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The critical phenomena in strongly interaction matter are generally in-
vestigated using the mean-field model and are characterized by well defined
critical exponents. However, such models provide only average properties
of the corresponding order parameters and neglect altogether their possible
fluctuations. Also the possible long range effect are neglected in the mean
field approach. Here we investigate the critical behavior in the nonextensive
version of the Nambu–Jona-Lasinio model (NJL). It allows to account for
such effects in a phenomenological way by means of a single parameter q,
the nonextensivity parameter. In particular, we show how the nonexten-
sive statistics influence the region of the critical temperature and chemical
potential in the NJL mean field approach.

PACS numbers: 21.65.+f, 26.60.+c, 25.75.–q

1. Introduction

Critical phenomena in strongly interaction matter are of great interest
nowadays, cf., for example, [1, 2]. They are usually described by a mean
field type of theories1. Such theories are based on the usual Boltzmann–
Gibbs (BG) statistical mechanics and reflect only behavior of the mean field,
i.e., are not able to accommodate effects of possible fluctuations and/or
correlations caused, among others, by the smallness of the sample of matter
under consideration, by its rapid evolution, or by limitations of the available
phase space. All these factors (both separately and taken together) render
the spatial configuration of the system being far from uniform and prevent
the global equilibrium from being established. Nevertheless, it is known
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1 See, for example, [3] or [4] mentioned in this presentation, we refer to them for the
most recent literature on this subject.
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in the literature that it is possible to maintain simplicity of the statistical
description and, at the same time, to account for these effects provided one
uses a nonextensive version of the statistical mechanics, for example the one
proposed by Tsallis [5] (which we shall use here). In this approach action of
all the above mentioned factors is summarily accounted for by one additional
parameter q, the nonextensivity parameter. It does not differentiate between
the particular dynamical phenomena responsible for departure from the BG
picture. In this approach the usual BG exponent, exp(−X/T ), is deformed
into the so called q-exponent (Tsallis distribution), expq(−X/T ) = [1−(1−q)
X/T ]1/(1−q), such that for q → 1 one recovers the BG picture again.

The applications of the nonextensive statistical mechanics to nuclear and
particle physics are numerous and we refer to [6] for details. In what follows
we shall present the nonextensive version of the NJL model, the q-NJL model
[7] 2. Details of the q-NJL model and most of results were already presented
in [7], here we shall concentrate on the influence of dynamical factors causing
nonextensivity and represented by parameter q on the vicinity of the critical
end point (CEP).

2. Results

Let us present first the basic elements of the q-NJL model introduced
in [7] (to which we refer for more details). It is a q-version of standard
SU(3) NJL model with U(1)A symmetry described in [4], with the usual
Lagrangian of the NJL model used in a form suitable for the bosonization
procedure (with four quarks interactions only), from which we obtain the
gap equations for the constituent quark masses Mi:

Mi = mi − 2gS 〈q̄iqi〉 − 2gD〈q̄jqj〉〈q̄kqk〉 , (1)

with cyclic permutation of i, j, k = u, d, s and with the quark condensates
given by 〈q̄iqi〉 = −iTr[Si(p)] (Si(p) is the quark Green function); mi denotes
the current mass of quark of flavor i. We consider a system of volume V ,
temperature T and the i-th quark chemical potential µi characterized by the
baryonic thermodynamic potential of the grand canonical ensemble (with
quark density equal to ρi = Ni/V , the baryonic chemical potential µB =
1
3(µu + µd + µs) and the baryonic matter density as ρB = 1

3(ρu + ρd + ρs)),

Ω(T, V, µi) = E − TS −
∑

i=u,d,s

µiNi . (2)

2 Nonextensive calculations using the Walecka model for dense nuclear matter has been
done in [8].
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The internal energy, E, the entropy, S, and the particle number, Ni, are
given by [4] (here Ei =

√
M2

i + p2):

E = −Nc

π2
V
∑

i=u,d,s

[∫
p2dp

p2 +miMi

Ei
(1− ni − n̄i)

]
−gSV

∑
i=u,d,s

(〈q̄iqi〉)2 − 2gDV 〈ūu〉
〈
d̄d
〉
〈s̄s〉 , (3)

S = −Nc

π2
V
∑

i=u,d,s

∫
p2dp S̃ , (4)

where S̃ = [ni lnni + (1− ni) ln(1− ni)]+[ni → 1− n̄i],

Ni =
Nc

π2
V

∫
p2dp (ni − n̄i) . (5)

The ni = 1/ {exp [β (Ei − µi)] + 1} and n̄i = 1/ {exp [(β(Ei + µi)] + 1} are,
respectively, quark and antiquark occupation numbers with which one cal-
culates values of the quark condensates present in Eq. (1),

〈q̄iqi〉= −
Nc

π2

∑
i=u,d,s

[∫
p2Mi

Ei
(1 − ni − n̄i)

]
dp . (6)

Eqs. (1) and (6) form a self consistent set of equations from which one
gets the effective quark masses Mi and values of the corresponding quark
condensates.

