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The regularized signum-Gordon potential has a smooth minimum and
is linear in the modulus of the field value for higher amplitudes. The
Q-ball solutions in this model are investigated. Their existence for charges
large enough is demonstrated. In three dimensions numerical solutions are
presented and the absolute stability of large Q-balls is proved. It is also
shown, that the solutions of the regularized model approach uniformly the
solution of the unregularized signum-Gordon model. From the stability of
Q-balls in the regularized model follows the stability of the solutions in the
original theory.

PACS numbers: 11.10.Lm, 11.10.Kk

1. Introduction

In the seminal paper [1] Coleman addressed the following problem. Con-
sider a field theory with a symmetry in the internal field space. Then,
due to the Noether theorem there is a charge Q in the system, a quantity
constant in time. A legitimate problem is then what solution minimizes
the energy E for a given Q. Coleman managed to answer this question
for a class of “acceptable” field potentials and gave a recipe how to find
the relevant solutions. He dubbed them Q-balls. The time dependence of
Q-balls is confined to the space of the field symmetry, so that the energy and
charge density do not evolve in time (actually up to Lorentz boosts). The
space distribution of the field is given by a spherically symmetric, positive
and monotone (as a function of the radial coordinate) decreasing function.
These solutions are of physical importance and much attention has been paid
to them, see [4]. The Q-ball Ansatz may be also useful in models spoiling
the prerequisites given by Coleman (see e.g. [2, 8]). Then, the status of the
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solutions is not clear; they may be just unstable configurations or absolutely
stable solutions. In this paper we show, that for the scalar complex field
with the “unacceptable” potential V (Φ) ∼

√
|Φ|2 + ε2 − ε such solutions

may fall into the second category. In what follows we refer to this poten-
tial as regularized signum-Gordon one. This name traces back to original
motivation.

Recently considerable work has been done in exploring the signum-Gor-
don model ( [2,3]), where the field potential V (Φ) ∼ |Φ|. One of the intrigu-
ing characteristics of such field theory is the absence of the linear regime
(“infinite” mass). It results in the compactness of solutions, the Q-balls de-
scribed in [2] are paradigmatic. In this reference it is also pointed out, that
the signum-Gordon model may be regarded as a limiting case for the reg-
ularized one when ε → 0. The considerations presented below support the
suggestion: the Q-balls in regularized theory tend uniformly with ε to these
ones known from the “sharp” potential. Consequently, the global quantities:
charge and energy approach the relation found in Ref. [2].

The paper is organized as follows. The next section is devoted to
Q-balls in the regularized signum-Gordon model. Numerical results in the
case of the three spatial dimensions are reviewed in Sec. 3. In Sec. 4 we
examine briefly the equation motivated by the Q-ball Ansatz in the signum-
Gordon model in any number of space dimensions. To this end, we recall
and supplement the results presented in Ref. [2]. In Sec. 5 the limit ε→ 0 is
taken for solutions of the regularized model. Finally, in Sec. 6 we adapt the
Coleman’s proof of Q-ball stability for the regularized model (also in three
dimensions). An immediate consequence of the stability of the Q-balls in the
regularized model is the stability of the solutions in the original model. In
the last section we summarize the results and discuss some open problems.

2. The regularized model

The Lagrangian defining the theory of interest has the form

L = ∂µΦ∂
µΦ̄− λ

√
ε2 + ΦΦ̄+ λε , (1)

where Φ and Φ̄ denote the scalar field and its complex conjugation, ε and λ
are positive real numbers. The Lagrangian respects Lorentz symmetry. The
space dimension n does not need to be specified now. The field Φ, the space-
time coordinates xµ and the constants λ and ε are considered dimensionless.
A global change of the field phase does not affect the Lagrangian giving rise
to the Noether charge

Q =
1
2i

∫
dnx

[
∂tΦΦ̄− Φ∂tΦ̄

]
. (2)
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This makes the Coleman’s question about field configuration minimizing the
energy E for a given charge Q relevant. Although the theory (1) is not an
“acceptable” one (a discussion of the acceptability is postponed to Sec. 6),
we plug the Q-ball Ansatz into the field equations. The Q-ball Ansatz for
the complex scalar field has the form

Φ(t, ~x) = F (r) exp (iωt) , (3)

where F is a real valued function of the radial coordinate r and ω > 0.
After rescaling of the radial variable y = ωr and the profile function fδ(y) =
(2ω2/λ)F the following equation is obtained

f ′′δ +
n− 1
y

f ′δ + fδ =
fδ√
δ2 + f2

δ

. (4)

The ′ stands for derivative with respect to y and δ = 2ω2ε/λ. The physically
meaningful solution obeys the conditions: f ′δ(0) = 0 and fδ(∞) = 0. Such
a solution of the above equation is denoted as f̂δ.

