in curved phase space is provided by
the well-known Hamiltonian formalism with noncanonical symplectic struc-
ture

YA = ωAB
∂H

∂YB
. (4.21)

5. Deformed noncommutative field theory

5.1. General considerations

In the description of perturbative quantum field theory the main building
blocks are quantum free fields. In this section we shall consider the quantum
deformations of free fields.

The standard (undeformed) free scalar field is described by the formula

φ0(x) =
1

(2π)4

∫
d4pA(p)δ

(
p2 −m2

)
eipx

=
1

(2π)3

∫
d3~p

2ω(~p)

(
a+(~p) ei(~p~x−ωt) + a(~p)e−(~p~x−ωt)

)
, (5.1)

where ω(~p) = (p2 +m2)
1
2 and a+(~p) = A(ω(~p), ~p), a(~p) = A(−ω(~p),−~p).
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For undeformed classical fields the exponentials eipx and A(p) are usual
functions; for quantum free fields the functions A(p) (i.e. a(~p) and a+(~p))
are becoming field oscillators

[a(~p), a+(~q)] = 2ω δ3(~p− ~p ′) , (5.2a)
[a(~p), a(~q)] = [a+(~p), a+(~q)] = 0 . (5.2b)

The noncommutative modification of the free fields (5.1) can be obtained by
the superposition of the following three operations:

(i) We replace the classical Minkowski space-time coordinates by the non-
commutative ones (see (1.2)). The algebra of functions on noncommu-
tative space-time can be represented homomorphically as the algebra
of functions on classical Minkowski space with the multiplication de-
scribed by the ?-product. As we mentioned already such realization is
also denoted as the Weyl map.

(ii) We modify the algebraic structure of the algebra of Fourier field com-
ponents A(p). Even in the case of classical deformed field theory the
standard functions A(p) are becoming the noncommuting operators.
There are two ways of introducing such a modification:

1. One modifies the notion of the multiplication of the operators
A(p) = a(~p), a+(~p), e.g.

a(~p) · a(~q) −→ a(~p) ◦ a(~q) , (5.3)

where ◦-multiplication usually can be expressed in momentum
space as the standard multiplication with nonlocal kernel

a(~p) ◦ a(~q) =
∫
d3~r d3~sK(~p, ~q;~r,~s)a(~r)a(~s) . (5.4)

One can further postulate that for quantized fields the defor-
mation of the algebra (5.2a) is described only by the replace-
ment (5.3) of the multiplication rule, i.e. the deformed field oscil-
lator algebra is described by the commutation relations analogous
to (5.2a)–(5.2b)([A,B]◦ = A ◦B −B ◦A)

[â(~p), â+(~q)]◦ = 2Ω(~p) δ3(~p− ~q) , (5.5a)
[a(~p), a(~q)]◦ = [a+(~p), a+(~q)]◦ = 0 . (5.5b)

The function Ω(~p) may be different from ω(~p) if the mass-shell
condition p2 −m2 = 0 is modified by deformation.
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2. The modification of relations (5.2a) can be obtained as well by
the introduction of braided form of the commutator

[A(p), A(q)]−→
[
Ã(p), Ã(q)

]
br

:

:= Ã(p) Ã(q)−
∫
d4s d4tRξ(p, q, s, t)Ã(s) Ã(t) , (5.6)

where the braid factor Rξ satisfies suitable additional conditions
(see e.g. [63]), in particular in “no deformation” limit ξ → 0 be-
comes the local flip operator

Rξ(p, q; s, t)−−−−−−−−−→
ξ → 0

δ4(p− t)δ4(q − s) . (5.7)

By deformation procedure the classical free fields are becoming
the braided free fields, with its Fourier modes A(p) braided-
commutative [

Ã(p), Ã(q)
]

br
= 0 . (5.8)

(iii) Third possibility of deforming the algebra of free fields is generated in
the product of two deformed fields by possible lack of commutativity
between the noncommutative exponentials and field oscillators8

eipbx Â(q) 6= Â(q) eipbx . (5.9)

Such noncommutativity is justified if we observe that the algebra of
noncommutative exponentials and field oscillators describe two differ-
ent representation modules of deformed Poincaré algebra. It is known
from the theory of tensor representations of quasitriangular quantum
groups that between two factors in tensor product the quantum de-
formation introduces nontrivial braiding, determined by the form of
universal R-matrix (see (2.16)).

