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The form factors of the semileptonic Bc → D0lν transition with l = e, τ
are calculated in the framework of the three point QCD sum rules. In this
case, the two gluon condensate contributions as the important correction
on the non-perturbative part of the correlation function, are taken into
account. The heavy quark effective theory limits of the form factors are also
computed. The branching fractions of these decays are also evaluated and
compared with the predictions of the other non-perturbative approaches.

PACS numbers: 11.55.Hx, 13.20.He, 12.39.Hg

1. Introduction

The discovery of the Bc meson by the CDF detector at the Fermi Lab
in pp̄ collisions via the decay mode Bc → j/ψ lν at

√
s = 1.8 TeV [1]

has illustrated the possibility of experimental study of the charm-beauty
systems and has produced considerable interest in its spectroscopy. The Bc,
is the only meson containing two heavy quarks with different charge and
flavors and it is the lowest bound state of b and c quarks, so its decay modes
properties are expected to be different than flavor neutral mesons. Since the
excited levels of bc̄ lie below the threshold of decay into the pair of heavy
B and D mesons, such states decay weakly and they have no annihilation
decay modes due to the electromagnetic and strong interactions (for more
about the physics of the Bc meson see for example [2]). The study of the
Bc transitions are useful for more precise determination of the Cabibbo,
Kabayashi, Maskawa (CKM) matrix elements in the weak decays.

A large set of exclusive nonleptonic and semileptonic decays of the Bc
meson have been studied within the potential model (PM) (see [3–12]), and
also operator product expansion in inverse powers of the heavy quark masses
[13–15]. In this work, considering the gluon corrections to the relevant form
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factors, the Bc → D0lν mode is investigated in the framework of the three-
point QCD sum rules (3PSR) and also in the heavy quark effective theory
(HQET). This decay mode has been discussed in different methods (for
instance see [9–12,16,17]). This transition has also been investigated in the
QCD sum rule approach, for example in [17, 18], but without considering
the gluon corrections. In [17], the Coulomb-like corrections were considered
to decrease the uncertainties in the calculations. The main goals of the
present work are to calculate the gluon corrections and to check whether
their contributions guarantee the convergence of the sum rules for the form
factors or not, and also to compare between the form factors and their HQET
limits. For this purpose, we plot the dependence of both form factors and
their HQET limits on the transferred momentum square (q2) and compare
them at high and low q2 values.

This paper includes three sections. The calculation of the sum rules for
the relevant form factors are presented in Section 2. As a first correction
on the non-perturbative part of the correlation function, the two gluon con-
densate contributions are taken into the sum rules expressions for the form
factors. Also in this section, the HQET limits of the form factors are derived.
The next section depicts our numerical analysis of the form factors and their
comparison with he HQET limits of them. This section also contains the
calculation of the total decay widths as well as the branching ratios of the
Bc → D0lν, (l = e, τ) decays via the 3PSR and HQET and their comparison
with the predictions of other approaches.

2. Sum rules for Bc → D0lν transition form factors

In this section we study the transition form factors of the semileptonic
Bc → D0lν decay by the QCD sum rules mechanism. The Bc → D0lν
process is governed by the tree level b → ulν transition and c quark is the
spectator, at quark level (see Fig. 1). The three-point correlation function
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Fig. 1. The bare loop diagram for Bc → D0lν transition.
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is considered for the evaluation of the transition form factors in the frame-
work of the 3PSR. The three-point correlation function is constructed from
the vacuum expectation value of time ordered product of three currents as
follows:

Πµ

(
p2, p′2, q2

)
= i2

∫
d4xd4y e+ip

′x−ipy
〈
0
∣∣∣T{JD0(x)JWµ (0)J†Bc(y)

}∣∣∣ 0〉 ,(1)
where JD0(x) = cγ5u and JBc(y) = cγ5b are the interpolating currents of the
D0 and Bc mesons. JWµ = uγµ(1−γ5)b is the current of the weak transition.