Now, we argue that equation (4) has at least one meaningful solution.
The above equation may be interpreted in terms of classical mechanics —
it corresponds to a point particle moving in a potential f2

δ /2 −
√
f2
δ + δ2

and subject to the time dependent friction — y is regarded here as time.
The potential changes qualitatively for δ = 1. If δ > 1, it has one global
minimum and only the trivial solution (fδ = 0) satisfies equation (4) and
boundary conditions. For 0 < δ < 1 the potential has a local maximum at
f = 0 and two symmetric global minima for f = ±

√
1− δ2. In this range

of the parameter δ equation (4) admits nontrivial solutions. The heuristic
reasoning for their existence uses the continuity argument as follows: it is
possible to find such fδ(0) that the particle cannot pass the local maximum
and oscillates forever around one of the minima. However, for another fδ(0),
larger then the previous one, the particle may cross the local maximum and
dip on its other side. In between the two families of solutions the sought
after solution is expected. The fact of the existence of the two families is
demonstrated in Sec. 5.2. The exact solutions of equation (4) are not known,
so we have to resort to the numerics. The results are presented in Sec. 3.

The mechanical analogy is useful to demonstrate that the one-dimensional
model has the relevant solutions. In this case there is no friction. Hence,
the equation gains an integral of motion corresponding to the mechanical
energy

Emech = 1
2f
′
δ
2 + 1

2f
2
δ + δ −

√
δ2 + f2

δ .
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The Q-ball solution emerges for Emech = 0, the inverse function has then
the form

y(fδ) =

fδ∫
2
√

1−δ

dx√
2
√
x2 + δ2 − x2 − 2δ

.

A detailed analysis of the above formula reveals the relation between the
Q-balls in the regularized and the “sharp” model. The same may be achieved
with methods presented in Sec. 5 (some obvious modifications are in order
then). In the sequel we will no more return to the one-dimensional case.

Except for n = 2, we can give a more reliable argument for existence
of the required solution. The argument follows from a theorem proved in
Ref. [5]. That theorem states that the equation

∆ψ =
dU(ψ)
dψ

, (5)

has at least one spherically symmetric positive, monotone and vanishing
in infinity solution. What is more, the integrability of the terms U(ψ) and
(∇ψ)2 is also granted. In the above equation ψ denotes a real valued function
and ∆ stands for a Laplacian in n > 2 dimensions. It holds, if U satisfies
four conditions:

(1) U is continuously differentiable for all ψ;

(2) U(0) = U ′(0) = 0;

(3) U is somewhere negative;

(4) There exist positive numbers a, b, α and β such that α<β<2n/(n−2)
and

U ≥ a|ψ|α − b|ψ|β .

Let us consider
U(ψ) =

(√
ψ2 + δ2 − δ

)
− 1

2 ψ
2 .

This U satisfies the above requirements (e.g. for δ < 0.95 one can take
α = 2, β = 3, a = (1− δ)/2, b = 4(1−

√
δ)δ−1). Thus, the theorem applies.

It is clear, that the solution described in the theorem corresponds to the
Q-ball solution of the Eq. (4). Alas, in two spatial dimensions we have
nothing but the heuristic argument.
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3. Numerical results

The numerical analysis of the regularized signum-Gordon model is done
for n = 3 space dimensions. Some profile functions fδ for various δ are de-
picted in Fig. 1. The relevant solution of the original signum-Gordon model
is also plotted in this figure. Such a presentation supports the supposition
that the solution of the “sharp” potential is a limiting case for the solutions
of the regularized problem. The relations between the charge, energy and
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δ = 0.8

δ = 0.5

δ = 0.25

δ = 0.1

δ = 0f̂δ(y)

y

Fig. 1. Profile function for various δ values. The solution of signum Gordon model
is marked as δ = 0.

the parameter δ are most interesting from the physical viewpoint. Plugging
the Ansatz (3) into the definition of the charge (2) we obtain

Q =
π

λ

(
2ε
δ

)3 ∫
f̂2
δ r

2 dr =
(2ε)3

λ
Q̄(δ) . (6)

The energy is given by the formula

E=
π√
λ

(
2ε
δ

)5/2 ∫
dr r2

[
(f̂δ ′)2+f̂2

δ +2
(√

f̂2
δ +δ2−δ

)]
=

(2ε)5/2√
λ

Ē(δ) .

(7)
Q̄ and Ē are functions of the parameter δ only. The relation Ē(Q̄) is shown
in Fig. 2.

