IMAGING THE DECAY OF ⁸He^{*}

S. MIANOWSKI, H. CZYRKOWSKI, R. DĄBROWSKI, W. DOMINIK Z. JANAS, K. MIERNIK, M. PFÜTZNER

Faculty of Physics, University of Warsaw Hoża 69, 00-681 Warsaw, Poland

A.S. FOMICHEV, M.S. GOLOVKOV, L.V. GRIGORENKO, S.A. KRUPKO S.I. SIDORCHUK, R.S. SLEPNEV, S.V. STEPANTSOV G.M. TER-AKOPIAN

> Joint Institute for Nuclear Research 141980 Dubna, Moscow Region, Russia

> > (Received January 5, 2010)

The feasibility of the β decay study of ⁸He with the use of a time projection chamber has been investigated. It is shown that β -delayed neutron emission branches of ⁸He can be identified by registration of tracks of the recoiling ⁷Li nuclei. Evidence for neutron emission from a highly excited ⁸Li state was obtained. New possibilities to study β -decay of ⁸He into the $\alpha+t+n$ continuum are demonstrated by showing that the full kinematics of such events can be reconstructed. Observed correlations will provide new insight into the mechanism of this decay process. Planned developments of the detection setup are discussed.

PACS numbers: 29.40.Cs, 29.30.Ep

1. Introduction

The nucleus of ⁸He is characterized by the largest neutron-to-proton ratio among all known particle-stable nuclei. Various properties of this isotope have been already studied, recent highlights being the first nuclear charge radius determination [1] and precise mass measurement [2].

Beta decay of ⁸He has been investigated in Refs. [3–5], where β -delayed γ -ray, neutron and triton spectra were measured. Comprehensive theoretical study of ⁸He β -decay was presented in Ref. [6]. Fig. 1 shows the decay scheme of ⁸He resulting from these studies. Beta decay of ⁸He proceeds via Gamow–Teller transitions to 1⁺ excited states of ⁸Li. The most intense β -transition

^{*} Presented at the XXXI Mazurian Lakes Conference on Physics, Piaski, Poland, August 30–September 6, 2009.

Fig. 1. Decay scheme of 8 He. The widths of 8 Li states are represented by the Lorentzian distributions.

feeds particle-bound ⁸Li 1⁺ state at the excitation energy of 0.98 MeV. About 15% of the ⁸He decays feed (in unknown proportions) broad 1⁺ resonances in ⁸Li at 3.21 and 5.40 MeV. These states decay by neutron emission to the ground- and first excited state of ⁷Li. Close to 1% of the ⁸He decays feed a resonance at 9.3 MeV, which breaks up into an α particle, a triton and a neutron. The B(GT) value for this transitions was estimated to be 5.2, which is one of the highest values ever observed. It should still be considered as a lower limit since other possible decay channels of the 9.3 MeV resonance — neutron emission to ⁷Li states, deuteron emission or two neutron decay — were not identified so far. Such a high B(GT) value was interpreted as an evidence for a transition between halo-analog states characterized by large overlap of their wave functions [7].

In this contribution we present first results of our attempt to study the decay of ⁸He with the use of a new version of time projection chamber with optical readout (OTPC) [8,9]. This device, originally developed to study two proton radioactivity [10], allows a full kinematic reconstruction of decay events and offers new possibilities to study the decay properties of ⁸He.

2. Experimental technique

2.1. Production and identification of ⁸He

The experiment was performed at the FLNR in Dubna, Russia. The ⁸He ions were produced in fragmentation reaction of a 33 MeV/nucleon ¹¹B beam from the U-400 cyclotron impinging on a 275 mg/cm² thick carbon target. The ⁸He ions with energy 23 AMeV were separated from unwanted reaction products by the ACCULINNA [11] fragment separator and transferred to the final focal plane where the OTPC detector was installed. Selected reaction products were identified in-flight by the time-of-flight (TOF) and the energy loss (ΔE) measurement with the use of the two 0.54 mm thick plastic scintillators installed on a 8.4 m base. The ⁸He ions entered the active volume of the OTPC through a thin window in the side wall of the chamber, parallel to the electrodes plane, about 7.5 cm above the amplification section (see Sec. 2.2). Their energy (range) was adjusted by using an aluminium degrader placed in front of the entrance window.

2.2. Optical Time Projection Chamber

The OTPC detector [8, 9] consists of a set of parallel $20 \text{ cm} \times 20 \text{ cm}$ electrodes forming several electric field regions (see Fig. 2). Active volume of the detector has a length of 30 cm. A whole volume of the OTPC was filled with a gas mixture of 95% of He and 5% of N_2 at atmospheric pressure. Such gas mixture was chosen to have long enough tracks of low energy decay products of ⁸He.

Fig. 2. Schematic view of the Optical Time Projection Chamber.