We can obtain the correlation function of Eq. (1) in two sides. The
phenomenological or physical part is calculated saturating the correlation
by a tower of hadrons with the same quantum numbers as interpolating
currents. The QCD or theoretical part, on the other side is obtained in
terms of the quarks and gluons interacting in the QCD vacuum. To derive
the phenomenological part of the correlation function given in Eq. (1), two
complete sets of intermediate states with the same quantum numbers as the
currents JD0 and JBc are inserted. This procedure leads to the following
representation of the above-mentioned correlation:

Πµ

(
p2, p′2, q2

)
= −

〈0 | JD | D0(p′)〉〈D0(p′) | Jµ | Bc(p)〉〈Bc(p) | J†Bc | 0〉
(p′2 −m2

D0)(p2 −m2
Bc)

+ higher resonances and continuum states . (2)

The general expression for the hadronic matrix element of the weak current
with definition of the transition form factors is given by the formula:

〈D(p′) | uγµ(1− γ5)b | Bc(p)〉 = f1

(
q2
)
Pµ + f2

(
q2
)
qµ , (3)

and the f1(q2) and f2(q2) are the transition form factors, Pµ = (p + p′)µ
and qµ = (p − p′)µ. Also the following matrix elements are defined in the
standard way in terms of the leptonic decay constants of the D0 and Bc
mesons as:

〈0 | JD0 | D0(p′)〉 = i
fD0m2

D0

mc +mu
, 〈0 | JBc | Bc(p)〉 = i

fBcm
2
Bc

mb +mc
, (4)

where fD0 and fBc are the leptonic decay constants of D0 and Bc mesons,
respectively. Using Eqs. (3) and (4) in Eq. (2), we get the following result
for the physical part:

Πµ

(
p2, p′2, q2

)
= − fBcfD0

(mb +mc) (mc +mu)
×

m2
Bc
m2
D0(

p′2 −m2
D

) (
p2 −m2

Bc

)
×
[
f1

(
q2
)
Pµ + f2

(
q2
)
qµ
]

+ excited states . (5)
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The coefficients of Lorentz structures Pµ and qµ in the correlation function
Πµ will be chosen in determination of the form factors f1(q2) and f2(q2),
respectively.

With the help of the operator product expansion (OPE), in the deep
Euclidean region where p2 � (mb + mc)2 and p′2 � m2

c , the vacuum ex-
pectation value of the expansion of the correlation function in terms of the
local operators, is written as follows

Πµ

(
p2, p′2, q2

)
= (C0)µ + (C3)µ〈q̄q〉+ (C4)µ

〈
G2
〉

+ (C5)µ
〈
q̄σαβG

αβq
〉

+ (C6)µ
〈
q̄Γ qq̄Γ ′q

〉
, (6)

where (Ci)µ are the Wilson coefficients, Gαβ is the gluon field strength ten-
sor, Γ and Γ ′ are the matrices appearing in the calculations. We consider
the condensate terms of dimension 3, 4 and 5. It is found that the heavy
quark condensate contributions are suppressed by inverse of the heavy quark
mass and can be safely omitted. The light u quark condensate contribution is
zero after applying the double Borel transformation with respect to the both
variables p2 and p′2, because only one variable appears in the denominator.
Therefore in this case, we consider the two gluon condensate contributions
with mass dimension 4 as a first correction on the non-perturbative part of
correlation function, only i.e.,

Πi

(
p2, p′2, q2

)
= Πper

i

(
p2, p′2, q2

)
+Π
〈G2〉
i

(
p2, p′2, q2

) αs

π

〈
G2
〉
. (7)

To obtain the contributions of this term, the Fock–Schwinger fixed-point
gauge, xµAaµ = 0, are used; where Aaµ is the gluon field. The procedure of
the evaluation of the gluon condensate contributions has been discussed in
Ref. [19], completely.

Using the double dispersion representation, the bare-loop contribution is
determined:

Πper
i = − 1

(2π)2

∫ ∫
ρper
i

(
s, s′, q2

)
(s− p2) (s′ − p′2)

dsds′ + subtraction terms , (8)

the spectral densities ρper
i

(
s, s′, q2

)
are found as:

ρper
1

(
s, s′, q2

)
= I0 Nc

{
∆+∆′

−2mc [(2 + E1 + E2)mc − (1 + E1 + E2)mu]
+2mb[(1 + E1 + E2)mc − (E1 + E2)mu]

+(E1 + E2)u
}
,
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ρper
2

(
s, s′, q2

)
=I0 Nc

{
−∆+∆′

−2mc [(E2 − E1 − 1)mu + (E1 − E2 )mc]
−2mb[(1− E1 + E2 )mc+(E1 − E2 )mu]