Quite a general feature in theories with Q-balls is the existence of a so-
lution with minimal possible charge and energy values. This is not the case
of the “sharp” signum-Gordon model, where

E =
(

5π
6

)1/6 12
√
y0 λ

1/3

5
Q5/6 (8)

for any chargeQ > 0. In the above formula y0 ≈ 4.49 is a numerical constant,
see [2]. The E(Q) relation in the regularized model inherits both from the
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Fig. 2. Relation Ē(Q̄) for the regularized signum-Gordon model. For a given charge
there exist two different Q-balls with different energies resulting in a cusp on the
graph. The arrows show how δ changes along the curve.

ordinary models and the signum-Gordon one. As in most models, there is
a Q-ball with the smallest possible charge and energy (the corresponding
solution is found for δ = 0.96, see Table I). Two branches of the relation
E(Q) originate from the point corresponding to this solution, see Fig. 2. The
branch corresponding to larger δ’s has larger energy values. Physically more
favorable are solutions with smaller δ — they may be absolutely stable. This
lower branch of solutions reproduces the power dependence E(Q) known
from the signum-Gordon model, see Fig. 3. The energy and charge are
smooth functions of 0 < δ < 1.

TABLE I

Data of some exemplary solutions in the regularized model.

δ fδ(0) Q̄ Ē

0.9999 0.0613 947.16 1894.41
0.999 0.1928 306.32 612.95
0.99 0.5844 117.44 235.75
0.97 0.9629 93.62 188.49
0.96 1.0948 92.62 186.53
0.95 1.2094 93.59 188.43
0.8 2.2862 179.77 348.21
0.5 3.6589 1100.09 1770.26
0.25 4.6276 11668.8 13653.2
0.1 5.1988 213385 160261
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Fig. 3. The points come from the numerics of regularized model. The solid line
illustrates the relation (8). The agreement is excellent.

The corner stone for the Q-ball theory is their absolute stability. In
Sec. 6 it is shown, that the criterion ensuring this reads E < Q

√
2λ/ε,

where the proportionality coefficient between E and Q is the mass parameter
of the theory. In the case of our model the inequality may be written in
a dimensionless form

2 >
Ē

Q̄
. (9)

The numerics indicates, that the inequality is violated if δ > 0.91. It means,
that almost all solutions from the lower branch are absolutely stable. The
solutions lying on the upper branch cannot be absolutely stable, however
they seem to be very close to the relation Ē =

√
2λ/εQ̄. There are two

more types of stability of Q-balls (see [6]): linear (classical) stability and
stability against fission. The classical stability is granted, if

ω

Q

dQ

dω
≤ 0 ,

where ω denotes the same quantity as in (3). In the case of our model,
where ω ∼

√
δ, the solutions from the lower branch of the relation E(Q)

satisfy the condition. It turns out, rather unexpectedly, that the condition
for the stability against fission coincides with this for linear stability. Thus,
the solutions from the lower branch are physically relevant, although not all
of them are absolutely stable. Some data useful for numerical analysis are
given in Table I.
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4. The signum-Gordon model

The defining feature of the signum-Gordon model is the field potential
term in the Lagrangian given by λ|Φ|. We plug the Q-ball Ansatz (3) into
the equation of motion, rescale the radial coordinate y = ωr and introduce
f(y) = (2ω2/λ)F as previously (f without δ in subscript relates to the
signum-Gordon model). This leads to equation [2]

f ′′ +
n− 1
y

f ′ + f = sign(f) . (10)

Due to the symmetry f → −f we can consider only the solutions with
f(0) > 0. Then, the above equation is a linear equation with the source term
equal to unity. The homogeneous part is solved with the substitution f(y) =
y−αR(y), where α = (n − 2)/2. In this way the equation transforms into
the Bessel’s differential equation of the order of α. Two linearly independent
solutions of (10) u1 and u2 may be written in terms of the Bessel functions
of the first Jα(y) and the second Yα(y) kind [7]:

u1(y) = y−αJα(y) , u2(y) = y−αYα(y) . (11)

For small values of y the first solution behaves like u1 ≈ a − by2 with
a, b > 0. On a larger scale it is oscillating function with decreasing ampli-
tude. u2 behaves in the vicinity of the origin like y−2α. Thus, the solution
of equation (10) obeying the conditions f(0) > 0 and f ′(0) = 0 has the
following form:

f(y) =
f(0)− 1
u1(0)

u1(y) + 1 . (12)

Strictly speaking, this function solves (10) as long as f(y) > 0. It has a
simple structure: the function u1 is rescaled and then shifted by the term
+1. Thus, the positions of the extrema of f do not depend on the starting
point f(0). If f(0) > 1 (as is supposed in the sequel) the first extremum is
minimum. We denote the argument of this minimum with y0 and note that
u1(y0) 6= 0. Let us also define

f0 = 1− u1(0)
u1(y0)

, (13)

and point out that if f(0) = f0, then f(y0) = 0. If f(0) < f0, f is valid
solution for all arguments as it stays positive for all y. For f(0) > f0 the
value of f at the first minimum is negative. Thus, for some y < y0 the
function f changes its sign and ceases to solve (10). Following the solution
with f(0) = f0 an ambiguity is encountered for y = y0. The equation admits
three ways of continuation for y > y0: a valid solution may follow the r.h.s.
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of (12) with plus or minus sign or may be set to zero. It is our choice
motivated by the field theoretical context to stick to the last option. The
resulting function composed of two pieces corresponds to the Q-ball profile
function and is further denoted as f̂ . We will show that the regularization
of the potential supports the choice.