It should be added that the quantum modification of formula (5.1) should
additionally take into consideration the modification of mass-shell condi-
tion, changing the classical relativistic dispersion relation p0 = ω(~p) and
the numerical factor in the relation (5.2a) (see (5.5a)). In general case the
integration measure d4k should be also modified, in a way preserving the
invariance under the deformed Lorentz transformations in four-momentum
space.

8 Braiding (iii) has been e.g. described in [20] (see e.g. the last formula in (4.6)).
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5.2. Canonically deformed quantum free fields

For canonical deformation the noncommutativity of coordinates (1.1) is
not accompanied by the modification of mass-shell condition, and because
the Lorentz transformations in algebraic sector are not modified, the inte-
gration measure d4k in fourmomentum space remains unchanged.

We recall here that the canonical deformation of relativistic symmetries
(Poincaré group and Poincaré algebra) are described by a twist factor (3.6),
what permits in principle to determine all three factors (i), (ii), (iii) entering
into the deformation of free fields. The deformation (i) due the noncommu-
tativity (1.1) of local field arguments is unique, and obtained by the replace-
ment of standard multiplication by the nonlocal Moyal–Weyl star product
of fields (3.9). However, concerning the choices of deformations (ii) and (iii)
it has not been achieved an agreement in the literature (see e.g. [20]). I shall
describe the choice which may be considered privileged ([65]; see also [64]).

Let us consider firstly the factor (i), the noncommutative deformation
of the classical space-time coordinates. From (1.1) follows the formula

eipbx · eiqbx = ei(p+q)bx e− i
2
p θ q 6= eiqbx · eipbx . (5.10)

If we assume that an additional pair of coordinates ŷµ satisfies the algebra

[x̂µ, ŷν ] =
i

κ2
θ(0)
µν , (5.11)

[ŷµ, ŷν ] =
i

κ2
θ(0)
µν , (5.12)

with the relation (5.11) introducing suitable braiding factor between two
Poincaré algebra modules X̂ = (x̂µ) and Ŷ = (ŷµ), we obtain the following
generalization of (5.10)

eipbx · eiqby = ei(pbx+qby) e−
i
2
p θ q . (5.13)

The multiplication rule (5.13) in the limit ŷµ → x̂µ leads consistently to
(5.10).

The set of algebraic relation (5.13) is represented on the space of classical
exponentials if we introduce the Weyl map

eipbx · eiqby W−→ eipx ?θ e
iqy , (5.14)

with ?θ — star product defined by the formula (3.9) extended to bilocal
products

f(x) ?θ g(y) = f(x) exp
{
i

κ2

�
∂
µ
x θ

(0)
µν

�
∂
ν
y

}
g(y) . (5.15)
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The relation (5.15) for general twist factor F̂ corresponds to an extension of
the formula (3.7) to the bilocal ?θ-product of functions f(x), g(y).

In order to obtain second factor (see (ii)) defining the algebra of deformed
free quantum fields, we can apply the relation (3.7) as well to the description
of the deformed multiplication (see (5.3)) of functions describing field quanta
in momentum space. We get

Â(p) ◦ Â(q) W−→ A(p) ?θ A(q) = A(p) exp
{
i

κ2
pµ θ(0)

µν q
ν

}
A(q)

= exp
i

κ
pµ θ(1)

µν q
ν A(p)A(q) , (5.16)

where p0 = ω(~p), q0 = ω(~q). The formula (5.16) describes in unified way the
deformed products of the creation and annihilation operators a(~p), a+(~p).
Further, in accordance with requirement that the whole deformation is the
modification of the multiplication rule, we postulate the standard oscillator
algebra relations (5.5a)–(5.5b), with Ω(~p) = ω(~p).