+(E1 − E2)u
}
,

where

I0
(
s, s′, q2

)
=

1
4λ1/2 (s, s′, q2)

,

λ
(
s, s′, q2

)
= s2 + s′2 + q4 − 2sq2 − 2s′q2 − 2ss′ ,

E1 =
1

λ (s, s′, q2)
[
2s′∆−∆′ u

]
,

E2 =
1

λ (s, s′, q2)
[
2s∆′ −∆u

]
,

u = s+ s′ − q2 ,
∆ = s+m2

c −m2
b ,

∆′ = s′ +m2
c −m2

qi
,

(9)

and the Nc = 3 is the color factor. The following inequalities are utilized to
find the integration limits of the Eq. (8).

−1 ≤
2ss′ +

(
s+ s′ − q2

) (
m2
b −m2

c − s
)

+ 2s
(
m2
c −m2

u

)
λ1/2 (s, s′, q2)λ1/2

(
m2
b ,m

2
c , s
) ≤ +1 . (10)

For the heavy quarkonium bc̄, where the relative velocity of quark move-
ment is small, an essential role is taken by the Coulomb-like αs/v-corrections
[17]. It leads to the finite renormalization for ρper

i , so that:

ρci = Cρper
i , (11)

with

C2 =
4παCs

3v
1

1− exp
(
−4παCs

3v

) , (12)

where αCs is the coupling constant of effective Coulomb interactions. Also v
is the relative velocity of quarks in the bc̄-system,

v =

√
1− 4mbmc

p2 − (mb −mc)2
. (13)
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The value of the αCs for the Bc meson is [17]:

αCs [bc̄] = 0.45 .

By performing the double Borel transformations over the variables p2 and
p′2 on the physical parts of the correlation functions and bare-loop diagrams
and also equating two representations of the correlation functions, the sum
rules for the fi(q2) are obtained:

fi
(
q2
)
=

(mb+mc)(mc+mu)
fBcm

2
Bc
fD0m2

D0

em
2
Bc
/M2

1 em
2
D0/M

2
2

1
4π2

{ s′0∫
(mc+mu)2

ds′
min(s0,f+(s′))∫
f−(s′)

× dsρci
(
s, s′, q2

)
e−s/M

2
1 e−s

′/M2
2 − iM2

1M
2
2

〈αs

π
G2
〉 C4

i

6

}
, (14)

where i = 1 and 2, s0 and s′0 are the continuum thresholds in pseudoscalars
Bc and D0 channels, respectively, and s = f±(s′) in the lower and upper
limit of the integral over s are obtained from inequality Eq. (10). The
min(s0, f+(s′)) means that for each value of the q2, the smaller one between
s0 and f+ is selected. The explicit expressions for C4

i are presented in
Appendix A.

In the above equations, in order to subtract the contributions of the
higher states and the continuum the quark–hadron duality assumption is
also used

ρhigher states(s, s′) = ρOPE(s, s′)θ(s− s0)θ(s′ − s′0) . (15)

Now, we apply the heavy quark effective theory (HQET) to analyze the
form factors of Bc → D0lν calculated by 3PSR. To this aim, we use the
following parametrization (see also [20, 21]):

y = νν ′ =
m2
Bc

+m2
D0 − q2

2mBcmD0

, (16)

where ν and ν ′ are the four-velocities of the initial and final meson states,
respectively and y = 1 are so-called zero recoil limit. After some complicated
calculations, the y-dependent expressions of the fHQET

i (y) are obtained as
follows:

fHQET
1 (y) =

1

f̂Bc f̂D0

e
Λ
T1 e

Λ
T2

{
− 3(1+

√
Z)2(2y

√
Z − 1)(1− (1 + 2y)

√
Z+(1 + y)Z)

8 (y2 − 1)3/2 Z9/4

× −1
4π2

ν0∫
0

dν

ν′0∫
0

dν′e−
ν

2T1 e−
ν′
2T2 θ

(
2yνν′ − ν2 − ν′2

)
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+

(
i

2
(√

Z + 1
)2

3Z5/4
T1T2

〈αs

π
G2
〉)
× lim
mb→∞

CHQET
1

}
, (17)

fHQET
2 (y) =

1

f̂Bc f̂D0

e
Λ
T1 e

Λ
T2

{
3(1 +

√
Z)2(2y

√
Z − 1)(−1 +

√
Z + (1 + y)Z)