5. The limit δ → 0

The numerical results from Sec. 3 suggest, that the Q-balls in the regu-
larized model approach the solution of the signum-Gordon model. Now, we
can give some analytical arguments for this. The spatial dimension n > 1
does not need to be specified in what follows. First, we will show that for
profile functions in the regularized model f̂δ(0)→ f0 when δ tends to zero.
Then, we will find an upper bound for the modulus of the difference between
the solution of the model with δ > 0 and the one with δ = 0. As the bound
tends to zero, the solutions of the regularized models approach uniformly
the solution characterized in Sec. 4.

5.1. General setting

Now we are in a position to explore the solutions of equation (4) for
small values of the parameter δ. To deal with the limit we set the notation
and give some general estimates used later.

Let us consider the difference between solutions of (4) and (10)

η(y) = f(y)− fδ(y) . (14)

The pertinent solutions obey the same initial conditions fδ(0) = f(0) and
f ′δ(0) = f ′(0) = 0. Let us make it clear, that at this stage we investigate
solutions of the equations that can spoil the condition f(∞) = fδ(∞) = 0.
As long as sign(f(y)) = +1 the differential equation holds

η′′ +
n− 1
y

η′ + η =
δ2(√

δ2 + f2
δ + fδ

)√
δ2 + f2

δ

. (15)

It is supplemented with the initial conditions η(0) = 0 and η′(0) = 0. For
notational convenience let us call the r.h.s. in the above equation ϕ(fδ(y)) or
shorter ϕ(y). ϕ seen as a function of positive fδ is a positive and monotone
decreasing function. Some algebra makes evident that ϕ(fδ) < δ2/3/g (with
g being a positive constant) as long as

fδ > δ2/3
√
g

2

1− δ2/3

g√
1− δ2/3

2g

= δ2/3
√
g

2
+ o(δ) . (16)
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Equation (15) is an inhomogeneous linear equation. The homogeneous part
is the same as in (10). Then, using u1 and u2 the solution may be written
in the form

η(y) =

y∫
0

G(y, s)sn−1ϕ(s)ds , (17)

where G(y, s) is a Green function (see [7]) and does not depend on the
parameter δ. It has the form

G(y, s) =
u1(s)u2(y)− u2(y)u1(s)

yn−1 (u′2(y)u1(y)− u′1(y)u2(y))
.

A priori any combination of the functions u1 and u2 could be added to the
solution (17), but the boundary conditions exclude such terms. The integral
does not give rise to any ambiguity or difficulty for y → 0. The above form
of η gives the following bound

|η(y)| ≤ max
s∈(0,y)

{ϕ(s)}
y∫

0

∣∣G(y, s)sn−1
∣∣ ds . (18)

Hence, for all y < y0 + 1 the inequality holds

|η(y)| ≤ max
s∈(0,y)

{ϕ(s)}
y0+1∫
0

∣∣G(y, s)sn−1
∣∣ ds = g1 max

s∈(0,y)
{ϕ(s)} , (19)

where the last equality defines g1. In order to get another helpful observation
it is convenient to rewrite equation (15) in the form

yn−1η′(y) =

y∫
0

sn−1 (ϕ(s)− η(s)) ds .

Together with (19) this gives the bound on the derivative η′(y) for all y <
y0 + 1:

|η′(y)| ≤ y1−n
y∫

0

sn−1 (|ϕ(s)|+ |η(s)|) ds ≤ g2 max
s∈(0,y)

{ϕ(s)} , (20)

where g2 = (y0 + 1)(1 + g1)/n.
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5.2. The limit fδ(0) with δ → 0

Now, we demonstrate that a solution with fδ(0) far from f0 cannot be
the Q-ball profile function — it either has a minimum or changes its sign.
First, we deal with the solutions fδ(0) = f(0) = f0− ξ, ξ > 0. It is shown in
Sec. 4, that then equation (15) and the solution (17) hold for any argument
y. Assume η(y) does not tend to zero for 0 < y < y0 + 1 when δ gets
smaller and smaller. The inequality (19) makes clear that it may be true
only if ϕ(fδ) ≥ δ2/3/g1 on a finite segment. Equivalently, it means that
fδ < δ2/3