Incoming ions as well as their charged decay products produced ionization electrons along their trajectories in the gas filling the chamber. These primary ionization electrons were transported with a drift velocity of $v_d = 0.5 \text{ cm}/\mu \text{s}$ towards two stage charge amplification structures. First of them was formed by three gas electron multiplier (GEM) foils [12], second one by two closely spaced wire-mesh electrodes. At the final amplification stage ultraviolet and visible photons were emitted. A visible part of this light spectrum was recorded by a 2/3" 1M pixel CCD camera with light amplification and a 5" photomultiplier (PMT). The data acquisition was triggered by a coincidence of a TOF signal and a PMT signal which provided a signature of a ⁸He ion entering the OTPC detector. At the arrival of the trigger signal, the beam from the separator was switched off and the exposure of the camera was initiated for a period of 1–1.2 s. At the end of this time interval the camera image, the digitized PMT signal, and the ΔE -TOF information of the triggering ion were saved on a hard disk.

While the camera registered the projection of a particle's track on the electrode plane, the shape (width) of the time distribution of a PMT signal provided information on the track's projection in the direction normal to the image plane ($\Delta L_z = v_d \Delta t$). The combination of information contained in the camera image and in the recorded drift time profile allows a complete reconstruction of particle's momentum. In the applied procedure the energy and particle emission angle were determined by fitting the projected theoretical ionization density distributions simulated by using SRIM [13] code to the light intensity distributions measured by the CCD and PMT. Fit parameters were a normalization factor, the energy and the emission angle. The experimentally determined response function of the OTPC detector was taken into account when comparing the calculated and measured profiles.

3. Results

3.1. Beta-delayed neutron decay of ⁸He

Although the OTPC detector is not sensitive to neutrons, neutron emission from the excited ⁸Li states could be observed by detection of ⁷Li recoils if the track of the recoiling ion had the length sufficient for the reconstruction procedure to be applied. For the OTPC setup used in the ⁸He study the minimal track length amounted to ~ 10 mm which corresponds to the minimal ⁷Li recoil energy of ~ 0.2 MeV and minimal measurable neutron energy of about 1.4 MeV. Fig. 3 shows an example event of a β -delayed neutron decay of ⁸He which occurred 252 ms after ion arrival. Tracks of the implanted ⁸He ion (entering from the left side) and recoiling ⁷Li are visible in the CCD camera image collected for 1.2 s. Shapes of the light intensity profiles recorded by the camera and the PMT are very well described by a calculated ionization density distribution of a ⁷Li ion with an energy of

800 keV emitted at the polar angle (measured with respect to the electric field direction) of $\theta = 105^{\circ}$. This recoil energy corresponds to the *Q*-value of 6.4 MeV. Assuming the neutron transition to the ground-state (first excited state) of ⁷Li, the excitation energy of the initial ⁸Li state amounts to 8.43 MeV (8.9 MeV). This value indicates that most probably neutron emission contributes to the decay of the halo-analog state in ⁸Li. The branching ratio for this decay channel is to be determined.

Fig. 3. An example event of a β -delayed neutron decay of ⁸He. Panel (a) shows the image recorded by the CCD camera during a 1.2 s exposure. Plot (b) shows the distribution of the intensity of the CCD signal integrated along the ⁷Li track. Plot (c) shows the time variation of the light intensity recorded by the PMT for the decay event. Time intervals were converted into the distance by using the drift velocity. Solid lines in plots (b) and (c) show the results of the fitting procedure. The obtained range, energy and emission angle of ⁷Li recoil as well as the deduced decay *Q*-value are given in the bottom right part of the figure.

3.2. Beta-delayed triton decay of ⁸He

Fig. 4 shows an example event of the β -decay of ⁸He into the $\alpha + t + n$ continuum. Track of an implanted ⁸He ion and tracks of two charged particles (α and t) emitted simultaneously (see Fig. 4 plot (b)) 90 ms after ion arrival are visible in the CCD camera image. A 1.5 cm displacement of the decay vertex with respect of the ⁸He ion stopping position is consistent with the possible ion drift with the gas flow in the chamber. Solid line in Fig. 4 plot (b) shows that the shape of the light intensity recorded by the PMT

Fig. 4. An example event of a β -delayed triton decay of ⁸He. Panel (a) shows an image recorded by the CCD camera during a 1s exposure. Plot (b) shows the time variation of the light intensity recorded by the PMT for the decay event. Time intervals were converted into the distance by using the drift velocity. Dotted and dashed lines in plot (b) show the decomposition of the PMT signal into the parts corresponding to the α particle and triton detection, respectively. The resulting ranges, energies and emission angles of α particle and triton as well as reconstructed energy of the neutron are given in the bottom of the figure.

is very well described by the calculated ionization density distribution of an α particle with the energy of 1000 keV emitted at the polar angle $\theta = 84^{\circ}$ and a triton with the energy of 640 keV emitted at the angle $\theta = 98^{\circ}$. The energy of the neutron emitted in the decay was determined by momentum conservation requirement and this procedure yielded the value of 2.7 MeV. Thus, the total energy released in the decay event shown in Fig. 4 amounts to 4.3 MeV and gives 8.8 MeV as an excitation energy of the initial ⁸Li state.