8 (y2 − 1)3/2 Z9/4

× −1
4π2

ν0∫
0

dν

ν′0∫
0

dν′e−
ν

2T1 e−
ν′
2T2 θ

(
2yνν′ − ν2 − ν′2

)

+

(
i

2
(√

Z + 1
)2

3Z5/4
T1T2

〈αs

π
G2
〉)
× lim
mb→∞

CHQET
2

}
. (18)

In these heavy quark limit expressions Λ = mBc −mb, Λ̄ = mD0 −mc,√
Z = y +

√
y2 − 1, f̂Bc =

√
mbfBc , f̂D0 =

√
mcfD0 . The continuum

thresholds ν0, ν ′0 and integration variables ν, ν ′ are defined as:

ν0 =
s0 −m2

b

mb
, ν ′0 =

s′0 −m2
c

mc
, (19)

ν =
s−m2

b

mb
, ν ′ =

s′ −m2
c

mc
. (20)

Also we apply T1 = M2
1 /2mb, T2 = M2

2 /2mc and mc = mb/
√
Z.

The explicit expressions of the coefficients CHQET
i are given in Appendix B.

In the expressions of the CHQET
i , Ī0(a, b, c) and Ī1(2)(a, b, c) are defined as:

Ī0(a, b, c) =
(−1)a+b+c

16π2Γ (a)Γ (b)Γ (c)

„
1√
Z

«2−a−c

(2mb)
4−2a−b−cT 2−a−b

1 T 2−a−c
2

UHQET
0 (a+ b+ c− 4, 1− c− b) ,

Ī1(2)(a, b, c) = i
(−1)a+b+c+1

16π2 Γ (a)Γ (b)Γ (c)

„
1√
Z

«4−a−c−1(2)

(2mb)
5−2a−b−cT

1−a−b+1(2)
1 T

4−a−c−1(2)
2

UHQET
0 (a+ b+ c− 5, 1− c− b) . (21)

The function UHQET
0 (m,n) takes the following form

UHQET
0 (m,n)=

∞∫
0

(2mb)m
(

x

2mb
+T1+

T2√
Z

)m
xn
[
−B−1

x
−B0−B1x

]
dx ,(22)
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with
B−1 =

√
Z

T1T2

[
mb2

Z
T 2

2 +
1√
Z
T1T2

(
m2
b − q2

)]
,

B0 =
√
Z

2mbT1T2

[
m2
cT1 +

T2√
Z

(
m2
b +m2

c

)]
,

B1 =
1

4
√
ZT1T2

. (23)

3. Numerical analysis

The sum rules expressions of the form factors show the main input pa-
rameters entering the expressions are gluon condensate, elements of the
CKM matrix Vub, leptonic decay constants, fBc and fD0 , Borel parameters
M2

1 and M2
2 , as well as the continuum thresholds s0 and s′0. We choose the

values of the gluon condensate, leptonic decay constants, CKM matrix ele-
ments and quark and meson masses as follows: 〈αsπ G

2〉 = 0.012 GeV4 [22],
| Vub |= 0.0037 [16], fBc = (0.35 ± 0.025) GeV [18, 23], fD0 = (0.22 ±
0.016) GeV, mc(µ = mc) = (1.275 ± 0.015) GeV, mu = (1.5 − 3) MeV,
mb = (4.7± 0.01) GeV, mD0 = 1.964 GeV, mBC = 6.258 GeV [24].

The expressions for the form factors also contain four auxiliary parame-
ters: Borel mass squares M2

1 and M2
2 and continuum thresholds s0 and s′0.

These are mathematical objects, so the physical quantities, the form fac-
tors, should be independent of them. The parameters s0 and s′0, which
are the continuum thresholds of Bc and D0 mesons, respectively, are deter-
mined from the conditions that guarantee the sum rules to have the best
stability in the allowed M2

1 and M2
2 regions. The values of the continuum

thresholds calculated from the two-point QCD sum rules are taken to be
s0 = (45–50) GeV2 and s′0 = 4 GeV2 [22, 25, 26]. The working regions for
M2

1 and M2
2 are determined by requiring that not only contributions of the

higher states and continuum are effectively suppressed, but the gluon con-
densate contributions are small, which guarantees that the contributions of
higher dimensional operators are small. Both conditions are satisfied in the
regions 10 GeV2 ≤M2

1 ≤ 25 GeV2 and 6 GeV2 ≤M2
2 ≤ 12 GeV2.