√
g1/2 on this segment as follows from (16). For continuity reason

fδ has to reach this value for the first time at a point ys. At this point the
relation holds

|f(ys)| ≤ |fδ(ys)|+ |η(ys)| ≤ δ2/3
√
g1
2

+ δ2/3 . (21)

This inequality may be combined with another one: f(y0) ≤ f(ys), what
restricts the initial conditions allowing the reasoning

0 ≤ ξ ≤
∣∣∣∣ u1(0)
u1(y0)

∣∣∣∣ δ2/3(√g1
2

+ 1
)
. (22)

If this inequality is spoiled, |η| is smaller then δ2/3/g1 on the whole segment.
From this we can infer the existence of a minimum of fδ; it suffices that
the function f takes a value bigger then f(y0) + δ2/3 twice in the segment
(eventually one can consider a larger segment instead of the arbitrarily taken
y0 + 1). Thus, for δ small enough, the solution interpreted as Q-ball cannot
start with fδ(0) < f0 − δ2/3(

√
g1/2 + 1).

Let us analyze the case fδ(0) = f(0) = f0 + ξ. It is argued in the Sec. 4,
that there exists a point y1 < y0 for which f(y1) = 0 and f ′(y1) < 0. Con-
sider another point for which fδ(yz) = δ2/3g

1/3
1 . It means, that |η(yz)| <

δ2/3g
1/3
1 /2. Such choice of the function value ensures that 0 < f(yz). To see,

that the function fδ reaches the requested value assume the contrary: fδ
does not. As it is a continuous function, it is always bigger then this
(i.e. δ2/3g

1/3
1 ) value. Then, η is small enough to ensure that f 6= 0 for

any value 0 < y < y0, what is false. Now, we can show that fδ changes its
sign if δ is sufficiently small. To this end we make use of (20) to get

f ′(yz)−
g2g
−2/3
1

2
δ2/3 < f ′δ(yz) < f ′(yz) +

g2g
−2/3
1

2
δ2/3 . (23)

We consider such values of δ, that |f ′(yz)| > δ2/3g2g
−2/3
1 /2. Let us solve the

following equation for y2

fδ(y2) = −δ1/3
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using the Taylor expansion

fδ(y) = fδ(yz) + f ′δ(yz)(y − yz) + . . . .

The solution reads

y2 = yz +
δ1/3 + δ2/3g

1/3
1

|f ′δ(yz)|
.

Trading f ′δ(yz) for f
′(yz) in the above relation changes the result with a term

of the order of δ1, what is negligible. To ensure validity of the solution the
reminder of the Taylor expansion R has to be shown irrelevant. It has the
form

R =
f ′′δ (s)

2f ′δ
2(yz)

(y2 − yz)2 ,

where s ∈ (yz, y2). Equation (4) does not touch the quantity

Emech = (n− 1)

y∫
ys

f ′δ
2(r)
r

dr +
1
2

(
f ′δ

2(y) + f2
δ (y)

)
−
√
f2
δ (y) + δ2 ,

which is interpreted as the mechanical energy (see Sec. 2) at “time” y plus
the energy lost on the “time” interval [ys, y]. From this we can get a bound
on f ′δ in terms fδ for all y > ys. Plugging this into equation (4) a bound for
f ′′δ is found. Hence, if δ is small enough, the solution starting with fδ(0) > f0

cannot correspond to a Q-ball profile function as it changes its sign.
A crude estimation of ξ allowing the above reasoning gives ξ ∼ δ4/3.

This is obtained by finding yz by Taylor expansion of f around y0 and by
checking the condition |f ′(yz)| > δ2/3g2g

−2/3
1 /2.

The succinct conclusion of this section is

lim
δ→0

f̂δ(0) = f0 . (24)

5.3. The limit f̂δ with δ → 0

To investigate the difference between the Q-ball solutions in the regular-
ized signum-Gordon model and the original one it is convenient to use the
method from the previous section. First, we denote

η̂(y) = f̂(y)− f̂δ(y) (25)

and for further convenience

r(δ) = g1δ
2/3 +

∣∣∣f0 − f̂δ(0)
∣∣∣ .
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For y < y0 the equation for η̂ has the same form as (15). As η̂(0) 6= 0 the
solution of this equation differs slightly from (17), it has the following form

η̂(y) =

y∫
0

G(y, s)sn−1ϕ
(
f̂δ(s)

)
ds+

f0 − f̂δ(0)
u1(0)

u1(y) . (26)

Consider a point y3 such that f̂δ = δ2/3
√

2. Assume, that y3 ≤ y0. The term
coming from the integration in (26) is not larger then g1δ2/3, see (16), (18)
and (19). As the amplitude of u1 decreases, the second term in the solution
is bounded by |f0 − f̂δ(0)|. Thus

f̂(y3) ≤ δ2/3√
2

+ r(δ) .