The remaining part of the deformation is the explicit description of the
noncommutativity (5.9) via braid factor (see (iii)). For that purpose we
should use formula (2.16) where R̂ is given by formula (2.18), with F given
by (3.6). Because F Tθ = F−1

θ we obtain that

Rθ = F−2
θ = exp

{
− 2i
κ2
θ(0)
µν P

µ ⊗ P ν
}
, (5.17)

and the twist factor causing inequality (5.9) leads to the equation

eipxA(p) = e−
2i
κ2 p

µθ
(0)
µν q

ν

A(p)eipx . (5.18)

Let us take now into consideration all three deformation factors described
by the formulae (5.15), (5.16) and (5.18) and substitute into the product of
fields

φ0(x̂)φ0(ŷ) W−→ φ0(x) ~θ φ0(y) . (5.19)
One can check that the three phase factors in momentum space following
from (5.15), (5.16) and (5.18) do cancel. We obtain therefore in effect the
multiplication rule of standard free fields, i.e.

φ0(x) ~θ φ0(y) = φ0(x)φ0(y) , (5.20)

because the total multiplication ~θ of canonically deformed fields which
is composed by three operations given by (5.15), (5.16) and (5.18) gives
identity. Calculating in quantum case the commutator, we obtain

[φ0(x), φ0(y)]~ = [φ0(x), φ0(y)]

=
1
i
∆
(
x−y;m2

)
=

1
(2π)3

∫
d4pε(p0)δ

(
p2−m2

)
eipx.(5.21)
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We see therefore that we obtained a sequence of deformations, which can-
cel each other and lead to standard free quantized fields — with nonlo-
cal multiplication of space-time functions, modified field oscillators algebra
(i.e. introducing modified statistics [66]) and “compensation” of both men-
tioned effects by suitably chosen braid factor.

5.3. κ-deformed quantum free fields

The κ-deformation of free quantum fields is more complex in comparison
with canonical deformation described in last subsection. In particular:

1. The mass-shell condition p2 −m2 = 0 is modified (see (3.23)) and it
depends on the chosen κ-deformed Poincaré basis. This modification
changes the relativistic energy-momentum relation p◦ = ω(~p) as well
as the functional factor in the algebra of field oscillators (see (5.2a)).

2. The Lorentz-invariant measure is changed; in bicrossproduct basis it
is given by the following modification (also [67])

d4k → [d4k]κ = e
3p◦
κ d4k . (5.22)

3. Unfortunately we do not know the universal R̂-matrix for the κ-de-
formed Poincaré algebra. Because the classical r-matrix describing
κ-deformations satisfies modified Yang–Baxter equation, we know for
sure that the κ-deformation of Poincaré algebra cannot be described
by the cocycle twist, satisfying the relations (2.22). If we postulate,
however, the existence of similarity map, transposing the coproducts
(see (2.19)) it was argued recently that such a cochain twist F̂ exists
only in the category of quasi-Hopf alebras [68, 69].

Recently, there were described κ-deformed free quantum fields with modified
algebra of oscillators [24,70,71] but they correspond only to the approximate
description of κ-deformation. Indeed, further it has been shown [72] that
the deformation of oscillators algebra proposed firstly in [70] can be obtained
by twist deformation of the classical Poincaré algebra by the following twist
factor

Fκ = exp
i

κ
D ∧ P0 , (5.23)

where D is the dilatation operator which defines the Weyl extension of
Poincaré algebra (Mµν , Pµ) → (Mµν , Pµ, D). Because the carrier algebra
of the twist (5.23) does not belong to Poincaré algebra, it leads to unwanted
difficulties, such as nonclosure of the Poincaré coalgebra (the coproducts of
boost generators depend on D).
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According to our opinion the formulation of the κ-deformed field theory
which is covariant under arbitrary change of the κ-deformed frames described
by Hopf algebra (3.20)–(3.22) is still the challenge for the future.

