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We study the properties of strange and charm mesons in hot and dense
matter within a self-consistent coupled-channel approach for the experimen-
tal conditions of density and temperature expected for the CBM experiment
at FAIR/GSI. The in-medium solution at finite temperature accounts for
Pauli blocking effects, mean-field binding of all the baryons involved, and
meson self-energies. We analyse the behaviour in this hot and dense envi-
ronment of dynamically-generated baryonic resonances together with the
evolution with density and temperature of the strange and open-charm me-
son spectral functions. We test the spectral functions for strange mesons
using energy-weighted sum rules and finally discuss the implications of the
properties of charm mesons on the D4(2317) and the predicted X (3700)
scalar resonances.

PACS numbers: 11.10.St, 12.38.Lg, 14.20.Lq, 14.40.Lb

1. Introduction

Over the last decades strangeness has been a matter of extensive study
in connection to exotic atoms [1] as well as heavy-ion collisions at SIS/GSI
energies |2]. Phenomenology of antikaonic atoms shows that the K feels an
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attractive potential at low densities. This attraction results from the modi-
fied s-wave A(1405) resonance in the medium due to Pauli blocking effects [3]
together with the self-consistent consideration of the K self-energy [4] and
the inclusion of self-energies of the mesons and baryons in the intermediate
states [5]. Attraction of the order of —50 MeV at normal nuclear matter
density, po = 0.17fm ™3, is obtained by different approaches, such as unita-
rizated theories in coupled channels based on meson-exchange models [6] or
chiral dynamics [5]. Higher-partial waves beyond the s-wave contribution
have been also studied [7-9] as they become relevant for heavy-ion collisions
at beam energies below 24 GeV [2].

Also the charm degree of freedom is a recent topic of analysis in heavy-
ion experiments. The CBM experiment of the future FAIR project at GSI
will investigate highly compressed dense matter in nuclear collisions with
a beam energy range between 10 and 40 GeV /u. An important part of the
hadron physics project is devoted to extend the SIS/GSI program for the in-
medium modification of hadrons to the heavy quark sector providing a first
insight into charm-—nucleus interaction. Thus, the possible modifications
of the properties of open and hidden charm mesons in a hot and dense
environment are matter of recent studies.

The in-medium modification of the open charm mesons (D and D) may
help to explain the J/¥ suppression in a hadronic environment as well as the
possible formation of D-mesic nuclei. Moreover, changes in the properties
of open charm mesons will affect the renormalisation of charm and hidden
charm scalar meson resonances in nuclear matter, providing information
about their nature, whether they are ¢q states, molecules, mixtures of ¢q with
meson—meson components, or dynamically generated resonances resulting
from the interaction of two pseudoscalars.

In the present article, we present a study of the properties of strange and
charm mesons in hot and dense matter within a self-consistent approach in
coupled channels for the conditions expected at CBM/FAIR. We analyse
the behaviour of dynamically generated baryonic resonances as well as the
strange and charm meson spectral functions in this hot and dense medium.
We then test our results for strange mesons using energy-weighted sum
rules and analyse the effect of the self-energy of D mesons on dynamically-
generated charm and hidden charm scalar resonances.

2. Strange and charm mesons in hot and dense matter

The self-energy and, hence, the spectral function at finite temperature
for strange (K and K) and charm (D and D) mesons are obtained fol-
lowing a self-consistent coupled-channel procedure. We start by solving the
Bethe-Salpeter equation in coupled channels or T-matrix (7") taking, as bare
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interaction, a transition potential coming from effective Lagrangians. De-
tails about this bare interaction for strange and charm mesons are given in
the next sections. The self-energy is then obtained summing the transition
amplitude T for the different isospins over the nucleon Fermi distribution at
a given temperature, n(q,7"), as