The two functions are positive, so the difference between them for any y is
equal to, or lesser then max{f̂(y), f̂δ(y)}. They are also decreasing, hence
such bound for |η̂| is valid for all arguments larger then the one used in
estimation. In that way we obtain the relation

|η̂(y)| < δ2/3√
2

+ r(δ) , (27)

valid for all y > 0. If y3 > y0, the above estimate remains valid. To see this,
note that the previous bound for η̂ holds for all y < y0 as f̂δ(y0) > δ/

√
2. For

y > y0 we have the identity f̂δ(y) = η̂(y), hence η̂ decreases. This completes
the proof of one of the main results of this paper: the Q-ball solutions in the
regularized signum-Gordon model approach the solution of the “sharp” model
uniformly. In consequence, the charge and energy computed in regularized
model tend to the value known from the original one as δ → 0.

5.4. The limit δ → 0 for energy and charge

The numerical results from Sec. 3 point to the agreement between the re-
lation E(Q) in both models of interest. Now we can show, that this is not an
accidental coincidence. The fact, that the integration

∫
dnx f2

δ approaches
the value known from the signum-Gordon model follows immediately from
the uniform convergence of the functions f̂δ. It is natural to write the result
of the integration in the form q0 + q(δ), where the first term is the limiting
value, the second reports on the δ-dependent corrections. Plugging this into
the original formula for charge (2) and trading δ for the original parameters
of the model we get the formula

Q =
πλ2

ωn+3

(
q0 + q

(
2εω2

λ

))
. (28)



642 J. Lis

In the leading order it is the same formula as in the “sharp” model, the effect
of the regularization is negligible both for large charges (small ω) and tiny
regularization parameter ε.

The same result is true for energy. However, to see this, more work is
needed. In terms of f̂δ the energy functional has the following form

E =
πλ2

ωn+2

∫
dr rn−1

[
(f̂δ ′)2 + f̂2

δ + 2
(√

f̂2
δ + δ2 − δ

)]
. (29)

First, the derivative f̂ ′δ approaches f̂ ′; their difference η̂′ may be bounded
analogously to η̂. Next, we deal with the potential energy of the field, as
the dependence on δ is explicit there. We separate the δ independent part
in this integral∫

dy yn−1
(√

f̂2
δ +δ2−δ

)
=
∫
dy yn−1f̂δ−2δ

∫
dy yn−1

f̂δ√
f̂2
δ + δ2+δ + f̂δ

and show that the term depending explicitly on δ tends to zero. In the above
formula the positivity of f̂δ is taken into account. Let us split the area of
integration into two parts. First, we treat the integration in a compact
volume

2δ

y0∫
0

dy yn−1 f̂δ√
f̂2
δ + δ2 + δ + f̂δ

< 2δ

y0∫
0

dy yn−1 1
2
→ 0 .

The integration in the remaining volume is also negligible

0 ≤ 2δ
∫
y0

dy yn−1 f̂δ√
f̂2
δ + δ2+δ+f̂δ

< 2δ
∫
y0

dy yn−1 f̂δ
2δ
→
∫
y0

dy yn−1f̂ = 0 ,

as expected.
Denoting the results of integrations in the energy definition with κ0+κ(δ)

(analogously to the results of integration in charge definition) we obtain

E =
πλ2

ωn+2

(
κ0 + κ

(
2ω2ε

λ

))
. (30)

Again, the formula in the leading order is the same as in the model without
regularization. This explains the agreement seen in Fig. 3 — the dependence
on regularization parameter ε practically factors out in the relation E(Q).
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6. The absolute stability of Q-balls

As already mentioned, the potential in (1) does not fall into a class of
“acceptable” ones. For the class Coleman showed in [1] that the Q-ball solu-
tions are absolutely stable, i.e. for a given charge value no configuration can
have a lesser energy. The status of Q-balls in the regularized signum-Gordon
model is at the moment unclear. In this section we are about to adapt the
Coleman’s proof to the theory set by (1). To this end we follow closely his
arguments. As originally, our proof is done in three space dimensions.

To begin with, we define the Q-ball initial data. A set of initial data
is said to be of this type if the spatial distribution of the field is given
with a real, positive, spherically symmetric and monotone decreasing to zero
function F . The condition for time derivative is ∂t Φ(t = 0, r) = iωF (r),
and ω is a positive constant. The first step in the proof is very general and
we just straightforwardly quote it. It states, that for any set of initial values
there exists a set of Q-ball type having the same charge Q and equal or lesser
value of energy E. As a result, we are allowed to constrain the investigation
to the energy functional written in the form

EQ =
∫
d3x

[
(∇F )2 + U(F )

]
+
Q2

I
, (31)

where F is a function giving the spatial distribution of the initial data of
Q-ball type and I[F ] =

∫
d3xF 2,

U(F ) = λ
(√

F 2 + ε2 − ε
)
.

