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The recent experimental estimate for τ lepton mass comes significantly
near to a theoretical value proposed by us in 1992. We recall our argumen-
tation supporting this proposal.

PACS numbers: 12.15.Ff, 12.90.+b

The central value of recent experimental estimate for τ lepton mass [1],

m(2008)
τ = 1776.84± 0.17 MeV , (1)

is considerably diminished in comparison with that of the former experimen-
tal estimation [2],

m(2006)
τ = 1776.99+0.29

−0.26 MeV , (2)

while the errors are reduced a lot. As it happens, in 1992 we proposed for
mτ a theoretical value [3],

mτ = 1776.80 MeV , (3)

very close to the actual estimate (1). We deduced such a value from the
parameter-free mass sum rule [3]

125mτ = 6 (351mµ − 136me) (4)

resulting strictly from a mass formula conjectured in 1992 for charged lep-
tons e−, µ−, τ−. In fact, the sum rule (4) implies the value (3), when the

(649)
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experimental figures for me and mµ are used as an only input (it gives
mτ = 1776.797 MeV with me = 0.5109989 MeV and mµ = 105.6584 MeV
[1,2])1.

In the present note we would like to recall our mass formula for charged
leptons and then, in Appendix, review some arguments supporting its form.

Our charged-lepton mass formula expresses three masses me,mµ,mτ in
terms of two free parameters µ and µ(ε− 1), one running quantum number
N taking three values

N = 1, 3, 5 (5)

and, finally, three generation-weighting factors

ρ1 =
1
29
, ρ3 =

4
29
, ρ5 =

24
29

(6)

(
∑

N ρN = 1). With the notation

m1 = me , m3 = mµ , m5 = mτ (7)

our formula reads [3]

mN = ρN µ

(
N2 +

ε− 1
N2

)
(N = 1, 3, 5) (8)

or, more explicitly,

me =
µ

29
ε ,

mµ =
4µ
29

80 + ε

9
,

mτ =
24µ
29

624 + ε

25
. (9)

1 In 1981, Koide proposed for charged leptons the neatly looking nonlinear equation to
describe their mass spectrum [4],

me + mµ + mτ = 2
3
(
√

me +
√

mµ +
√

mτ )
2,

having — as can be seen — two solutions for mτ in terms of me and mµ,

mτ =

»
2(
√

me +
√

mµ)±
q

3(me + mµ) + 12
√

memµ

–2
=


1776.97 MeV
3.31735 MeV

,

where me = 0.5109989 MeV and mµ = 105.6584 MeV are experimental figures. The
first solution agrees wonderfully with the central value of actual experimental estimate
(1), though its small deviation from this experimental value is slightly larger than
the deviation of our prediction (3) (for the former experimental estimation (2), the
situation was opposite). The second solution gets no interpretation.
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It can be seen that, eliminating two free parameters µ and ε from the
mass formula (9), we obtain strictly the mass sum rule (4) expressing mτ in
terms of me and mµ. On the other hand, from the first and second Eq. (9)
we can evaluate µ and ε also in terms of me and mµ,

µ =
29(9mµ − 4me)

320
, ε =

320me

9mµ − 4me
, (10)

and hence, numerically

µ = 85.9924 MeV , ε = 0.172329 , (11)

with the experimental figures for me and mµ used as an only input. Then,
our mass formula (8) or (9) is fully defined to determine me and mµ equal
to their experimental figures and mτ equal to its predicted value (3).

In Appendix, we present some arguments supporting the use of N =
1, 3, 5 as the adequate quantum number and the special choice of ρN =
1/29, 4/29, 24/29 as the generation-weighting factors as well as the specific
dependence of charged-lepton masses on N2 and 1/N2. These arguments
lead to our mass formula (8) or (9).

We believe that the discovery of explicit formulae for masses of funda-
mental fermions is still possible, as it was for the levels of hydrogen atom
in Balmer’s and Bohr’s time, although now we have to operate with the
involved quantum field theory or its extensions, rather than with the simple
rudiments of quantum mechanics as in the old times.