6. Quantum deformations of Einstein gravity

Quantum gravity, which should unify the geometric framework of Gen-
eral Relativity with the principles of quantum theories is now the most
fascinating and unsolved subject of fundamental physics. Direct quantiza-
tion of Einstein–Hilbert action (Einstein gravity) using perturbative meth-
ods leads to nonrenormalizable divergences and conceptual problems. If the
perturbative methods should better succeed, it is necessary to introduce
new perturbative expansions, describing for example at lowest order the
Schwarzschild solution9. One seeks usually the removal of nonrenormaliz-
ability by embedding gravity in larger dynamical systems, like supergravity
or superstring theory. Other way which has been also studied recently is to
consider Einstein action on modified, noncommutative space-time as non-
linear noncommutative field theory.

If the noncommutative structure of space-time can be derived by the in-
troduction of twist factor F defining twisted Poincaré–Hopf algebra, one can
pass from the standard (pseudo) Riemannian geometry of general relativity
to deformed gravity by introduction of suitable ?-products (see e.g. [74–76]).
Out of possible three sources of deformations in QFT, considered in Section 5
(see (i), (ii) and (iii)) only the first one (see (i)), due to the replacement of
classical space-time by noncommutative set of coordinates, has been taken
into consideration. In such a framework the algebra of field oscillators de-
scribing gravitons is still described by standard undeformed oscillator alge-
bra.

The deformed Einstein–Hilbert action is given by the nonlocal expression

S̃EH =
∫
d4x εµνρτ εabcd e

a
µ ? R̃

bc
νρ ? e

d
τ , (6.1)

where
R̃bcνρ = ∂[µω̃

bc
ν] + ω̃ bf[µ ? ω̃

c
f ν] , (6.2)

and spin connection ω̃bcν can be expressed as nonlocal function of vierbeins
obtained by solving the equation T̃ aµν = 0 which describes vanishing non-
commutative torsion

T̃ aµν = ∂[µe
a
ν] − ω

a
b[µ ? e

b
ν] . (6.3)

9 In standard perturbation theory the Schwarzschild solutions are described by infinite
sum of tree graphs [73].
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If we introduce the ?-deformed determinant det? e of the vierbein fields
matrix, the action for deformed Einstein gravity can be written as well as
the ?-deformation of standard form of the Einstein–Hilbert action

S̃EH =
∫
d4x εµνρτ det ?e ? eaµ ? Rabρτ ? e

b
τ . (6.4)

The introduction of ?-multiplication permits to introduce ?-deformed differ-
ential calculus. We characterize the noncommutative deformation of general
curved manifold by ?-deformed Cartan equations describing the deformed
torsion and deformed curvature (see the formulae (6.2), (6.3)). The only
local quantities are vierbeins eaµ; the composite objects like spin connection
ω̃abµ or metric tensor g̃µν given by formula

g̃µν = 1
2

(
eaµ ? eaν + eaµ ? ebµ

)
(6.5)

are nonlocal. The deformed diffeomorphisms δ?ξ = ξµ? ∂µ satisfy the braided
commutation relations (see (2.17)); R̂ = R(1) ⊗R(2)

δ?ξ δ
?
η − δ?(R(1)η)

δ?
(R(2)ξ)

≡
[
δ?ξ , δ

?
η

]
?

= δ(ξ×η)µ∂µ , (6.6)

where (ξ × η)µ = ξν? ∂νηµ − ην? ∂νξµ. The composition of two diffeomor-
phism is modified and described by twisted coproduct ∆F (δ?ξ ) what leads to
non-Abelian modification of Leibniz rule

standard Leibniz rule twisted Leibniz rule
∆(0)(δξ) = δξ ⊗ 1 + 1⊗ δξ −→ ∆F (δ?ξ ) = δ

?(1)
ξ ⊗ δ?(2)

ξ .
(6.7)