The dependence of the form factors f1 and f2 on M2
1 and M2

2 for Bc →
D0lν are shown in Figs. 2 and 3, respectively. This figures show a good
stability of the form factors with respect to the Borel mass parameters in the
working regions. Our numerical analysis shows that the contribution of the
non-perturbative part (the gluon condensate diagrams ) is about 7% of the
total and the main contribution comes from the perturbative part of the form
factors. This means that the contribution of the higher dimension operators
is small. This guarantees the convergence of the sum rules expression of the
form factors, and those sum rules are reliable.
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Fig. 2. The dependence of the f1 form factor on M2
1 and M2

2 .
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Fig. 3. The dependence of the f2 form factor on M2
1 and M2

2 .

The values of the form factors at q2 = 0 are shown in Table I. In com-
parison, the predictions of the other approaches are also presented in this
table.

The sum rules for the form factors are truncated at about 14 GeV2, so to
extend our results to the full physical region, we look for a parametrization
of the form factors in such a way that in the region 0 ≤ q2 ≤ 14 GeV2, this
parametrization coincides with the sum rules predictions. Our numerical
calculations show that the sufficient parametrization of the form factors
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with respect to q2 is as follows:

fi
(
q2
)

=
fi(0)

1− q2

m2
pol

. (24)

The fitted pole masses are:

mpol = (5.42± 0.07) GeV for f1(q2) ,

mpol = (5.91± 0.10) GeV for f2(q2) .

The dependence of the form factors f+(q2) and f−(q2) on q2 are given in
Fig. 4. This figure also contains the form factors obtained via 3PSR (see
Eq. (14)). The form factors and their fit functions coincide well in the
interval 0 ≤ q2 ≤ 14 GeV2.

TABLE I

The form factors of the Bc → D0lν decay for M2
1 = 17 GeV2, M2

2 = 8 GeV2 at
q2 = 0 in different approaches: three-point sum rules (3PSR) with gluon condensate
corrections, HQET, light-cone sum rules (LCSR), 3PSR without gluon condensate
corrections, PM and quark model(QM).

Form factor 3PSR[Our] HQET[Our] LCSR [16] 3PSR [17] PM [4] QM [11]
f1(0) 0.29± 0.08 0.57± 0.17 0.35 0.32 0.29 0.69
f2(0) −0.31± 0.09 −0.69± 0.20 −0.35 −0.34 −0.37 −0.64

q2
0 2 4 6 8 10 12 14 16 18

f 1
q2

0.3

0.4

0.5

0.6

0.7

0.8

q2
0 2 4 6 8 10 12 14 16 18

f 2
q2

K0.7

K0.6

K0.5

K0.4

Fig. 4. The dependence of the form factors and the fit parametrization of them on
q2. The small boxes correspond to the form factors and the solid lines show the fit
parametrization of them.
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The errors are estimated by the variation of the Borel parameters M2
1

and M2
2 , the variation of the continuum thresholds s0 and s′0, the leptonic

decay constants fBc and fD and uncertainties in the values of the other input
parameters. The main uncertainty comes from the continuum thresholds and
the decay constants, which is about ∼ 25% of the central value, while the
other uncertainties are small, constituting a few percent.

The HQET form factors of the Bc → D0 transition were evaluated in
Eqs. (17) and (18). Fig. 5 depict the fHQET

i with respect to the q2. At y = 1
in Eq. (16) called the zero recoil limit (corresponding to q2 = (mBc−mD0)2),
the HQET limit of the form factors is not finite. For other values of y and
corresponding q2, the behaviors of the fi(q2) form factors shown in Fig. 4
and their HQET form factors fHQET

i in Fig. 5 are the same, i.e., when
q2 increases (y decreases) both, the form factors and their HQET values
increase.

q2
0 2 4 6 8 10 12 14 16 18

f 
1H

Q
E

T
q2

0.6

0.7

0.8

0.9

1.0

1.1

1.2

q2
0 2 4 6 8 10 12 14 16 18

f 
2H

Q
E

T
q2

K1.3

K1.2

K1.1

K1.0

K0.9

K0.8

K0.7

Fig. 5. The dependence of the HQET limits of the form factors on q2.