(g, 3, T) :/(;i];gn(ﬁ,T) [T<I=0> (Po,ﬁ,T) +37(=D (Po,ﬁ,T)} )

where Py = qo+ En(p, T) and P= g+ p are the total energy and momentum
of the meson—nucleon pair in the nuclear matter rest frame, and (qo,q) and
(En,p) stand for the energy and momentum of the meson and nucleon,
respectively, also in this frame. The self-energy must be determined self-
consistently since it is obtained from the in-medium amplitude T which
contains the meson—baryon loop function, and this last quantity itself is
a function of the self-energy. The meson spectral function then reads

1 Im 11(q0, 4, T)
T |3 — ¢ —m2 —(qo,q,T)*

5(q0, 7, T) = (2)

In this paper we analyse the properties of strange and charm mesons for
the experimental conditions of density and temperature expected at CBM.
The range of validity of our model allows us to reach temperatures of the
order of hundred MeV while densities above two—three times nuclear matter
density may require models beyond the T-matrix approach.

3. Strange mesons

The kaon self-energies in symmetric nuclear matter at finite temperature
are obtained from the in-medium kaon—nucleon interaction within a chiral
unitary approach which incorporates the s- and p-wave contributions [9].

At tree level, the s-wave amplitude arises from the Weinberg—Tomozawa
(WT) term of the chiral Lagrangian. Unitarisation in coupled channels is im-
posed by solving the Bethe—-Salpeter equation with on-shell amplitudes and
a cutoff regularisation. The unitarized KN amplitude generates dynami-
cally the A(1405) resonance in the I = 0 channel and provides a satisfactory
description of low-energy scattering observables. The in-medium solution of
the s-wave amplitude accounts for Pauli-blocking effects, mean-field bind-
ing on the nucleons and hyperons via a c—w model, and the dressing of the
pion and kaon propagators via their corresponding self-energies in a self-
consistent manner. The model includes, in addition, a p-wave contribution
to the self-energy from hyperon-hole (Y'h) excitations, where Y stands for
A, X and X* components.
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The upper part of Fig. 1 shows the real and imaginary parts of the K
self-energy together with the K spectral function as a function of the K
energy at po = 0.17 fm~2 for two different momenta, ¢ = 0 MeV /c (left col-
umn) and ¢ = 450 MeV /¢ (right column). The different curves correspond to
T =0and T = 100 MeV including the s-wave and the (s+ p)-wave contribu-
tions. The self-energy is dominated by the s-wave dynamics and the p-wave
contributions from AN~', ¥ N~ and X*N~! excitations become evident
at a finite momentum of ¢ = 450 MeV /c. The effect of these subthreshold
excitations is repulsive at the KN threshold. This repulsion together with
the strength below threshold can be easily seen in the spectral function at
finite momentum (third row). At finite momentum the quasi-particle peak
moves to higher energies while the spectral function falls off slowly on the
left-hand side. Temperature results in a softening of the real and imaginary
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Fig.1. Top: K self-energy and spectral function for p = po, T = 0, 100 MeV
and two momenta showing the partial wave decomposition. Bottom: Evolution of
the K spectral function with temperature for two momenta and two densities: pg
(upper panels) and 2pg (lower panels).
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part of the self-energy as the Fermi surface is smeared out. The peak of the
spectral function moves closer to the free position while the spectral function
extends over a wider range of energies.

The evolution with density and temperature of the K spectral function
is depicted on the bottom part of Fig. 1. The spectral function shows a
strong mixing between the quasi-particle peak and the A(1405)N~! and
Y N~ excitations. As we have seen before, the effect of the p-wave Y N~!
subthreshold excitations is repulsive for the K potential, compensating in
part the attraction from the s-wave KN interaction. Temperature softens
the p-wave contributions to the spectral function at the quasi-particle en-
ergy. Moreover, together with the s-wave mechanisms, the p-wave self-energy
provides a low-energy tail which spreads the spectral function considerably.
Increasing the density dilutes the spectral function even further.