The deformed Riemannian geometry has been recently studied for arbi-
trary cocycle twist describing triangular Poincaré–Hopf algebra [76], how-
ever, the explicit calculations of quantum corrections following from ac-
tions (6.1) or (6.4) has been studied mostly for the canonical twist (3.6). If
we expand the deformed Riemannian scalar curvature R? = e µ

a ? Rabµν ? e
ν
b

into the power serie in canonical deformation parameters θ(0)
αβ

R? = R(0) +
1
κ2
θ

(0)
αβR

αβ +
1
κ4
θ

(0)
αβ θ

(0)
γδ R

αβγδ +O
(

1
κ6

)
, (6.8)

it has been shown [77, 78] that the first correction, proportional to 1
κ2 van-

ishes. Using the technique of Seiberg–Witten deformation map analogous
conclusion about the first order correction has been obtained for Lie-algebraic
deformations [79], in particular for the κ-deformation. It can be added that
for the case of arbitrary coordinate-dependent deformation parameter θαβ(x̂)
it has been recently argued [80] that the first order correction is not vanish-
ing.
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7. Final remarks

The noncommutative space-time (1.2) and consistent replacement of
standard Poincaré symmetries by quantum ones are the starting points of
our approach. The modification introduced by noncommutativity should be
present at ultrashort Planckian distances, which can be explored only by
energies of probing particles corresponding to Planck mass MP ' 1019 GeV.
We recall that the scale of energies which is achieved in LHC is of the order
of 10 TeV ' 104 GeV i.e. we see that the particle accelerators are not able
to check directly the quantum gravity effects. The only chance is to go be-
yond Earth with experimental set-ups and study the astrophysical effects, in
particular the consequences of the processes at very early “quantum” stage
of the Universe.

The mathematical framework presented in this paper has various alter-
natives. Besides the loop quantum gravity (LQG) approach there are con-
sidered discrete versions of gravity models (see e.g. [81,82]) and the spectral
point of view on noncommutativity in gravity presented by Connes and
his collaborators (see e.g. [83, 84]). In the last approach the total space
in elementary particle physics is the product of 4-dimensional Riemannian
space-time and finite non-Abelian algebra F (see10), reflecting the internal
symmetry structure of Standard Model. The algebra F is a finite noncom-
mutative geometry, which can be represented by algebra of matrices. In
order to obtain the quantum gravity effects at very high energies, the au-
thors conjecture in somewhat poetic way that also the gravitational sector
becomes noncommutative [[84], p. 18]: The small amount of noncommuta-
tivity encoded in finite geometry F ... will gradually creep in and invade
the whole algebra of coordinates which will become a huge matrix algebra at
Planck scale.

An important point in studying the noncommutative structures is to
determine the measure of noncommutativity which should be a dynamical
quantity. One can conjecture that the description of noncommutative gravity
is incomplete without some dynamical equations determining the function
θµν(x̂) in (1.2)11. In dynamical Seiberg–Witten model of noncommutative
D-brane coordinates described by the end points of D = 10 strings the
noncommutativity parameter is a function of dynamical geometric tensor
fieldsBµν , which enter into metric description ofD = 10 gravity. By analogy,
even in pure quantum gravity described via vierbeins by deformed Einstein
equations, there should be another equation, determining dynamically the
local noncommutativity measure θµν(x)

θµν(x) = θµν [eaµ;x] . (7.1)
10 F is not related with the twist factor; we simply use the original Connes notation.
11 Such a point of view was also advocated by S. Doplicher.
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If noncommutative approach to quantum gravity aspires to a closed effec-
tive framework, without such additional equations permitting to determine
dynamically the “amount of noncommutativity” the formulation is not com-
plete.

Valuable discussions with Mariusz Woronowicz are acknowledged. The
author would like to thank the organizers of the L Cracow Summer School
of Physics, in particular Michał Praszałowicz, for invitation and warm hos-
pitality in Zakopane. The paper has been supported by the Ministry of
Science and Higher Education grant NN 202-318534.
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