Appendix

Three generations of fundamental fermions caused by an intrinsic Pauli
principle, and a charged-lepton mass formula

Assume that fundamental fermions, such as Standard Model leptons and
quarks, are pointlike objects in spacetime, but intrinsically composite struc-
tures in an algebraic sense expressed by the multicomponent form of their
local one-particle wave function

ψ(N)
α1α2...αN

(x) (N = 1, 3, 5, . . .) . (A.1)

Here, αi = 1, 2, 3, 4 (i = 1, 2, . . . , N) are Dirac bispinor indices in the chi-
ral representation, where commuting 4N × 4N Dirac matrices γ5

i and σ3
i

(i = 1, 2, . . . , N) are diagonal. Here, γ5
j = iγ0

j γ
1
j γ

2
j γ

3
j and σ3

j = γ5
j γ

0
j γ

3
j .

If the basic 4N × 4N Dirac matrices γµi (i = 1, 2, . . . , N) are elements of
Clifford algebra

{
γµi , γ

ν
j

}
= 2gµνδij (i, j = 1, 2, . . . , N), anticommuting for
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i 6= j, it turns out that the wave function (A.1) can be assumed to satisfy
in the free case the wave equation of generalized free Dirac form [5],(

Γ (N)µ pµ −M (N)
)
ψ(N)(x) = 0 (N = 1, 3, 5, . . .) , (A.2)

where ψ(N)(x) ≡
(
ψ

(N)
α1α2...αN (x)

)
, while

Γ (N)µ ≡ 1√
N

(
γµ1 + γµ2 + . . .+ γµN

)
(N = 1, 3, 5, . . .) (A.3)

are elements of Dirac algebra {Γ (N)µ , Γ (N)ν} = 2gµν following from Dirac’s
square root procedure

√
p2 → Γ (N)µ pµ. Here, all possible Standard Model

SU(3)× SU(2)×U(1) labels are suppressed.
Because of the form (A.3) of Γ (N)µ it will be convenient to pass in Eq.

(A.2) from the individual Dirac matrices γµi (i = 1, 2, . . . , N) to their
Jacobi-type combinations

Γ
(N)µ
1 ≡ 1√

N

(
γµ1 + γµ2 + . . .+ γµN

)
≡ Γ (N)µ ,

Γ
(N)µ
i ≡ 1√

i(i− 1)

[
γµ1 + γµ2 + . . .+ γµi−1 − (i− 1)γµi

]
(i = 2, 3, . . . , N) , (A.4)

satisfying the Clifford algebra {Γ (N)µ
i , Γ (N)ν

j } = 2gµνδij (i, j = 1, 2, . . . , N)
isomorphic with the previous Clifford algebra. The combinations (A.4) may
be called “centre-of-mass” and “relative” Jacobi-type Dirac matrices, respec-
tively. In the new chiral representation, where commuting Jacobi-type Dirac
matrices Γ (N)5

i and Σ(N)3
i (i = 1, 2, . . . , N), analogical to γ5

i and σ
3
i , are diag-

onal and αi = 1, 2, 3, 4 (i = 1, 2, . . . , N) denote new Dirac’s bispinor indices,
the free generalized Dirac equation (A.2) can be reduced to the form [5](

γµ pµ −M (N)
)
α1β1

ψ
(N)
β1α2...αN

(x) = 0 (N = 1, 3, 5, . . .) (A.5)

with ψ(N)(x)≡
(
ψ

(N)
α1α2...αN (x)

)
. Here,γµ are the ordinary 4×4 Dirac matrices

and Γ (N)µ
1 = γµ⊗1⊗. . .⊗1. Note that in Eq. (A.5) α1 is the “centre-of-mass”

Dirac bispinor index, while α2, . . . , αN present “relative” Dirac bispinor in-
dices (see the definitions (A.4)).

We can introduce to the free wave equation (A.5) the Standard Model
gauge interactions applying the minimal substitution pµ → pµ − gAµ(x),
where Aµ(x) involves the familiar weak-isospin and color matrices, the weak
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hypercharge dependence as well as the ordinary chiral 4×4 Dirac matrix γ5

(in general, Γ (N)5
1 ). Then, g γµAµ(x) (in general, g Γ (N)µ

1 Aµ(x)) becomes
the Standard Model gauge coupling in the generalized Dirac equation which
can be reduced to the form [5]{
γµ [pµ − gAµ(x)]−M (N)

}
α1β1

ψ
(N)
β1α2...αN

(x) = 0 (N = 1, 3, 5, . . .) . (A.6)