3.1. Energy weighted sum rules

The hadron propagator or single particle Green’s function has well de-
fined analytical properties that impose some constraints on the many-body
formalism as well as the interaction model. An excellent tool to test the qual-
ity of our model for hadrons in medium is provided by the energy-weighted
sum rules (EWSRs) of the single-particle spectral functions. The EWSRs
are obtained from matching the Dyson form of the meson propagator with

its spectral Lehmann representation at low and high energies [10]. The first

EWSRs in the high-energy limit expansion, méjF), together with the zero

energy one, m_j, are given by

oo

1 1
_1: | dw—[Se(w,q;p,T)+S G p,T)] = - , (3
mlo/ww[ KT S0 T = i s )
m? [ oS, 00.T) = Sicw, 339, )] =0,
0
[ dow (i 5.7 + Sk, @i, 1) = 1. (1)
0

The sum rules for the antikaon propagator are shown in Fig. 2 as a func-
tion of the upper integral limit in the case of p = pg, T = 0MeV and
q = 150MeV /c. The contributions from K and K to the Lh.s. of the sum
rule are depicted separately. The K and K spectral functions are also shown
for reference in arbitrary units. Note that saturation is progressively shifted
to higher energies as we examine sum rules involving higher order weights
in energy.
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Fig.2. m_;, m ™) and méﬂ sum rules for the K and K spectral functions at

q=150MeV/c, p = pp and T = 0MeV. The K and K spectral functions are also
displayed for reference in arbitrary units.

The Lh.s. of the m_; sum rule (upper panel) converges properly and
saturates a few hundred MeV beyond the quasiparticle peak, following the
behaviour of the K and K spectral functions. We have also plotted in Fig. 2
the r.h.s. of the m_1 sum rule both for the antikaon and kaon, namely their
off-shell propagators evaluated at zero energy (modulo a minus sign). The
difference between both values reflects the violation of crossing symmetry
present in the chiral model employed for the kaon and antikaon self-energies
as we neglect the explicit exchange of a meson—baryon pair in a t-channel
configuration. However, we may still expect the saturated value of the Lh.s.
of the m_; sum-rule to provide a constraint for the value of the zero-mode
propagator appearing on the r.h.s., because the most of the strength sets in
at energies of the order of the meson mass, where the neglected terms of the

K(K)N amplitudes are irrelevant.

The m'~) sum rule shows that the areas subtended by the K and K
spectral functions should coincide. This is indeed the case for the calcu-
lation considered here, as can be seen in the middle panel of Fig. 2. The
fulfillment of this sum rule is, however, far from trivial. We recall that
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whereas one expects the K and K spectral functions to be related by the re-
tardation property, Si(—w) = —Sk(w), the actual calculation of the meson
self-energies is done exclusively for positive meson energies.

The méﬂ sum rule saturates to one independently of the meson momen-
tum, nuclear density or temperature, thus posing a strong constraint on the
accuracy of the calculations. The lower panel in Fig. 2 shows that the K
and K spectral functions fulfill this sum rule to a high precision.

We have also tested those sum rules for higher momenta and tempera-
ture. As the meson momentum is increased, the saturation of the integral
part of the sum rules is progressively shifted to higher energies, following the
strength of the spectral distribution. At finite temperature the K spectral
function spreads considerably [9], and in particular acquires a sizable low
energy tail from smearing of the Fermi surface, which contributes substan-
tially to the Lh.s. of the sum rule below the quasi-particle peak. The K
contribution also softens at finite temperature and increasing momenta, as
the K in-medium decay width is driven by the KN thermal phase space.

4. Charm mesons

The properties of charm mesons is a topic of recent analysis and lot of ef-
fort is being invested in constructing effective models for the meson—baryon
interaction in the charm sector. In this section we present two different
approaches to this effective meson—baryon interaction. We then discuss pos-
sible experimental scenarios where the charm meson properties can be tested,
such as scalar resonances in nuclear matter.

4.1. SU(4) t-vector meson exchange models

The D and D meson spectral functions are obtained from the multichan-
nel Bethe-Salpeter equation taking, as bare interaction, a type of broken
SU(4) s-wave WT interaction supplemented by an attractive isoscalar—scalar
term and using a cutoff regularisation scheme. This cutoff is fixed by the
position and the width of the I = 0 A.(2593) resonance. As a result, a new
resonance in I = 1 channel X (2880) is generated [11]. The in-medium
solution at finite temperature incorporates, as well, Pauli blocking effects,
baryon mean-field bindings and 7 and D meson self-energies [12].