3.3. Beta decay of ⁸Li

The 84% transitions in the β decay of ⁸He proceed to the 1⁺ state of ⁸Li at 0.98 MeV which deexcites to the ground-state by a γ -ray emission. Ground-state of ⁸Li β decays with a half-life of 840 ms to an excited state of ⁸Be which immediately breaks up into two α particles emitted in opposite directions. Such events should be easily identified in the OTPC. Surprisingly,

only few events of this kind were observed. Instead, several events with a ⁸He ion with single, diffused tracks was recorded. Closer analysis of these events showed that the width of tracks registered by the camera was significantly larger than the widths of tracks of ⁷Li recoils from β -delayed neutron decay of ⁸He. Moreover, the decay-time distribution of these events showed the grow-in and decay characteristics expected for the ${}^{8}\text{He} \rightarrow {}^{8}\text{Li} \rightarrow {}^{8}\text{Be}$ decay sequence. These observation lead us to the conclusion that most of the decays of ⁸Li occurred at the cathode where the ⁸Li ions produced in the decay of ⁸He have drifted. It was possible because: (i) the time needed for lithium ions to drift in helium gas under atmospheric pressure in the electric field of 250 V/m [14] is much shorter than the lifetime of ⁸Li, (ii) due to the high ionization potential of helium atoms, lithium ions are not being neutralized on their way to the cathode. Since two α particles emitted after ⁸Li decay are ejected in opposite directions, only one of them could enter the active volume of the detector and a single track was observed. The large width of the tracks is explained by the diffusion effects during $\log (30 \,\mathrm{cm})$

4. Summary and outlook

electron drift distance.

The feasibility of β -decay studies of ⁸He by the use of the optical time projection chamber has been investigated. It was demonstrated, that β -delayed neutron emission events in the decay of ⁸He can be observed by the registration of tracks of the recoiling ⁷Li nuclei. Evidence for the neutron emission after β -decay of ⁸He to a highly excited ⁸Li state was obtained indicating that the reported decay scheme of ⁸He is not complete. The OTPC detector offers new possibility to study β decay of ⁸He into the $\alpha + t + n$ continuum. It was shown that the full kinematics of such events can be reconstructed. Information obtained with the use of the OTPC will allow us to clarify the mechanism of such a decay process.

Further studies of the decay of ⁸He are planned. For this purpose a new version of the OTPC detector, covering larger (by 75%) fraction of fragments range distribution, is being built. To improve the efficiency of triggering of the data acquisition system, the new detector will be equipped with a veto counter, which will be used to reject events with ions which did not stop in the active volume of the OTPC chamber. Very high sensitivity of the OTPC detector will open the possibility to search for the, so far unidentified, β -delayed deuteron branch in the decay of ⁸He. Such events will have a unique signature of two different charged particles (⁶He and ²H) emitted in opposite directions. The new detector will be also equipped with a γ -ray spectrometer which will be used to identify β -delayed particle emission to excited states of final nuclei.

S. MIANOWSKI ET AL.

REFERENCES

- [1] P. Mueler et al., Phys. Rev. Lett. 99, 252501 (2007).
- [2] V.L. Ryjkov et al., Phys. Rev. Lett. 101, 012501 (2008).
- [3] T. Björnstad et al., Nucl. Phys. A366, 461 (1981).
- [4] M.J.G. Borge et al., Nucl. Phys. A460, 373 (1986).
- [5] M.J.G. Borge et al., Nucl. Phys. A560, 664 (1993).
- [6] L.V. Grigorenko et al., Nucl. Phys. A607, 277 (1996).
- [7] M.V. Zukhov et al., Phys. Rev. C52, 2461 (1995).
- [8] M. Ćwiok et al., IEEE Trans. Nucl. Sci. 52, 2895 (2005).
- [9] K. Miernik et al., Nucl. Instrum. Methods A581, 194 (2007).
- [10] K. Miernik et al., Phys. Rev. Lett. 99, 192501 (2007).
- [11] A.M. Rodin et al., Nucl. Instrum. Methods B204, 114 (2003).
- [12] F. Sauli, Nucl. Instrum. Methods A580, 971 (2007).
- [13] The Stopping and Range of Ions in Matter (SRIM), http://www.srim.org
- [14] T.H. Lovaas et al., J. Phys. **D20**, 1465 (1987).