This is a coupling to the “centre-of-mass” Dirac bispinor index α1. It is
plausible to assume that also all other possible interactions, including the
familiar gravity and hypothetic hidden-sector interactions, if effective, are
coupled to the fundamental fermions via their “centre-of-mass” degrees of
freedom α1 and pµ. Hence, the conclusion follows that the “centre-of-mass”
bispinor index α1 is physically distinguished from all “relative” bispinor in-
dices α2, . . . , αN which, being uncoupled, are mutually indistinguishable.
Thus, it is very natural to conjecture that all “relative” bispinor indices
α2, . . . , αN , treated as intrinsic physical objects (“intrinsic partons”), obey
the Fermi statistics along with the intrinsic Pauli principle [5] requiring full
antisymmetry of one-particle wave function ψ(N)

α1α2...αN (x) with respect to all
α2, . . . , αN indices. In consequence, N becomes restricted to its three values
N = 1, 3, 5 only.

It is exciting to observe that the above simple conjecture of full anti-
symmetry of the wave function (A.1) with respect to all “relative” bispinor
indices α2, . . . , αN implies the existence in Nature of exactly three genera-
tions N = 1, 3, 5 of fundamental fermions with spin 1/2 (including Standard
Model leptons and quarks [5] as well as sterile fermions with spin 1/2, we
have called sterinos, candidates for the stuff the cold dark matter is made of
[6]). The one-particle wave function of these fermions in three generations
can be written down as the following Dirac bispinors [3]:

ψ(1)
α1

(x) ,

ψ(3)
α1

(x) =
1
4
(
C−1γ5

)
α2α3

ψ(3)
α1α2α3

(x) = ψ
(3)
α112(x) = ψ

(3)
α134(x) ,

ψ(5)
α1

(x) =
1
24
εα2α3α4α5ψ

(5)
α1α2α3α4α5

(x) = ψ
(5)
α11234(x) , (A.7)

where, in addition,

ψ
(3)
α113(x) = 0 = ψ

(3)
α124(x) , ψ

(3)
α114(x) = 0 = ψ

(3)
α123(x) . (A.8)

In Eqs. (A.7) and (A.8), the probability interpretation and relativity of
quantum theory are applied [3]. Here, the Standard Model SU(3)×SU(1)×
U(1) labels — accompanying the “centre-of-mass” bispinor index α1 in the
case of leptons and quarks — are suppressed.
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Note that the total “relative” chirality Γ
(N)5
2 . . .Γ

(N)5
N (N = 3, 5) com-

mutes with the Hamiltonian following from the generalized Dirac equation
[5] (see Eq. (A.6)){

Γ
(N)µ
1 [pµ − gAµ(x)]−M (N)

}
ψ(N)(x) = 0 (N = 1, 3, 5) , (A.9)

so it is a constant of motion (note that Γ (N)5
1 and Γ

(N)5
2 , . . . , Γ

(N)5
N an-

ticommutes and commute with Γ
(N)µ
1 , respectively, while all Γ (N)5

i (i =
1, 2, . . . , N) commute mutually and also with Γ (N)0

1 Γ
(N)µ
1 ). This allows us

to impose on the wave function ψ(N)(x) =
(
ψ

(N)
α1α2...αN (x)

)
the constraint

Γ
(N)5
2 . . . Γ

(N)5
N ψ(N)(x) = ψ(N)(x) (N = 3, 5), in consistency with the wave

equation (A.9). However, there is no need to do it, because such a constraint
is already fulfilled by the wave functions for N = 3, 5 given in Eqs. (A.7)
and, in addition, is consistent with Eqs. (A.8) for N = 3. The last observa-
tion excludes from the generation N = 3 the “relative” spins 1 and 0 with
“relative” chirality −1 as 1 = (+ ↑), 2 = (+ ↓), 3 = (− ↑), 4 = (− ↓), leaving
in both generations N = 3, 5 only the “relative” spin 0 with “relative” chiral-
ity +1 (the “relative” spin 1 with “relative” chirality +1 is directly excluded
by the intrinsic Pauli principle giving ψ(3)

α111(x) = ψ
(3)
α122(x) = ψ

(3)
α133(x) = 0).

Notice that this constraint is natural, since it guarantees the same total chi-
rality for all three generations N = 1, 3, 5: Γ (N)5

1 Γ
(N)5
2 . . . Γ

(N)5
N ψ(N)(x) =

Γ
(N)5
1 ψ(N)(x) = γ5ψ(N)(x), where γ5 =

(
γ5
α1β1

)
.