In this form the energy is a function of F and Q is a parameter, ω = Q/I.
The aim of the proof is to show, that the minimum of the functional may be
reached. Before we proceed, let us discuss the definition of an “acceptable”
potential. A field potential U is “acceptable”, if

(1) U(0) = 0 and U is positive everywhere else. U is twice continuously
differentiable, U ′(0) = 0 and U ′′(0) = µ2.

(2) The minimum of U/F 2 is attained for some F0 6= 0.
(3) There exist three positive numbers a, b and c > 2, such that

1
2 µ

2F 2 − U(F ) ≤ min(a, b|F |c) . (32)

The signum-Gordon model spoils all these three conditions. Its regularized
version fails to satisfy the second and the third point. As for the second
condition, one can say, that the minimum in both models is attained for
Φ =∞. Instead of this requirement it suffices, that for some Q there exists
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a function F , for which
√

2µQ > E (for our convention in Lagrangian
√

2
appears occasionally). In the regularized model the Q-ball solutions meet
this criterion for charges large enough. It follows from the relation E(Q) in
the model with “sharp” potential [2]

E ∼ Q
n+2
n+3 .

The meaning of this relation in the regularized potentials is explained in
Sec. 5.4. The third condition for acceptability of the potential is a tech-
nical one, useful for some estimates. Happily, we are able to bypass the
requirement without any harm to the proof.

Let us define:
K[F ] =

∫
d3x (∇F )2 ,

V [F ] =
∫
d3x U(F ) = λ

∫
d3x

(√
F 2 + ε2 − ε

)
,

and
W [F ] = U [F ]− 1

2 µ
2I[F ] ,

with µ2 = λ/ε. This quantity satisfies a nice identity

W [F ] = − µ2

2λ2

∫
d3x U2(F ) . (33)

Hence,W [F ] is negative for any F . Two decompositions of energy are useful.
The first of them is given by (31), the second one is

EQ = K +
µ2

2
I +W +

Q2

I
. (34)

Now we discuss a meson argument: any spatial distribution of the field
vanishing in the infinity may be modified by adding a function h of compact
support

F (r)→ F (r) + L−3/2h

(
r − d
L

)
. (35)

If L and d are taken large enough the integrals K[F ] and W [F ] stay un-
affected and simultaneously I[F ] increases by a constant amount. It may
be surprising, that this is true for the regularized potential, no matter how
small δ is. This argument however does not work in the case of the “sharp”
potential. Equation (34) may be written in the form

EQ −K −W =
µ2

2
I +

Q2

I
. (36)
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The r.h.s. has a minimal value
√

2µQ for I =
√

2Q/µ. Hence, we can arrange
to add ∆Q to the charge value and

√
2µ∆Q to the energy. Consequently if

inf EQ <
√

2µQ, there must exist a minimal charge Qmin ≥ 0 for which this
inequality holds.

Consider a sequence of functions {Fi}∞i=1 for which limEQ[Fi] = infE.
The existence of such a sequence is guaranteed by the definition of infimum.
We can choose Fi to be positive, spherically symmetric and monotone de-
creasing to zero functions. K is a positive quantity bounded above by the
energy. Thus there is a subsequence such that K has a limit. The same
reasoning holds for V . If E, K and V converge, so does also I and W . The
limiting values are denoted with tildes, e.g.

K̃ = lim
i→∞

K[Fi] .

What is more, we can choose such subsequence, that is bounded uniformly
in i for all the quantities: E, K, V and W . We assume this to be done. We
will need the inequality

Ĩ >

√
2Q
µ

. (37)

Assume, that Ĩ <
√

2Q/µ. Then adding mesons at infinity to the sequence,
so that I =

√
2Q/µ for almost all Fi, results in a sequence converging to

energy lower then Ẽ = infEQ, absurdity. If we assume Ĩ =
√

2Q/µ, then
W̃ < −K̃ (as Ẽ <

√
2µQ). The scaling transformation

Fi(y)→ Fi (y(1 + α)) ,

with small α parameter. Then the energy transforms

Ẽ → Ẽ − αK̃ − 3αW̃ + . . . ,

where the omitted terms are of the order of α2, Ĩ is in its stationary point
and does not contribute in the first order. Taking α small and negative we
could in this way again lower the energy below its infimum. It is convenient
to introduce functions fi(r) = rFi(r), where r is the radial coordinate. With
no additional prerequisites we are able to show, that this functions form a
uniformly bounded sequence of equicontinious functions. To see this we
note, that