At the end of this section, we would like to present the values of the
branching ratio for Bc → D0lν decay. By using the expressions for the form
factors, the differential decay width dΓ/dq2 for the process Bc → D0lν is
presented as follows [27]:

dΓ
(
Bc→D0lν

)
dq2

=
1

192π3m3
Bc

G2
F|Vub|2λ1/2

(
m2
Bc ,m

2
D0 , q2

)(q2 −m2
l

q2

)2

×
{
− 1

2

(
2q2 +m2

l

) [∣∣f1 (q2)∣∣2 (2m2
Bc + 2m2

D0 − q2
)

+ 2
(
m2
Bc −m

2
D0

)
Re
[
f1
(
q2
)
f∗2
(
q2
)]

+
∣∣f2 (q2)∣∣2 q2]

+

(
q2 + 2m2

l

)
q2

[∣∣f1 (q2)∣∣2 (m2
Bc −m

2
D0

)2
+ 2

(
m2
Bc−m

2
D0

)
q2Re

[
f1
(
q2
)
f∗2
(
q2
)]

+
∣∣f2 (q2)∣∣2q4]} .(25)
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Integrating Eq. (25) over q2 in the whole physical region and using the
total mean life time τ ' 0.48±0.05 ps of Bc meson [24], the branching ratios
of the Bc → D0lν, (l = e, τ) decays are obtained as presented in Table II.
The branching ratios of these decays obtained using the HQET limits of the
form factors Eqs. (17) and (18), are also shown in this table. This table
also includes a comparison between our results via both SR and HQET and
the predictions of the other approaches including the LCSR, 3PSR (without
gluon condensate corrections), QM, BSE, PM and RM estimates.

TABLE II

The branching ratios of the Bc → D0lν, (l = e, τ) decays (in %) in differ-
ent approaches: 3PSR with gluon condensate corrections, HQET, LCSR [16],
3PSR without gluon corrections [17], QM [11], PM [10], the Bethe–Salpeter equa-
tion(BSE) [12] and a relativistic model with factorization to obtain the nonleptonic
decay widths (RM) [9].

Mode 3PSR[Our] HQET[Our] LCSR [16] 3PSR [17] QM [11] PM [10] BSE [12] RM [9]

D0eν [(0.38± 0.10)× 10−2 (0.52± 0.21)× 10−2 0.020 0.0043 0.0189 0.0018 0.0068 0.0036]%
D0τν [(0.15± 0.04)× 10−2 (0.74± 0.33)× 10−2 0.015 0.0023 0.0102 — — —]%

In summary, considering the gluon corrections, we investigated the Bc →
D0lν, (l = e, τ) channels in the framework of the three-point QCD sum rules.
We found that the gluon correction contributions to the sum rules expression
of the form factors are small. This implies a small contribution of the higher
dimension operators, and it also guarantees that the sum rules for the form
factors are convergent and reliable. The HQET limits of the form factors,
with their corresponding gluon condensate corrections are also computed.
Finally, we evaluated the branching fractions of these decays and compared
these with the predictions of the other approaches such as LCSR, 3PSR,
QM, PM, BSE and RM.

Partial support of the Shiraz University Research Council is appreciated.
R. Khosravi would like to thank K. Azizi for his useful discussions.

Appendix A

In this appendix, the explicit expressions of the coefficients of the gluon
condensate entering the sum rules of the form factors f1(q2) and f2(q2) are
given.
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−10 Î2(2, 3, 1)mc
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3mb + 5 Î2(3, 2, 1)mc

3mb
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2 − 5 Î0(2, 2, 2)mc

2mb
2
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−15 Î [0,2]
2 )(3, 2, 2)mc

2 + 20 Î [0,1]
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0 (3, 2, 2)mc
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3mb − 15 Î2(4, 1, 1)mc
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3mb − 5 Î0(3, 1, 2)mc
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−10 Î0(2, 2, 2)mc
3mb − 10 Î [0,1]
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3mb + 5 Î1(3, 2, 1)mc

3mb
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Appendix B

In this appendix, the explicit expressions of the coefficients of the gluon
condensate entering the HQET limits of the form factors fHQET

1 and fHQET
2

are given.
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Ī2(3, 2, 2)

Z
+ 16
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Ī0(2, 1, 2)√
Z

+ 12
Ī
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where
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