The I =0 /L; and I =1 2,3 resonances in hot dense matter are shown in
the Lh.s. of Fig. 3 for two different self-consistent calculations: (i) including
only the self-consistent dressing of the D meson, (i) including mean-field
binding on baryons and the pion self-energy. Medium effects at T' = 0 lower
the position of the A, and X, with respect to their free values. Their width
values, which increase due to Y( A, X, )N — wNA., wNX. processes,
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Fig.3. Left: A. and Y. resonances. Right: The D meson spectral function for

different temperatures and two densities: pg (upper panel) and 2py (lower panel).

differ according to the phase space available. The pion dressing induces
a small effect in the resonances because of charm-exchange channels being
suppressed. Finite temperature results in the reduction of the Pauli blocking
due to the smearing of the Fermi surface. Both resonances move up in energy
closer to their free position while they are smoothed out, as in [7].

In the r.h.s. of Fig. 3 we display the evolution with density and tem-
perature of the D meson spectral function for (7). At T = 0 the spectral
function presents two peaks: A.N~1 excitation at a lower energy whereas
the second one at higher energy is the quasi(D)-particle peak mixed with the
Y.N~! state. Those structures dilute with increasing temperature while the
quasiparticle peak gets closer to its free value becoming narrower, as the self-
energy receives contributions from higher momentum DN pairs where the
interaction is weaker. Finite density results in a broadening of the spectral
function because of the increased decay and collisional phase space. Similar
effects were observed previously for the K in hot dense nuclear matter [9].

4.2. SU(8) scheme with heavy-quark symmetry

Heavy-quark symmetry (HQS) is a proper QCD spin-flavor symmetry
that appears when the quark masses, such as the charm mass, become larger
than the typical confinement scale. As a consequence of this symmetry, the
spin interactions vanish for infinitely massive quarks. Thus, heavy hadrons
come in doublets (if the spin of the light degrees of freedom is not zero),
which are degenerated in the infinite quark-mass limit. And this is the case
for the D meson and its vector partner, the D* meson.

Therefore, we calculate the self-energy and, hence, the spectral func-
tion of the D and D* mesons in nuclear matter simultaneously from a self-
consistent calculation in coupled channels. To incorporate HQS to the
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meson-baryon interaction we extend the W'T meson-baryon Lagrangian to
the SU(8) spin-flavor symmetry group as we include pseudoscalars and vec-
tor mesons together with J = 1/2% and J = 3/2" baryons [13|, following
the steps for SU(6) of Ref. [14]. However, the SU(8) spin-flavor is strongly
broken in nature. On one hand, we take into account mass breaking effects
by adopting the physical hadron masses in the tree level interactions and in
the evaluation of the kinematical thresholds of different channels, as done
in SU(4) models. On the other hand, we consider the difference between
the weak non-charmed and charmed pseudoscalar and vector meson decay
constants. We also improve on the regularisation scheme in nuclear matter
going beyond the usual cutoff scheme [15].

The SU(8) model generates a wider spectrum of resonances with charm
C =1 and strangeness S = 0 content compared to the previous SU(4) mod-
els, as seen in the top panel of Fig. 4. While the parameters of both SU(4)
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Fig. 4. Top: Dynamically-generated charmed baryonic resonances in nuclear mat-
ter. Bottom: D and D* spectral functions in nuclear matter at ¢ = 0 MeV/c.
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and SU(8) models are fixed by the (I = 0, J = 1/2) A.(2595) resonance,
the incorporation of vectors mesons in the SU(8) scheme generates naturally
J = 3/2 resonances, such as 4.(2660), A.(2941), X.(2554) and X.(2902),
which might be identified experimentally [16]. New resonances are also pro-
duced for J = 1/2, as X(2823) and X.(2868), while others are not observed
in SU(4) models due to the different symmetry breaking pattern used in both
models. The modifications of the mass and width of these resonances in the
nuclear medium will strongly depend on the coupling to channels with D,
D* and nucleon content. Moreover, the resonances close to the DN or D*N
thresholds change their properties more evidently as compared to those far
offshell. The improvement in the regularisation/renormalisation procedure
of the intermediate propagators in the nuclear medium beyond the usual
cutoff method has also an important effect on the in-medium changes of the
dynamically-generated resonances, in particular, for those lying far offshell
from their dominant channel, as the case of the A.(2595).