The values of the pressure, P , and the energy density, ε, are defined as:

P (µi, T )=−Ω(µi, T )
V

, ε(µi, T )=
E(µi, T )

V
with P (0, 0) = ε(0, 0) = 0 . (7)

The q-statistics is introduced by using the q-form of quantum distributions
for fermions (+1) and bosons (−1), namely, nqi = 1/ {ẽq(β(Ei − µi))± 1]}
where (x = β(E − µ)) ẽq(x) = [1 + |(q − 1)x|]x/|(q−1)x| [7]. With such
choice one can treat consistently on the same footing quarks and antiquarks,
which should show the particle-hole symmetry observed in the q-Fermi dis-
tribution in plasma containing both particles and antiparticles, namely that
nq(E, β, µ, q) = 1−n2−q(−E, β,−µ) 3. The q-NJL model is obtained by re-

3 In a system containing both particles and antiparticles both q and 2− q occur (i.e.,
one can encounter both q > 1 and q < 1 at the same time). It means that not only
the q > 1 but also q < 1 (or (2 − q) > 1 have physical meaning in the systems we
are considering what differs our q-NJL model from the q-version of the QHD-I model
presented in [8]. Notice that for q → 1 one recovers the standard FD distribution,
n(µ, T ). It is important to realize that for T → 0 one always gets nq(µ, T )→ n(µ, T ),
irrespectively of the value of q [8], i.e., we can expect any nonextensive signature only
for high enough temperatures.
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placing the formulas of Section 1 with their q-counterparts in what concerns
the form of the FD distributions. Additionally, when calculating energies
and condensates we follow [9] and use the q-versions of energies and quark
condensates replacing Eqs. (3) and (6) by:

Eq = −Nc

π2
V
∑

i=u,d,s

[∫
p2dp

p2 +miMi

Ei

(
1− nq

qi − n̄
q
qi

)]
−gSV

∑
i=u,d,s

(〈q̄iqi〉q)2 − 2gDV 〈ūu〉q
〈
d̄d
〉
q
〈s̄s〉q , (8)

and

〈q̄iqi〉q = −Nc

π2

∑
i=u,d,s

[∫
p2Mi

Ei

(
1 − nq

qi − n̄
q
qi

)]
dp . (9)

On the other hand, again following [9], densities which are given by the
q-version of Eq. (5) are calculated with nqs (not with nq

q, as in (8) and
in (9)). The pressure for given q is calculated using the above Eq and the
q-entropy version of Eq. (4) with (cf. [10])

S̃q =
[
nq

qi lnq nqi + (1− nqi)
q lnq (1− nqi)

]
+ {nqi → 1− n̄qi} . (10)

Fig. 1. The pressure at critical temperature Tcr as a function of compression ρ/ρ0

calculated for different values of the nonextensivity parameter q (the area marked
at the left panel is shown in detail at the right panel). The dots indicate positions of
the inflection points for which first derivative of pressure in compression vanishes.
As in [4] for q = 1 the corresponding compression is ρ/ρ0 = 1.67 (and this leads
to µ = 318.5 MeV); it remains the same for q > 1 considered here (but now
µ = 321 MeV for q = 1.01 and µ = 326.1 MeV for q = 1.02) whereas it is shifted to
ρ/ρ = 1.72 for q < 1 (µ = 313 MeV for q = 0.99 and µ = 307.7 MeV for q = 0.98).
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As example of how such approach works, we present in Fig. 1 the pressure
at critical temperature Tcr as a function of compression ρ/ρ0 calculated for
different values of the nonextensivity parameter q (see [7] for more details).
We see that for q < 1 the critical pressure is smaller but for q > 1 it is bigger
than the critical pressure for BG distribution. According to [7] it is directly
connected to specific correlation for q < 1 and fluctuations for q > 1. The
role of these factors is shown in more detail in Fig. 2. Notice the remarkable
difference for the density derivative at the critical point: from the smooth
transition through the critical point for q < 1 to a big jump in density for
critical value of chemical potential for q > 1. It reflects the infinite values
of the baryon number susceptibility, χB:

χB =
1
V

∑
i=u,d,s

(
∂ρi

∂µB

)
T

= − 1
V

∑
i=u,d,s

∂2Ω

∂2µB

∣∣∣∣
T

. (11)

Fig. 2. The baryon compression ρ/ρ0 (calculated in the vicinity of the critical
values of temperature and density indicated by the corresponding dotted lines)
as function of the chemical potential µ for different values of the nonextensivity
parameter, q = 0.98, 1.00, 1.02. The summary presented in the top-left panel is
detailed in the three consecutive panels.
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The transition between confined and deconfined phases and/or chiral phase
transition [1] can be seen by measuring, event by event, the difference in
the magnitude of local fluctuation of the net baryon number in heavy ion
collision [11]. They are initiated and driven mainly by the quark number
fluctuation, described here by χB, and can survive through the freezout
[11, 12]. Consequently, our q-NJL model allows to make the fine tuning for
the magnitude of baryon number fluctuations (measured, for example, by the
charge fluctuations of protons) and to find the characteristic for this system
value of the parameter q. However, it does not allow to differentiate between
possible dynamical mechanisms of baryon fluctuation. We close by noticing
that using q dependent χB leads to q-dependent parameter ε of the critical
exponents which describe the behavior of baryon number susceptibilities
near the critical point [13]. Whereas in the mean field universality class one
has ε = ε′ = 2/3, our preliminary results using q-NJL model show smaller
value of this parameter for q > 1, (ε ∼ 0.6 for q = 1.02) and greater for q < 1
(ε ∼ 0.8 for q = 0.98). It would be interesting to deduce the corresponding
values of q from different models and compare them with results on lattice
which, by definition, correspond to q = 1.
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