From Eqs. (A.7) it follows that

ψ(N)∗
α1α2...αN

(x)ψ(N)
α1α2...αN

(x) = 29ρNψ(N)∗
α1

(x)ψ(N)
α1

(x) (N = 1, 3, 5) , (A.10)

where
ρ1 =

1
29
, ρ3 =

4
29
, ρ5 =

24
29

(A.11)

(
∑

N ρN = 1) are the generation-weighting factors.
Now, restricting ourselves to charged leptons of three generations, e−, µ−,

τ−, as the simplest Standard Model fermions, we will look for their mass
formula in the form [5]

mN = ρNhN (N = 1, 3, 5) , (A.12)

where me = m1,mµ = m3,mτ = m5 and ρN denote three generation-
weighting factors (A.11). We will put

hN = µuN + µ(ε− 1)vN (N = 1, 3, 5) (A.13)
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in terms of two massdimensional parameters µ and µ(ε− 1) which combine
additively two “intrinsic interactions” µuN and µ(ε− 1)vN “within” charged
leptons.

In order to build up these “intrinsic interactions” we have to our disposal
only three structural numbers N (three other structural numbers ρN , ap-
pearing in our approach, are already used in the formula (A.12)). We will
conjecture that these formal interactions are:

(i) “intrinsic two-body interaction” between all “intrinsic partons” i =
1, 2, . . . , N , treated on an equal footing:

µuN = µ
N∑

i,j=1

1 = µN2 = µN +µN(N −1) (N = 1, 3, 5) , (A.14)

where the first term µN on the r.h.s. describes the sum of “intrin-
sic self-interactions” of all “intrinsic partons”, while the second term
µN(N − 1) presents the sum of their “intrinsic mutual interactions”,

(ii) a correction to the “intrinsic self-interaction” of the “centre-of-mass in-
trinsic parton” i = 1 distinguished from all “relative intrinsic partons”
i = 2, . . . , N which, in turn, are indistinguishable from each other:

µ(ε−1)vN = µ(ε−1)
(
P

(N)
i=1

)2
= µ(ε−1)

1
N2

(N = 1, 3, 5) , (A.15)

where P (N)
i=1 = [N !/(N−1)!]−1 = 1/N is the probability of finding such

a distinguished “intrinsic parton” amongN “intrinsic partons” of which
N− 1 are undistinguishable.

The forms (A.12) and (A.13) together with the conjectures (A.14) and
(A.15) provide for charged leptons e−, µ−, τ− the mass formula (8) or (9):

mN = µρN

(
N2 +

ε− 1
N2

)
(N = 1, 3, 5) , (A.16)

or, more explicitly,

me =
µ

29
ε ,

mµ =
4µ
29

80 + ε

9
,

mτ =
24µ
29

624 + ε

25
, (A.17)

with me = m1,mµ = m3,mτ = m5 and ρ1 = 1/29, ρ3 = 4/29, ρ5 = 24/29.
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Some extensions of the charged-lepton mass formula (A.16) or (A.17)
were discussed in the two last Refs. [5]. They seem to be redundant in the
case of charged leptons.

The intrinsic structure of fundamental fermions presented in this Ap-
pendix is an analogy of Dirac’s construction of spin 1/2 that can be con-
sidered as an act of algebraic abstraction from the spatial notion of angular
momentum, rather than a result of a pointlike approximation for a spatially
extended rotating top. Similarly, our intrinsic construction of fundamental
fermions can be considered as arising through an act of algebraic abstraction
from the spatial notion of composite systems, rather than resulting from a
pointlike approximation for spatially extended composite states.

However, from the purely phenomenological point of view, the Dirac
bispinor indices α1, α2, . . . , αN in the wave function (A.1) may be only the
summit of an iceberg of some, yet invisible, spatial partons bound in really
composite systems, mainly in S states. But, if the spatial partons were some
conventional Dirac fermions, the Dirac matrices γµi and γνj should commute
for i 6= j (not anticommute as in our case; in both cases, all γ5

j ≡ iγ0
j γ

1
j γ

2
j γ

3
j

and σ3
j ≡ γ5

j γ
0
j γ

3
j (j = 1, 2, . . . , N) commute). This would spoil our intrin-

sic construction based on the Clifford algebra for γµi (i = 1, 2, . . . N). In
this case, the wave function (A.1) would not satisfy the generalized Dirac
equation, though such a equation should follow from Dirac’s square-root
procedure hopefully accepted for fundamental fermions in the limit of local
one-particle wave function. This argument seems to support our choice of
intrinsically composite fundamental fermions described in this Appendix.
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