In the bottom panel of Fig. 4 we also display the D and D* spectral func-
tions, which show then a rich spectrum of resonant-hole states. The D me-
son quasiparticle peak mixes strongly with .(2823)N~! and ¥.(2868)N !
states while the A.(2595)N~! is clearly visible in the low-energy tail. The
D* spectral function incorporates the J = 3/2 resonances, and the quasi-
particle peak fully mixes with X.(2902) N1 and A.(2941)N~1. As density
increases, these Y.N~! modes tend to smear out and the spectral functions
broaden as the collisional and absorption processes increase.

4.8. Charm and hidden charm resonances in nuclear matter

The nature of a resonance, whether it has the usual ¢g/qqq structure or
is better described as being dynamically generated, is an active matter of
research, in particular, for scalar resonances. The excitation mechanisms in
the nucleus together with the properties of those particles can be extracted
studying their renormalized properties in nuclear matter.

We study the charmed resonance Dg(2317) [17,18] together with a hid-
den charm scalar meson, X (3700), predicted in [18], which might have been
observed by the Belle Collaboration [19] via the reanalysis of [20]. Those
resonances are generated dynamically solving the coupled-channel Bethe—
Salpeter equation for two pseudoscalars [21]. The kernel is derived from
a SU(4) extension of the SU(3) chiral Lagrangian used to generate scalar
resonances in the light sector. The SU(4) symmetry is, however, strongly
broken, mostly due to the explicit consideration of the masses of the vector
mesons exchanged between pseudoscalars [18].

The analysis of the transition amplitude close to each resonance for the
different coupled channels gives us information about the coupling of the
resonance to a particular channel. The Dy(2317) mainly couples to the
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DK system, while the hidden charm state X (3700) couples most strongly
to DD. Therefore, any change in the D meson properties in nuclear matter
will have an important effect on these resonances. Those modifications are
given by the D meson self-energy, as discussed in Sec. 4.1, but supplemented
by the p-wave self-energy through the corresponding Y, N~! excitations [21].
In Fig. 5, the resonances D4y(2317) and X (3700) are shown via the
squared transition amplitude for the corresponding dominant channel. The
D4y(2317) and X (3700) resonances, which have a zero and small width de-
velop widths of the order of 100 and 200 MeV at normal nuclear matter
density, respectively. The origin can be traced back to the opening of new
many-body decay channels, as the D meson gets absorbed in the nuclear
medium via DN and DNN inelastic reactions. In our model, we do not
extract any clear conclusion for the mass shift. We suggest to look at trans-
parency ratios since they are very sensitive to the in-medium widths.
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Fig.5. D4 (2317) (left) and X (3700) (right) resonances.

5. Conclusions and outlook

We have studied the properties of strange and charm mesons in hot and
dense matter within a self-consistent coupled-channel approach. The in-
medium solution at finite temperature accounts for Pauli blocking effects,
mean-field binding on all the baryons involved, and meson self-energies.
We have analyzed the behaviour in this hot and dense environment of
dynamically-generated baryonic resonances together with the evolution with
density and temperature of the strange and open-charm meson spectral func-
tions. The spectral function for K and D mesons dilutes with increasing
temperature and density while the quasiparticle peak moves closer to the
free position. The spectral function for strange mesons is also tested using
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energy-weighted sum rules and we found that the sum rules for the lower
energy weights are fulfilled satisfactorily. We have finally discussed the im-
plications of the properties of charm mesons on the D4,(2317) and the pre-
dicted X (3700). We suggest to look at transparency ratios to investigate
the changes in width of those resonances in nuclear matter.
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