K[Fi] = 4π
∫
dr

(
dfi
dr

)2

and
I[Fi] = 4π

∫
dr f2

i .
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By Schwarz inequality we obtain

f2
i (r) = −1

2

∞∫
r

dr fi
dfi
dr
≤ 1

8π

√
I[Fi]K[Ii] (38)

and

|fi(r1)− fi(r2)| =

∣∣∣∣∣∣
r2∫
r1

dr
dfi
dr

∣∣∣∣∣∣ ≤
√

[K[Fi]|r1 − r2 |
8π

. (39)

This inequalities legitimate the above statement. Hence, by Ascoli’s theorem
there exists a subsequence of {fi} which is pointwise convergent everywhere
and uniformly convergent on any finite interval. This implies the same for
{Fi}, except for r = 0. The limit of the convergent subsequence is denoted
with F̃ . The task is now to show, that EQ[F̃ ] = Ẽ.

K defines a Hilbert — space norm under which the F s are bounded
family of vectors. Such a bounded family has always a weakly converging
subsequence. The norm of the weak limit is always less then or equal to the
limit of norms. Thus,

K[F̃ ] ≤ K̃ . (40)

Analogously,
I[F̃ ] ≤ Ĩ . (41)

As for W we take two positive numbers 0 < r_ < r+ and keeping in mind
the relation (33) and (38) we note, that

2πµ2

λ2

r_∫
0

dr r2U2(Fi) ≤
2πµ2

λ2

r_∫
0

drf2
i (r) ≤ µ2

4λ2

√
K[Fi]I[Fi]r_

and

2πµ2

λ2

∞∫
r+

dr r2U2(Fi) ≤
2πµ2

λ2

∞∫
r+

dr r2FiU(Fi) ≤
µ2 sup fi
2λ2r+

V [Fi] .

Thus, taking r_ and r+ appropriately we can make the above integrals as
small as we want. As Fi converges uniformly to F̃ in this interval, we get

lim
i→∞

W [Fi] = W [F̃ ] .

Finally, we show Ĩ = I[F̃ ]. Assume, that I[F̃ ] < Ĩ. Then, by adding meson
at infinity we can construct a new function F ′ such that W [F ′] = W [F̃ ],
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K[F ′] = K[F̃ ] and I[F ′] anywhere in between I[F̃ ] and Ĩ. Using (37) we
can take, that

Ĩ > I[F ′] >
√

2Q
µ

.

This implies, that
Q2

I[F ′]
+
µ2

2
I[F ′] <

Q2

Ĩ
+
µ2

2
Ĩ .

Together with equation (36) it results in a contradiction: EQ[F ′] < Ẽ.
Thus, Ĩ = I[F̃ ]. By (34) and (40) and taking into account the last result
we obtain EQ[F̃ ] ≤ Ẽ. Since EQ[F̃ ] < Ẽ is impossible, we conclude, that
E[F̃ ] = Ẽ. Having granted the existence of the minimum of the functional,
we are legitimate to claim that it corresponds to the solution of the equation

δEQ[F ]
δF

= 0 ,

i.e. equation (4).
The absolute stability of the Q-balls in the regularized models suggests

the stability of the Q-balls in the signum-Gordon model. It follows from
a simple argument. Consider a set of initial data given by a function F
to the charge value Q and the energy E′ lower then the energy E of the
corresponding Q-ball in the signum-Gordon model. The energy E obeys the
relation (8). We can plug F into the energy functional of an regularized
model (31) with a parameter ε and the charge Q. As |F | ≥

√
F 2 + ε2 − ε,

the energy functional with any regularization yields then a smaller value
then in the case of the “sharp” potential. For ε small enough the energy
of the corresponding Q-ball may be as close to E as needed, see Sec. 5.4.
Hence, for ε tiny enough the function F results in the energy value smaller
then that of the related Q-ball, what has been already proven impossible.

7. Conclusions

We have shown, that the Q-balls are physically relevant solutions of the
regularized signum-Gordon model in three spatial dimensions. They are
absolutely stable for large values of charge. What is more, we have demon-
strated that Q-balls in the regularized signum-Gordon model approach the
solution known from the “sharp” model. It holds both for profile functions
and their global characteristics and is well illustrated by the numerical solu-
tions. For the first time the parabolic approach to the vacuum known in the
signum-Gordon model emerged in the limiting procedure. The stability of
the solutions in the regularized model guarantees the stability of the Q-balls
in the original model.
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We have shown, that the regularization does not change some charac-
teristics of the model drastically. We hope that parallel exploration of both
models will shed light on some tough issues, let us mention only the propa-
gation of a perturbation in the model with the “sharp” potential.

Finally, let us point to a very intriguing direction of investigation, i.e.
quantization of the models. The question about the role played by the
quantum counterparts of Q-balls is both intriguing and hard.

I would like to thank Henryk Arodź for stimulating discussions.
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